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Total energies in the pseudopotential theory
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A new approximation is proposed for total-energy calculations in semiconductors. The
various contributions to the total energy are separately analyzed on the basis of a simple
model of the interatomic interactions. The model allows a direct connection to be found
between the valence-band eigenvalues and the lattice energy of a solid. The theory
correctly describes total energies and zone-center optical-phonon frequencies for a number

of elemental and binary tetrahedral semiconductors. Elastic properties such as the bulk

modulus can also be computed and are shown to give a good agreement with experiment
in the case of Si.

I. INTRODUCTION

Very satisfying results' have been recently ob-

tained by employing the self-consistent pseudopo-
tential method to calculate the structural proper-
ties of semiconductors. This IYlcthod, however, I'c-

quires very accurate and time-consuming numeri-

cal computations which tend to obscure the physi-
cal interpretation of the experimentally observed

trends. Good as they are, therefore, these results
do not eliminate the quest for simpler approaches.
In the following we propose a simple approxima-
tion scheme which allows for a direct connection
between the sum of the valence-band eigenvalues

and the total energy of a semiconductor.
The starting point of our method is a reasonable

guess of the form of the interatomic interactions in

a solid. As is described in Sec. II we assume that
the field which acts on an atom in a solid is just
the field "felt" by its valence electrons. Accord-

ingly we write it in terms of a screened pseudopo-

tential so that the lattice energy can be easily com-

puted. The total energy is then obtained by adding

the sum of the valence-band eigenvalues plus the
exchange and correlation energy as given by
clectI on-gas theory.

It must be noted that what we call lattice energy
is quite different from the cohesive energy as usu-

ally defined. By definition, in fact, the latter
quantity is obtained by subtracting from the total
cllcl'gy tile sllnl of 'tllc lolllzatloll cl1cl'glcs of tllc
isolated atoms. As a consequence our lattice ener-

gy is substantially greater than the cohesive ener-

gies and is therefore more suitable for approximate

computations.
A further feature of our method is that the total

energy is effectively separated into a structure-
independent and a structure-dependent part. The
point is that in ouf scheme too, as in Harrison s
recently developed tight-binding approach, and

bypassing the calculation of Madelung energies
turns out to be a very effective way to get good
simplified formulations. In fact, as we show in

Sec. III, the total energies of a number of elemen-

tal and binary semiconductors can bc pI'cdictcd JUst

by using one numerical constant. As an even more
interesting result we show that with the same value

of the constant and with no additional parameter
the zone-center optical phonons can be analogously
determined. This result is particularly relevant
since it offcI's a pioof of thc direct connection be-

tween electronic and total energy which is the basis
of ouf scheme.

Finally, we discuss in Sec. IV how our theory
can be successfully extended to the study of other
elastic properties such as the bulk modulus.

Again, this can be done without introducing addi-

tional parameters. The calculations have been

done in the case of Si and they show, besides a
good agreement between experimental and theoreti-
cal value of the bulk modulus, that our theory can
be used as a guide for building realistic pseudopo-
tentials.

The Usual way to compute total energy is to
have it divided into ionic and electronic parts.
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Only the former part, namely Madelung energy,
can be computed exactly, while because of the crit-
ical balance that occurs among the electronic con-
tributions, self-consistent methods have to be used
for the latter one. If one wants to avoid these
cumbersome, though successful, methods and look
for effective approximations, an alternative scheme
can be found by looking at a solid as a periodic
structure of interacting atoms (instead of ions). In
this case the total energy per atom can be written
as an atomic part E„(the electronic energy of an
atoiil iil its boildlilg state) plus a lattice part EL,

(the interatomic interaction energy). For weakly
interacting systems Eq is very close to the sum of
the isolated atom ionization energies, so that EI
almost coincides with the cohesive energy E&.
This is no longer true for strongly interacting sys-
tems such as covalent semiconductors: EI is here
substantially greater than E~ because it corre-
sponds to the separation of a solid into isolated
atoms in excited states.

I.et us now confine the following discussion to
monatomic solids, since generalizing to polyatomic
situations is straightforward. The first thing to be
pointed out is the short-range character of the in-
teratomic forces, as opposed to the long-range
Coulomb nature of the ionic interactions. This
fact allows thc potential experienced by an atom in
a solid to bc approximated by the potential felt by
its outer electrons. This is the main advantage of
our scheme, since all the achievements of pseudo-
potential theory can be fully exploited.

To be more precise let us further assume that
the interatomic forces can be described by a two-
body potential W(r) given by the usual pseudopo-
tential V(r) times the valence Z. Accordingly, Er
can be conveniently written as the convergent sum

EI ——W(0) + —,g' S~ ( g )S( g )W(g),

where the band-structure energy Ezs is given by

EBs=y'S (g)S(g)+(g),

and E(g) by

Qog'Vo(g)le(g) —I]
+(g)=-

8me e(g)

As usual, Vo(g) denotes a bare ionic pseudopoten-
tial, Qo the atomic volume, and e{g) a suitable
dielectric function. It must be remembered that
because of our basic approximation we identify
V(g) with W(g)/Z.

The close similarity between EJ. and Eqs strong-
ly suggests that one should be able to derive one of
them from the knowledge of the other. To this
end let us notice that the approximations leading
to both equations can bc considered roughly
equivalent. In fact, using second-order perturba-
tion theory for Eas is very much like approximat-
ing the interatomic forces by a two-body potential.
It is reasonable, therefore, to suppose that the same
connection between Eus and EI. should be found m
rigorous treatments as is found in approximated
ones. As a further simplification let us take for
W{g) a simple screened Coulomb form

W( )
'W (g) 4lTZ e

&(g) Qog e(g)

Again, it is reasonable to suppose that the results
obtained with this choice should have a wider va-
lidity than the assumption itself, since Eas and EI.
should be equally affected.

Substituting Eq. (5) for W(g) in Eqs. (1) and (4)
g1VCS

~, S~(g)S(g)2' eL=
Qog'~(g)

k
Eg ——ZV(0)+Ens+

[k( gk
(2)

the factor —, entering so that each atom pair shall

not be counted twice. As usual, W(g) is the
Fourier transform of W(r} and S(g) is the struc-
ture factor, g being a reciprocal-lattice vector.
The total electronic energy of an atom in its bond-
1ng state 1s equal to thc sum of thc valcncc-band
eigenvalues, divided by the number of atoms,
minus the double counting energy. To second-
order perturbation theory it is simply given,
double-counting correction included, by

+, S~(g)S(g)2nZ e

Qog2e(g)

A comparison of Eqs. (6) and (7) would lead im-
mediately to the relation

EI.= W(0) +Eas/(e —1) (8)

if the dielectric function would be independent of g
and equal to some average value e. Though clearly
this is not the case, Eq. (8}cannot be too incorrect



an approximation to the true relationship betmcen

EJ. and E~s. As me shall see in Sec. III, on the
contrary, quite good results can be obtained just by
using the same c for a number of elemental and
binary semiconductors.

The total energy can now be obtained by adding
to EL, as given by Eq. (8} the energy of the electron
system. This should indudc exchange and correla-
tion as mell as kinetic and band-structure cncI'gy.
A consistent way of doing this is to take Ei,„and
E„,from electron-gas theory and to set V(0) equal
to minus two-thirds of the Fermi energy Ez, as is
true for any Coulomb potential screened by the
I.indhard dielectric function. Accordingly, our fi-
nal result is

4Z 3Z
EJ +Eas~« —1)+

3 5

—Z ' —0.115+0.031 lnr, +Ens,0.916
Pg

where it is implied that energies are in Ryfatom.
Equation (9) gives us a practical recipe for total

energy calculations whose only input, apart from
a«mic volume, is Ess. In thc case of m«ais one

could simply use Eq. (3). For semiconductors,

however, second-order perturbation theory does not
work too well, so a better evaluation of Ens is
needed. Since E~ cannot be obtained directly
from ordinary band calculations we propose the

approx1Inat1on

(10)

stresser. Fifty plane maves have been included ex-
actly in the expansion of the wave function at the
Baldereschi point. The average value e of the
dielectric function has been taken to be 1.3 for all
semiconductors. Doubling the number of plane
waves would lead to quite analogous results with

only a slightly higher value of e.
As can be seen from Fig. 1 the overall agree-

ment between theoretical and experimental values
is quite good. It must bc noted that thc straight
line which gives the best fit is not exactly the line

E,'"„"'=E;,"~'. As has been already suggested this
slight difference is due to the approximation lead-

ing to Eq. (10). It stands to reason, in fact, that
the kinetic part of the valence-band eigenvalues in
II-VI compounds should be less than the corre-
sponding part in III-V compounds. The net result
of including such a correction would be to improve
the agreement betmeen the tmo lines.

On the whole, therefore, our approximation
schcHlc seems to bc quite sound~ the IQorc so be-

cause the value of e turns out to be, as expected,
somewhat lower than the typical values of c(g) for
thc relevant reciprocal-lattice vcctoI's. Pol instance
the values of e(1,1,1) for Si, Ge, and Sn are, respec-

tively, 1.59, 1.61, and 1.70, if one uses I.indhard's
dielectric function with Hubbard's correction in-
cluded. Moreover, the fact that the use of only
one value of e suffices to give good results for a
whole group of semiconductors is very encouraging
since it ensures that our theory is not critically
dependent on the choice of this parameter.

THEO R.

where E~ is the sum of the valence-band eigen-

values at the Baldereschi point. In this way we

neglect to corrix:t for double counting but the error

should only be reflected in the choice of e. In fact,
neglecting double-counting corrections me undcres-

tiInate Eqs, so that e should turn out to be some-

what lower than the value one mould expect.
However, the general trends should be unchanged,

apart from a slight bias which should occur be-

cause we have used in Eq. (10) the free-electron

kiilctlc cllcrgy instead of thc actllal ollc.

III. NUMERICAL RESULTS

-8-

EXPT E ( R y /atom)

Our band calculations have been done by using

the pseudopotentials chosen by Cohen and Berg-

FIG. 1. Experimental vs theoretical values of the to-

tal energy, according to Eq. (9), with e= I.3. Experi-

mental data from Ref. 13.



A quite independent check on the reliability of
our scheme can be obtained by using Eq. (9) to
compute the phonon frequencies for the same
semiconductors consldcI'cd ln Flg. 1. This caQ bc
done without problems for purely covalent sem-
iconductors. In this case, in fact, the zone-center
optical phonons can be most simply computed just
by a proper modification of the structure factors
with no need to increase the size of the unit cell.
For polar compounds, however, the energy increase
due to the phonon distortion should be partially
compensated by an accompanying variation of the
charge transferred from more electropositive to
more electronegative atoms. This variation should
act in the sense of lowering the total energy and
should be accounted for by a suitable modification
of the pseudopotential form factors. Since the ef-
fect should be proportional both to the energy of
the phonon distortion and to the ionicity of the
compound we propose to account for it simply by
ilililtiplyiiig tile enei'gy of the plionoii distortioii by
the factor 1 f where—f is th. e PhilHps'0 iomcity.

As is shown in Fig. 2 the above empirical factor
leads to excellent values of the longitudinal optical
phonons, instead of the transverse ones, as would
seem morc natuI'al. Tll reason must llc ln thc em-
pirical character of f;, which seems to be better
siiited to the descriptioii of longltud1nal vibratioiis.
Anyway, the important feature is that a consistent
set of phonon frequencies can be obtained without
the introduction of any new disposable parameters.

THEOR,
Lo(t-)

10 15

ExpT. Lo(p) (~012Hz)

FIG. 2. Experimental vs theoretical values of the
longitudinal-optical phonons at F, computed with
@=1.3. Experimental data from Ref. 14.

In fact the band calculations have been done in the
same way as in Fig. 1, and with the same value of
e. Moreover, since the kinetic energy gives almost
no contribution to the vibration frequencies the
variation of Ens with the phonon distortion can be
substituted by the corresponding variation of E~
with practically no loss of accuracy. As a conse-
quence the use of Eq. (10) should not introduce
any bias in the case of phonon frequencies. As can
be seen from Fig. 2 this is indeed what happens.

In Sec. III we used Eq. (9}to coiilpute plioiioii

frequencies as well as total energies, thus showing

that our scheme can describe distorted as we11 as

perfect structures. It is a natural development,

therefore, to try and apply our approach to
compressed or expanded crystal structures, thereby

gaining information about important elastic prop-
erties such as the bulk modulus. To this aim,
however, we need volume-dependent pseudopoten-
tial form factors so as to be able to compute
valence-band eigenvalues for different values of the
lattice constant. Furthermore, since we arc not
deahng with a self-consistent procedure, the form
factor variation should include the volume depen-

dence of the screening.
A set of pseudopotential form factors that meets

the above requirements is the general model pseu-

dopotential developed by Aymerich, Meloni, and
Mula" (AMM). In fact its analytic formulation
allows an easy calculation of the bare form factors
for any value of the lattice constants. Moreover,
AMM pseudopotenti@s arc screened through the
use of a suitable semiconductor dielectric func-

tion, ' so that the volume dependence of the
screening can also be easily accounted for.

We have used the AMM pseudopotential to
compute the total energy of Si for various values

of the lattice constant. Our results are summa-

rized in Table I, where the separated contributions
are also displayed. We have used Eq. (9) with
I= 1 42, at variance with the @=1.3 which has
been used in Sec. III for Cohen and Bergstresser
pscudopotentials. %c remark that the change in e
is closely connected with the introduction of AMM
pscudopotcntlals, slncc they glvc Egs values which
are consistently higher (in absolute value) than in
the former case. A higher value of e is according-

ly needed in order to obtain for AMM pseudopo-
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TABLE I. Total energy contributions (in Ry/atom) for different values of the lattice constant for Si. Calculations
according to Eqs. (9) and (10) with @=1.42.

ao (A) 5.03 5.23 5.43 5.63 5.83

EBS
E~
E
2$'(0)
E~

Etot

2.S60 82
—0.633 76

1.92706
—2.355 24
—5.69058
—4.35424
—3.273 47
—7.627 71

2.36871
—0.73084

1.63787
—2.27499
—5.26368
—4.37194
—3.26896
—7.64090

2.19743
—0.81692

1.38051
—2.20048
—4.88306
—4.38658
—3.26150
—7.64808

2.04408
—0.89151

1.15257
—2.13110
—4.54230
—4.39379
—3.24968
—7.64347

1.90624
—0.95580

0.95044
—2.06633
—4.23600
—4.39371
—3.23389
—7.62760

tentials analogous results to the ones shown in Fig.
1. The particular value I=1.42 has been chosen in
order to bring the minimum of the total energy
curve in correspondence with the observed value of
the lattice constant.

Besides a reasonable value for the total energy
(—7.65 Ry/atom against the experimental —7.919
Ry/atom) the results shown in Table I allow the
determination of the bulk modulus with a quite
good accuracy: B,h„,——1.1X10' dyn/cm to be
compared with the experimental' Sexpt 0 99)(10'
dyn/cm . In addition, again with the AMM pseu-
dopotential and with @=1.42, we have computed
the optical-phonon frequency at I' obtaining
LO(I') =14.7&(10' Hz. These results show that
our scheme is an effective recipe for the calcula-
tion of the structural properties of semiconductors.
In order to get a better understanding of how it
works let us do a critical review of our approxima-
tions.

Basically our starting point might be considered
as equivalent to the Chadi's'5 decomposition of the
total energy of an electron-ion system into a band-
structure term plus a short-range pair potential
term. The effectiveness of such a decomposition
has been demonstrated by Chadi's success' in
describing the pair potential term with the use of a
simple two-parameter force-constant model. Our
second step, and our main approximation, is to
write the pair potential as a screened pseudopoten-
tial, thus being able to derive an analytical relation
between the pair-potential energy and the band-
structure energy. This is at variance with Chadi's
approach but our approximations work exactly as
his do, namely because of the short-range nature of

the pair potential. In fact, our assumption that the
field experienced by an atom in a solid is just the
field felt by its valence electrons, can only hold in
the case of short-range potentials.

Our remaining approximations stem from the
use of the electron gas theory to compute quanti-
ties such as V(0), E~„,E„,. We believe that all
these are minor approximations because the related
errors should be compensated by the choice of e.
The important point is that all these quantities
should be mainly dependent on the average elec-
tron density so that their approximate computation
should not introduce spurious trends [apart, of
course, from the already discussed case of the
free-electron kinetic energy in Eq. (10)].

As a conclusion we would like to point out that
our theory allows for a very simple and direct con-
nection between structural and electronic proper-
ties. Information about the former field can thus
be used for the latter one and vice versa. This can
be done meaningfully because we have shown that
one value of e suffices for a whole group of semi-
conductors and for different properties. It must be
noted that the above result is independent of the
particular kind of pseudopotential used. Within
our scheme, in fact, the arbitrariness of the pseu-
dopotentials is compensated by the choice of e.
This arbitrariness, moreover, can be exploited to
try to find some "best" set of pseudopotentials, ca-
pable of best accounting for both types of physical
properties. Such an approach should be most use-
ful for studying solid solutions, since the use of a
common value for e should be a guarantee of the
compatibility of the fitting procedures chosen for
the end compounds.
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