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The dynamic Monte Carlo renormalization group is applied to the two-dimensional Kawasaki
and three-dimensional Glauber models. Our best "matching" results for the Kawasaki model
yield a value of z =3.80 for the dynamical exponent, as compared with the exact value z =3.7S.
This provides strong confirmation for the validity of this method. The results for the Glauber
model are less accurate, but our estimate of z =2.08 is in reasonable agreement with the e ex-
pansion.

The Monte Carlo renormalization group (MCRG)
was originally introduced by Ma' for the study of the
static and dynamical properties of the kinetic Ising
model. A somewhat different, improved version of
this MCRG was then developed by Swendsen' and
subsequently Wilson and applied to a variety of stat-
ic problems in critical phenomena. Quite recently
this method has been applied to the two-dimensional
Glauber model~ (with nonconserved order parameter)
by Tobochnik, Sarker, and Cordery' to compute the
dynamical exponent z. At the moment there is con-
siderable controversy about the validity of the vari-
ous real-space dynamical renormalization groups that
have been developed, ' ' including the MCRG. In
view of the importance of developing a valid real-
space theory for critical dynamics and because the
MCRG seems to offer the possibility of a systematic
theory, we have therefore applied the procedure of
Tobochnik et al. 5 to the two-dimensional Kawasaki
model'3 (with a conserved order parameter) for
which the exact value of z is thought to be'
z =4 —q =3.75, where q is the standard correlation
function exponent. As we see below, our results are
in excellent agreement with this value, thus providing
a strong confirmation of the validity of the dynamical
MCRG. In addition, we have also considered the
three-dimensional Glauber model, for which ~-

expansion results"' exist for the analogous time-
dependent Ginzburg-Landau model (where a =4 —d
and d is the dimensionality). Our present estimate of
z ——2.08 is in reasonable agreement with the ~-

expansion value of z =1.99, but more accurate
statistics will be necessary for a convincing MCRG
determination, as we discuss later.

Following Tobochnik et al. 5 we use standard Monte
Carlo methods to compute time correlation functions
for an original lattice of X spins and its sequence of
renormalized lattices generated by m blockings
(m =1,2, . . . ). The block-spin configurations (with

and

E {Xm,T), t }=E {Nbdm +1,T2, t' }

where the two correlation functions are defined as

C{wm T t}—= XS '(t)S '(0), 0)1

I

( mE)' )t() —= zs '(t)s, ' '(0)),„.1

&o&

(4)

The sum in (4) is over nearest-neighbor pairs on a
d-dimensional hypercube. The reduced Ising Hamil-
tonian is 0 = T X«&l S,SJ, where T is the dimen-
sionless temperature. The conditions (1) and (2)
provide two different estimates of z which in principle
one ~ould expect to be the same but in practice will

block spina {S,t ~ })are generated from the original
spin configurations (with site spina {S;})by the ma-
jority rule transformation. "Ties" are broken by ran-
domly assigning the block spins the value +1. It
should be noted that for the Kawasaki model this
procedure can occasionally violate the conservation of
magnetization on the renormalized lattices, but we
have found this to be a negligible effect (e.g. , the
average magnetization per spin is never larger than
10 for the lattices used as compared with the exact
value of zero). This same renormalization procedure
is also carried out for a second initial lattice of Nb
spins, where b is the length rescaling parameter,
b =2. One then attempts to find two temperatures
T) and T2 and two times t and t' (which are related
by the dynamic exponent z via t' = tb') such that
correlation functions for the two different sets of lat-
tices "match. " This then determines z. Specifically,
we obtain estimates of z from the conditions
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be somewhat different. We have found that our data
for E(t) [and to a lesser extent C(t)] are very well
represented fo'r sufficiently large times by the dom-
inant exponential decay,

E(N, m, T;t j =A'"'e (5)

where r is the time constant. This form has al-

lowed us to make an estimate of the error in our
(Nb~)matching, since (2) and (5) imply that A '"'=A '+t '.

We should note that since we are searching for a crit-
ical fixed point we must have Ti = T2= T,. We have
used the exact value of the critical temperature (for
the infinite system) in two dimensions and the high-
temperature-series estimate in three dimensions.

Our analysis has been carried out for hypercubes of
edge size eight and sixteen in both two and three
dimensions, using periodic boundary conditions. A
standard transition probability, ~, for exchanging a
pair of randomly chosen spins (Kawasaki model) or
flipping a randomly chosen spin (Glauber model)
was used, of the form e =1 if 4H (0 and
w =exp( —PAH) if AH ~ 0. hH is the change in

the energy resulting from the transition, and P is the
inverse temperature times the Boltzmann constant.

Our results for the Kawasaki model are shown in
Table I and are based on using 2.3 & 10 and
2.04 & 106 MCS (Monte Carlo steps) in computing
the correlation functions for the 8 & 8 and 16 x 16 lat-

tices, respectively. We have found that the matching
conditions (3) and (4) are best satisfied for the re-
normalized 4 && 4 lattice. The results for E(t) are
particularly good, with the exponential decay (5) be-

ing an excellent representation of the data, as sho~n
in Fig. 1. This matching yields as an estimate
z =3.80. One measure of the error in matching,

given (5), is the difference between the amplitude A

for the two 4 x 4 lattices. This can be obtained by
extrapolating the linear fits in Fig. 1 to t -0, One
finds that the relative difference in the amplitudes is
only 2%, so that the matching is very good. The
autocorrelation function C(t) is also well represented
by an exponential decay if one excludes times less
than t =40 and 600 for the initial lattices of 8 & 8 and
16 & 16 spins, respectively, as shown in Fig. 2. The
matching condition (3) is not quite as well satisfied as
(4), as reflected, for example, in a relative difference
of the amplitudes of the renormalized
autocorrelation functions of about 5%. The resulting
estimate for z is z =3.88. Overall the best MCRG
results are given by the analysis of E(t), and we
therefore consider z =3.80 to be the most reliable es-
timate of the critical exponent. We consider the
results for E(t) as given in Fig. 1 to be an excellent
indication of the validity of the MCRG in critical
dynamics. Nevertheless, we should add two qualifi-
cations. The first is that significant finite-size effects
are seen in our study, although they do not influence
the determination of z. A simple manifestation of
this is seen in our estimates of the equilibrium ener-

gy per spin, where we obtain 0.58 for the W =256 lat-
tice as compared with the exact result for the infinite
system of J2/2 =0.707. The second finite-size effect
is more subtle and results from the conservation law.
This leads to block configurations for the 2 x 2 lat-
tice, which are of antiferromagnetic-1ike nature and
hence to slightly negative values of E(t), as shown in
Table I. This is one reason we do not use the 2 x 2
lattice for our matching, although a good matching
occurs for C(t). This effect does not arise in the
Glauber model.

Finally, we note that we have carried out the same
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FIG. 1. Plot of lnE(t) vs t for a renormalized lattice of
4 & 4 spins. The data for initial lattices of 8 && 8 and 16 && 16
spins are denoted by dots and crosses, respectively.

FIG. 2. Plot of lnC(t) vs t for the same systems as in

Fig. 1.
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2~N = 256

E(t =0)

C (t)

C (t)

E(t)

C (t)

E(t)

C(t)

E(t)

1 0.5799
2 0.4306
4 0.1894
8 —0.0396

t =600
1 0.2972
2 0 3473
4 0.4076
8 —0.3509

t =600
1 0.2843
2 0.2863
4 0.1782
8 —0.0129

t =1200
0.2224

2 0.2604
0.3118

8 0.3016
t =1200

1 0.2134
2 0.2201
4 0.1467
8 —0.0057

t =1800
1 0.1762
2 0.2053
4 0.2500
8 0.2404

t =1800
1 0.1696
2 0.1763
4 0 1209
8 —0.0055

t =2400
1 0.1445
2 0.1701
4 0.2076
8 0.1876

t =2400
1 0.1393
2 0.1450
4 0.0994
8 —0.0017

1 0.4555
2 0.1913
4 —0.0584

t =40

0.3824
0.4229
0.3727
t =40

1 0.3137
2 0 1871
4 —0.0150

t =80

0.2893
0.3264
0.2976
t =80

1 0 2436
2 0 1565
4 —0.0053

t =120

0.2330
0.2641
0.2463

t =120

1 0.1979
2 0.1306
4 —0.0008

t =160

0,1917
0.2188
0.2029

t =160

1 0,1633
2 0.1087
4 —0.0014

TABLE I. The dynamic MCRG data for the two-

dimensional Kawasaki model for the two correlation func-

tions E(t) and C(t) defined in the text. The quantities N,

I, and t denote the number of spins on the lattice, the
number of blockings, and the time in Monte Carlo steps,
respectively.

analysis for C(t) and E(t) for the d =3 Glauber
model. Although we obtain results similar to that
shown in Figs. l and 2, the matching conditions (3)
and (4) are not as well satisfied as in the two-
dimensional model. The relative differences in the
amplitudes of the renormalized E(t) and C(r) for
the 4 x 4 x 4 lattices are, for example, about 5% and
7%, respectively. The estimate of the exponent ob-
tained from matching E(t) is z = 2.08, which is in
reasonable agreement with the e-expansion estimate
z = 1.99. Nevertheless, although we have expended
comparable computer time on the Kawasaki and
Glauber models, we have less confidence in our esti-
mate of the Glauber exponent. This is because we
have poorer statistics in the three-dimensional case,
where we have computed correlation functions using
1.15 &10 and 7.37 &10"MCS for the 8 &8 x8 and
16 x 16 x 16 lattices, respectively. The increase in the
total number of spins involved in going from d =2 to
3 makes the problem of obtaining good statistics
more difficult in three dimensions than in two
dimensions. Nevertheless, there seems to be no dif-
ficulty in principle in obtaining an accurate estimate
of z for the d =3 Glauber model by this method. %e
are in the process of doing more extensive simulation
studies of this problem. In conclusion, we note that
the dynamic MCRG seems to be a promising new
technique. However, its successful application will

require very good statistics and quite accurate match-
ing to obtain precise exponents. As well, the ambi-

guity associated with determining z when one does
not have an exact matching needs to be resolved. Fi-
nally, it should be noted that one advantage of this
Monte Carlo method is that it avoids the difficulties
associated with a direct calculation of the kinetic coef-
ficient. ~ In this sense it seems as powerful a tool for
the Glauber model as for the Kawasaki model, even
though the kinetic coefficient vanishes in the former
case.
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