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A full numerical analysis has been developed of the thermal transient and ac dynamic
response of a Schottky-barrier space-charge region for a semiconductor with an arbitrary
continuous density of gap states g (E). These techniques are applied specifically to a cal-
culation of current and capacitance deep-level transient spectroscopy as mell as complex
admittance versus temperature. %e illustrate our methods on a host of hypothetical ex-

amples with densities of states similar to those obtained from studies of crystalline and

amorphous semiconductors. A detailed comparison is made between the usual discrete-
level case for material with a large dominant dopant level and the case of a material with

a large and continuous density of deep-gap states. %'e also discuss the case of spatially
nonuniform material and consider the case of fairly insulating material for which the
equilibrium Fermi level lies near midgap. The application of our methods to actual
analysis of experimental data of amorphous Si-H alloys to obtain a detailed picture of
g (E) is given in an experimental companion paper.

I. INTRODUCTION

The use of capacitance measurements of the
Schottky-barrier space-charge region to obtain in-
formation about gap states in semiconductors has
been developed over the course of nearly two de-
cades of research. The theory relating deep-trap
levels in crystalline semiconductors to capacitance
as a function of voltage (C-V) as first discussed by
Goodman, ' or as a function of frequency, begin-
ning with the early work of Sah and Reddi, was
developed in great detail by Senechal and Basin-
ski, Roberts and Crowell, " and Losee. Losee, in
particular, presented a very general treatment of
the effects of gap states on the measured complex
admittance of Schottky-barrier diodes as a function
of frequency and temperature. Over the same
period of time, dynamic thermally stimulated re-
laxation measurements on diode junctions were
also developed beginning with early proposals to
use capacitance-transient techniques by VA'lliams

and by Furukara and Ishibashi. Later develop-
ments include measurements of thermally stimulat-
ed currents (TSC) or capacitance (TSCAP), and
deep-level transient spectroscopy (DLTS). These
latter techniques have had considerable success
identifying and studying the dynamic response of
deep"gap states ln crystals.

Recently the use of many of these techniques

has been applied to the study of deep states in hy-
drogenated amorphous silicon (a-Si:H). Admit-
tance measurements, first in the form of C-V and
later as a function of frequency and temperature
have been made on a-S1:H Schottky-barrter or
metal-oxide —semiconductor (MOS) structures. A
brief evaluation of the results of this work is given
in the preceding paper. ' Here we wish to note
that analysis of these results until very recently fol-
lowed along lines presented by Roberts and
Crowell, relevant for a low-frequency (or high-
temperature) regime where all deep levels might
respond to the applied ac voltage. "' Lately,
several analyses have been developed for variable
frequency or temperature, notably by Snell et al. , 3

Viktorovitch and Moddel, ' and Tiedje et al. '

These analyses have taken one of two basic ap-
proaches. In one approach, ' ' an equivalent-
network analysis is used. This is perhaps the more
appropriate analysis for fairly insulating (undoped)
material where the time scales of measurement are
comparable to the dielectric relaxation time. Snell
et al.,' on the other hand, modify the low-fre-
quency approach by imposing a frequency-
dependent cutoff in the energy depth to which
gap-state charge can respond.

In the last couple of years, a few attempts have
also been made to apply thermal-transient tech-
niques to a-Si:H, ' ' including DLTS.' ' All
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of the analyses given have been simple extensions
of results known to be true for crystalline materials
with low concentrations of deep levels (compared
to net donor concentrations).

The difficulty in interpreting either the admit-
tance or transient measurements has several as-

pects. The first is that transport itself is poorly
understood in these materials. Second, there is
considerable evidence that anomalous regions exist
at or within 1000 A of the surface of these
films. ~ Finally, because deep concentrations
are comparable to, or perhaps even exceed,
shallow-state ("donor") concentrations, the usual

analysis for transient effects may be greatly inaccu-
rate due to the significant change in the depletion-

region band bending that occurs during the emis-
sion of carriers from deep states. These latter two
difficulties may exist, in some cases, even for crys-
talline materials.

The purpose of this paper is to present a detailed
numerical analysis by which thermally stimulated
transient effects in diode junctions, in particular
DLTS, may be correctly interpreted for cases of an
arbitrary density of gap states g (E), or spatial vari-
ation g (x,E). While the primary motivation for
this work comes from a need to analyze DLTS
spectra obtained on a-Si:H alloys, these techniques
are also intended to find considerable utility in
understanding crystalline data. Indeed, many of
the assumptions inherent in our analysis have real-

ly been verified only for the case of crystals. Con-
sequently, application of this analysis to a-Si:H
should be considered in one sense as a test of many
of those same properties for that material. Further
discussion of the applicability of such assumptions
to a-Si:H is presented in our experimental com-
panion paper. '

In Sec. II of this paper, the basic theoretical
development of our methods is presented. First we
discuss the solution of Poisson's equation under
steady-state conditions to give the correct band
bending in the depletion region. While numerical
analysis of this problem was previously treated by
Spear et al. ,' our methods are generally more suit-

able for cases of spatial variation within the
space-charge region. A fast algorithm for solution
of Poisson's equation is described which is crucial
for the nonequilibrium, time evolution calculation,
This discussion also includes the treatment of
diodes in the deep depletion regime (large applied
reverse bias}.

We next consider the nonequilibrium evolution
of the space-charge region following either a volt-

age pulse or laser pulse excitation. Such treatment
is unique to the present work. The basic assump-
tions and theoretical framework for considering
nearly all transient diode measurements for a semi-
conductor with nearly arbitrary g (E) is set forth.

In the third part of this section, we adapt the
analysis of Losee to obtain very general expressions
for the ac response of a Schottky barrier or p+n
junction at any frequency co, or temperature.
These results are valid quite generally provided
1/co is longer than the dielectric relaxation time of
the material. We obtain a solution to Losee's
equations for the complex admittance in closed
form which applies to cases where variations in

g(E) are small over the energy range of kT. This
treatment extends somewhat the analysis of admit-
tance in a-Si:H by previous authors. ' ' A com-
parison of our methods and assumptions in this re-

gard is discussed.
In the last part of Sec. II we consider specifical-

ly the case of capacitance and current DLTS.
While our methods are readily applicable to TSC,
TSCAP, or transient measurements at fixed tem-

peratures, we restrict the illustration of our tech-
niques primarily to DLTS and measurements of
admittance versus temperature.

Section III presents calculations of DLTS and
admittance for many classes of g(E) and a variety
of experimental parameters. At the beginning of
this section we tabulate all of the assumptions
essential to our methods of analysis and also list
any additional assumptions used to illustrate the
examples that follow. We then first consider the
case of several nearly discrete levels both for its
pedagogic value and to point out some less recog-
nized aspects of DLTS measurements in crystals.
Next we consider an example of a continuous but
simple g (E) and compare it in detail to the quasi-
discrete case. Finally, we assemble a catalog of,
BLTS and admittance measurements for cases of
g (E) similar to many of those proposed for amor-
phous semiconductors. Since our methods are
mostly numerical and not readily available to other
workers, this detailed series of examples is intended
as an aid to relate experimental DLTS and admit-
tance measurements to an actual density of states.
A method for obtaining a density of states g (E)
beginning mitIj. DLTS data is presented in the
preceding paper.

Section IV concludes with some additional dis-
cussion of the assumptions used and the general
applicability of this work. The extension of these
calculations to explore as yet unobserved phe-
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nomenon in amorphous semiconductors is con-
sidered briefly.

II. THEORETICAL DEVELOPMENT

A. General equations

If itj(x) and P(x) denote the dc and ac band po-
tentials, respectively, Poisson's equation becomes

dg ~ dg 5p

dx & dx

DE PLE T ION REG ION

EF
p (X~) = qe g (E) dE

EF-1II (x&)

I NEUTRAL BULK

l

l 4(XI) =O
p (x, ) -O

l

I

g (E)

EF

EQ

where p and Sp are the dc and ac charge densities,
respectively. We take the zero of energy for P to
be the position of the conduction-band edge in the
neutral bulk material. In thermal equilibrium the
dc charge density is given by the usual integral
over the density of states,

p(x)=q f [f(E',Ep, T)

f(E',E~—P(x), T)]—g (E',x)dE',

(3)

It is important at this point to explain our nota-
tion. %e distinguish between the energy scale that
relates to the physical sample and the energy scale
that applies directly to the density of states. The
symbols g, Ez, Eg, E„and E, denote energies
within the sample space-charge region while sym-
bols with a zero superscript such as EF, E„and
E, are fixed with respect to g (E). It is obvious
that corresponding pairs of symbols differ only
through the addition or subtraction of P. We shall
further take E, as the zero of energy for g (E) and
define AE~ ——E, —E~ and ATE+ ——E,—Ez. Thus
Ep b,Ep and E,=/. ———

Using Eq. (1) together with Eqs. (2) or (3) gives
a straightforward integral differential for l(t. This
situation is shown schematically in Fig. l. Except
for a few specific cases of g (E), ' this problem
must be solved numerically. For small values of
applied bias or for MOS structures the Fermi ener-

gy will extend through the barrier region and

where Ez is the position of the Fermi energy in the
(neutral) bulk, f is the Fermi function, and q the
electronic charge. If, as has often been cus-
tomary, "' we ignore any x dependence in g (E)
and consider this integral in the low-temperature
limit we obtain a somewhat simpler expression:

p(P)=q f, g(E')dE'

XI

FIG. 1. Depletion region for equilibrium space-
charge region for a material with a continuous density
of gap states. The charge density is related to an in-
tegral involving the amount of band bending at each
point x as indicated. The definition of various symbols
is given in the text.

these equations are expected to remain valid. Such
cases have been treated in the literature. '

For larger reverse bias applied to a Schottky bar-
rier this picture must be modified. We will consid-
er this situation in some detail since this discussion
is also relevant to our treatment of time-dependent
effects in Sec. II8. In general, occupation of
states in the gap are dominated by majority- and
minority-carrier emission and majority-carrier cap-
ture. The emission rate for electrons is usually
written

( )~ Elkr—
where E is the energy difference between the par-
ticular localized gap state and the conduction-band
edge, E, , where carriers will move out of the de-
pletion region in response to the electric field. The
prefactor, o„(u„)N,=v„(where o„ is the capture
cross section for electrons into the state in ques-
tion, (u„) is the thermal velocity for electrons, and
N, is the occupation number for electrons in states
above E,), is readily derived by applying detailed
balance to the case of thermal equilibrium. Indeed,
thermal equilibrium requires that the capture rate
equaI' emission rate at EF. Hence, capture process-
es follow the same dependence on energy and tem-
perature as Eq. (4). However, for capture the
characteristic energy E is just the height of the
conduction-band edge above the bulk Fermi level
at the position x under consideration; i.e.,
E =b.Er+g(x). A similar expression applies to
hole emission:
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e = — =V e-E'/' kT

Vp

where E' is the energy difference to the valence-
band edge.

These expressions implicitly neglect intrinsic en-

ergy barriers to carrier capture which may exist if
lattice relaxation plays a role in the capture or
emission of localized states. This point is dis-

cussed in some detail in the experimental paper. '

Simply put, such cases require a distinction be
made between a "thermal equilibrium" energy scale
and a "thermal emission" energy scale. To avoid
undo complication, since for most cases of current
interest these differences are found to be small ex-

perimentally, we shall ignore this distinction. Such
refinements may be readily incorporated within the
current framework as needed.

When a large reverse bias is applied to the
Schottky diode, the potential barrier g(x) depletes
the region near the interface of free carriers from
the bulk and the concentration of free carriers is

wholly determined by leakage over the barrier at
the metal interface. In simple isothermal diffusion

theory the current over a barrier of height P~ is

given by
—P~ /kT

Jo-qN, pn I'ape

where pa is the drift mobility, 8'0 is the electric
field at the interface, x =0, and P is the transmis-

sion coefficient for majority carriers (which we

shall assiime are the electrons} across the barrier
interface. For a transparent barrier, p= l. The
use of diffusion theory or thermionic emission

theory is not crucial for our ultimate conclusions;
however, for a low-mobility material such as a-
Si:H Eq. (6) is probably somewhat more accurate.
If n, denotes the free-carrier concentration at a
point x within the barrier region, current continui-

ty then gives us

—$~ /kT
n, = PNe5'(x)

The quasi-Fermi-level EF, within the deep de-

pletion region is found by simply setting the emis-

sion rate for electrons equal to the hole emission
rate plus the electron-capture rate,

~+*/kT —(Eg —~F )/kT
Vne =V~e ' +~S~n S~, ,

or using Eq. (6),

—EEF*/kT +0 —p~/kTF p e 8
8'(x)

&p —(E —hE~ )/kT+ g F

&n

b,EF'=Pe ——kTln P g'(x }
(10)

Here, electronic levels will be empty to a depth
below E, roughly equal to the barrier height.

The general case is easily written down. Defin-
1ng

1/2
p ~0 (Eg l2 ps )Ikr—
2 g'(x)

Eg kr &n
EEI; —— + ln

Vp

+kTin[ —g+(g +I)'~ ] .

Equations (8) and (9) follow as special cases for

g « 1 and g && 1, respectively. For the remainder
of our discussion we will assume the former situa-
tion applies and take &RF" Ez/2. ——

In Fig. 2 we illustrate this situation. The quasi-
Fermi-level follows the bulk Fermi energy into the
tail region of the space-charge layer until it reaches
an energy AEF below E, as given by Eq. (9).
Thereafter it remains at a relatively constant level

below E, until very near the metal interface where,
duc to Qon-ncgllglblc fI'cc-hole conccQtration and
hole capture, it moves away from Es/2 to join Ez
in the metal.

Our solution of the dc barrier problem is made
numerically using a modification of the Noumerov

There are two obvious regimes: (1) If the first
term on the right-hand side (rhs) is negligible, we

get

Eg kr &n
AEp —— + ln

2 2 vp

This can occur either if the barrier height Pz is
significantly greater than half the band gap or for
a small transmission coefficient p. Note that at
room temperature, EEF' will lie within 0.1 CV of
Eg/2 even if v„and vz differ by 3 orders of mag-
nitude. (2) If the second term is negligible, cor-
responding to a small barrier, we obtain
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FIG. 2. Space-charge rcglon ln dccp dcplctlon. In
the deep depletion region the charge density is approxi-
mately constant as determined by the position of the
quasi-Fermi-energy. Parameters are defined in the text.
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technique. Details of this approach applied to
the diode space-charge layer are given in Appendix
A. This method converges extremely rapidly for
the equilibrium diode problem. Since this method
specifically generates p(x) rather than p(g) (see, for
example, Ref. 12) we are able to include trivially
the case of spatially nonuniform structures. More
importantly, the rapid convergence of the Nou-
merov technique is crucial to generate the non-

equilibrium spectra described in the next section.

I I I I I I I I I I I

0 0.2 0.4 0 0.2 0.4
DISTANCE FROM BARRIER (p.)

FIG. 3. Sequence of diagrams shying time evolu-

tion of space-charge region following an abrupt change
of applied voltage. The curves for the barrier potential
and charge density were obtained from a numerical cal-
culation for a hypothetical material with a constant den-

sity of states g(E)=10' cm CV '. A detailed descrip-
tion and the definition of all parameters is found in the
text.

B. Nonequilibrium problem

Voltage pulse excitation

We wish to consider the evolution back to equili-
brium of a Schottky-barrier diode in which a non-

equilibrium occupation of gap states has been in-

troduced. The simplest example occurs after a
change of the applied diode bias voltage This is.
the basis of "voltage pulse filling" in a DLTS or
thermally stimulated evolution experiment.

Consider the sequence of diagrams shown for
the n-type Sehottky diode in Fig. 3. At t =0 the
bias voltage is changed to a larger reverse value.
Initially (t =0+) the charge distribution is un-

changed and the voltage change produces an addi-

tional constant field across the sample. At some-
what later times (t =ti } three more or less distinct
regions develop within the space-charge region.
Near the diode interface (region A), the occupied
states are too deep to have emitted any electrons.
Thus the charge distribution is unchanged. Far-
ther into the material (region B) charge has been
emitted down to an energy depth Ei ~ ln(ti ). Be-
cause this region is greatly depleted of free carriers,
the charge distribution in this region is determined

by emission processes alone; thus, the charge densi-

ty is relatively constant. Finally, in the "tail" of
the space-charge structure (region C} emission and
capture rates are balanced; i.e., thermal equilibrium
has been established. In this region the electron
occupation ean be described by the bulk Fermi en-
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&nti
E) ——kT ln

ln2
(12)

Figure 4 shows the variation of the occupation
number n with energy in region B compared to a
Fermi function with Ez ——E~ at T =300 K. We
have chosen a value for the prefactor v„=2y10'
which is representative of real materials. An evo-

lution time of 10 ps has been used which gives a
characteristic energy E~ near 0.5 eV. We see that
the demarcation between empty" and "full" states

is actually slightly sharper than a Fermi function

1.0

0.8—
CL
UJ
CO

w 0.6—

O
I—

& 0.4—
C3

O

0.2—

0.6 0.5
ENERGY BELOW FC (eY j

0.4

FIG. 4. Comparison of a EEF——0.5-eV Fermi func-

tion (dotted line) at room temperature with the function

describing the electron state occupancy in region 8 of
Fig. 3 (solid line) for El ——0.5 eV also at room tempera-

ture.

ergy.
As time progresses (see t =t3), region 2 will

eventually disappear as the system loses its
memory of the initial conditions. Finally (t~ ao ),
region B will disappear as the new equilibrium is
obtained. However, for larger reverse bias, a re-

gion like B will persist at a characteristic quasi-
Fermi-energy near midgap (see our previous discus-
sion in Sec. IIA).

The fact that such well-defined regions exist fol-
lows from the exponential dependence on energy of
emission and capture rates as given by Eq. (4).
This rapid variation with energy guarantees that
the dividing line between regions A, 8, and C (see
diagram) will be sharp (to within M for a change
of kT in g). It also assures that the demarcation
between occupied and unoccupied electron states
will be quite sharp. In region B the demarcation

energy, i.e., the point of half occupancy (n = —,),
will be given by

at the same temperature. We denote the occupa-
tion function appropriate to region 8 by f*:

f~ (E,E~, T)=exp( e„—t & ),
with E& given by Eq. (12) and e„(E) by Eq. (4).
This allows us to write the charge distribution in

region 8 in a form analogous to Eq. (2):

p*(E),T)=q I [f(E',EF,T)

f~ (E—',E),T)]g (E')dE' .
(14)

The algorithm by which one computes a partial-
ly evolved space-charge region of characteristic en-

ergy E& is entirely straightforward. We denote the
potential and charge distribution during the filling
pulse by $0(x) and po(x), respectively. We then
numerically integrate Poisson's equation requiring

p(x), g(x) &E

p = p*(E / ), y(x) = )E])$0(x)

po(x), E) ——&Pp(x)

where p=p(x) is given by Eq. (2) and p=p~(E&) is

from Eq. (14).
Figure 3 shows that the redistribution of gap

state occupancy during the time evolution of the
space charge can be rather complicated. For ex-

ample, at roughly 0.25 p, m from the interface the
charge density first increases with time, then de-
creases. This occurs because electrons are first
emitted far from the interface greatly increasing
the positive charge density in the tail of the de-

pletion region. At later times a positive charge
builds up near the interface which necessarily
shrinks the tail region in order to maintain a con-
stant dipole moment of the Schottky-barrier space
charge as mandated by Poisson's equation for a
fixed bias.

For most cases of current interest we will be
dealing with densities of states that do not vary ap-
preciably over energies on the order of kT. It will

therefore suffice to replace both the equilibrium
(Fermi function) and nonequilibrium electron occu-

pancy shown in Fig. 4 by step functions. This

greatly simplifies the analysis. In particular this
implies p~(E~, T)=p"(E~). Thus we can consider
that occupied gap states in region B have somehow
been removed to an energy depth E& and ignore for
the moment that this process takes place through
thermal emission.

It is then possible to define the energy spectrum
R„(E) for any characteristic response r of the
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space-charge region. An obvious example of r
would be the total barrier charge Q. We define

BARRIER POTENTIAL CHARGE DENSITY

CO

&g(Ei ) = p(x, E)dx
BE o '

E E,
'

where p(x, E) is the charge density of the partially
evolved space-charge region. The function Rg(Ei )

thus denotes the change in total barrier charge as
the energy depth from which states have evolved
increases from E, to Ei+dE. For majority-camer
emission, this function becomes the basis for com-
puting current transients. (For minority-carrier
emission the correspondence is less straightfor-
ward. See the discussion under laser pulse excita-
tloil. )

An equally relevant example is the admittance.
Here the energy spectrum for the capacitive re-
sponse Rc(E) forms the basis for computing the
capacitance DLTS spectrum described in Sec. II D.
In that section the utility of these energy-depen-
dent response functions will become evident.

2. Laser pulse excitation

In order to significantly perturb the thermal
equilibrium population of gap states below midgap
an alternative to voltage pulse filling must be em-

ployed. The most obvious method is by light pulse
excitation. Using Schottky barriers which have
been made by depositing a sufficiently thin semi-
transparent metal layer on the semiconductor it is
easily possible to obtain saturable laser pulse exci-
tation with readily available sources.

The actual excitation mechanism involves both
(1) the direct optical transitions. between gap states
and the conduction or valence bands, and (2) the
capture into gap states of photoinduced free elec-
trons and holes. Experimentally, the observation
of a large laser-induced trap signal as the energy of
incoming photons is increased above the optical
gap suggests that the latter is the dominant
mechanism. Immediately after the light pulse,
therefore, one would expect a distribution of par-
tially filled levels throughout the gap that is pri-
marily determined by the relevant capture cross
sections for electrons and holes.

The subsequent evolution of the space charge
and potential in the barrier region is shown in Fig.
5. For this case there are two distinct regions: (1)
the thermal equilibrium region C, and (2) an
emission-rate-determined region 8 similar to region
8 for the voltage pulse filling. However, in this

1 1 I I I I 1 I

0 O. l 0.2 09 0 O. I 0.2 0.3
DISTANCE F'ROM BARRIER (p.re)

FIG. 5. Sequence of diagrams showing time evolu-
tion of space-charge region following a liser pulse exci-
tation. The gap states for this material, again ~ith
g (E)=const=10' cm 3eV ', are assumed to be half
occupied at t =0. A detailed description and definitions
of parameters is given in the text.

case both electron and hole emission occur simul-
taneously so that after a time t, following the light
pulse electrons have been emitted to a depth E~
from the conduction band given by Eq. (12) while
hole emission has taken place to an energy E~~

from the valence band

vq(Ef )tiE~ =kT'ln
ln2

Note that the difference,

Ei —E~i ——krln[v„{Ei )/vq(E~i)j,

is small even for v„and vz differing by an order of
magnitude.

In principle the treatment of this case is identi-
cal to calculating the evolution following voltage
pulse filling. We write the charge density in region
8 in a manner analogous to Eq. {14):
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F¹—(E',EI,E~(, T)]

Xg (E')dE',

where +¹(E',E~,Ef,T) gives the net electron occu-
pation in gap state levels and may be written in
terms of the previous defined function f¹,

F¹=f¹(E,EI,T)

the total barrier charge to decrease one unit, this
positive charge will travel directly to the metal side
of the junction and remain there. In general, be-

cause of displacement currents, the actual current
observed in the external circuit is always a fraction
of one unit for either electron or hole emission and

depends on the spatial location of the emitted
charge. For further discussion of this point, see
Ref. 9. We shall denote by R~~~(E) the energy
spectrum of the response for the charge actually
transported through the external circuit.

Herc, E~ and E~ arc cncrgics measured from thc
conduction- and valence-band energies as given by
Eqs. (12) and (15), respectively. The t =0+ gap
state occupation is given by the function I)(E).
Poisson's equation may now be solved as a func-
tion of time in a manner exactly as in the previous
case.

In practice, unlike the case of voltage pulse fill-
ing, experimental uncertainties force the adoption
of two assumptions for comparison to actual ex-
perimental data. The first of these involves cap-
ture cross sections for minority carriers. Whereas
capture rates for majority carriers are easily
measurable (even to states involved in minority
carrier emission), minority-carrier capture rates are
not so easily obtained. Thc second problem in-

volves determining the post-light pulse occupation
fllllctloll, rt(E). Altllollgll satllra'tloll of tllc tl'Rp

signal at photon energies just above the optical gap
probably guarantees a uniform spatial distribution,
the energy distribution is determined by thc rela-
tive capture cross section for electrons and holes.
A nonuniform and unknown I)(E) may therefore
be impossible to deconvolve from an unknown

g (E). For the purpose of this discussion we shall

Rlways RsslllIlc tllat E I =El Rnd tllRt 71(E)=coll-
stant= —,. However, experimentally this need not

be true.
As before, by stepwise increases in EI to Ez/2

wc may obtain thc charactcrist1c response functions
R (E). We noted for majority-carrier emission that
we could compute current transients by evaluating
the change in total barrier charge. This is not true
if minority-carrier emission also takes place. Con-
sider a Schottky barrier on n-type material and

suppose emission of an electron causes the total
barrier charge to increase by one unit. This
amount of negative charge will then need to flow
around the circuit to the metal side of the barrier
to restore total charge neutrality to thc junction.
If, on the other hand, the emission of a hole causes

C. Admittsncc

d Q 1 dlij

2 dX dX

d1(

dX

'2

we integrate Eq. (1) to obtain

This is equivalent to a change of variables from x
to g. Since we take the point x =0 to be the bar-
rlcl' IlltcrfRcc, tjJ =0 corresponds to R polllt fal lllto
the material (where p=0 follows from bulk neu-

trality). At x =0, /=Ps bE~ Vs= Vs, wh—ere-
/a is the metal-semiconductor height (see Fig. 2)
and V~ is the applied bias voltage.

The usual dc capacitance Co is easily obtained
from the charge per unit area at the interface,

p(VS):

In this section we develop expressions for the
complex admittance applicable to both the equili-
brium and noncquilibrium distribution of space
charge within a Schottky-barrier (or p+n) junction.
We assume nondegenerate statistics and ignore any
difference between thermal equilibrium and ther-
mal emission energies. We further assume that
nobilities are sufficiently high that dielectric
response times are much faster than the timescales
of interest. This assumption allows us to ignore
details of transport. ' For the present purpose we

will assume the material itself to be spatially
homogeneous. However, the analysis applies to
specific classes of nonhomogeneous structures as
d1scusscd at thc cnd of this section. The dcvclop-
ment of the relevant differential equations follows
that given by Losee and is given here for corn-

plcteness and to define the notation.
Using the identity
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(22)

Eq. (14) 'assumes the form

This is Losee's equation for the complex admit-
tance. The connection with ac admittance I' fol-
lows by noting that the ac current density is

j =igloo.„,where

Oac= —&
8x

is the ac surface charge density. Therefore,

F(co)= —=—co«J 1

P dx

dP 1 dP
dx P d|t

where I'(co) is the admittance per unit area. Using
Eqs. (18) and (22), we obtain

I"(co)= ico« (24)

Equation (23) is a first-order differential equa-
tion which is readily solved by numerical methods.
The complex function W is direct1y related to the
admittance of the junction via Eq. (24). The entire
physics of capture and emission of carriers with re-

gard to states in the gap in response to the applied
ac voltage is contained within the complex func-
tion I.

Losee examines several examples for F applicable

Co —— p(Vg}H '~ (Vs} .
dV

Now using the identity

d4 d'|(+d'0 d4
dx df dx dP

we cast the ac part of the Eq. (1) into the form

+H(&}
d'0

(20}
dx «df dr/i

where we have used Eq. (18). We define F(f,co) as
the small signal response of the ac charge,

5p=PF(g, co) .

If we further define
0

Bg
5(EF—g), —

for functions varying slowly over kT.
In principle, then, the ac admittance can be

directly obtained from Eqs. (23) and (24). In prac-
tice, however, having to solve Eq. (23} numerically
is fairly cumbersome, particularly if we wish to
calculate the evolution of the nonequilibrium diode
admittance to obtain a complete energy spectrum
of the capacitive response. Fortunately, an approx-
imate analytic solution can be obtained which is
valid at low temperatures and typically accurate to
within a few percent at temperatures significantly
above room temperature for most cases of interest.
The details of this solution are presented in Appen-
dix 8 along with a discussion of its general validi-

ty. In that analysis we define the position x
~

in
the space-charge region measured from the bamer
interface where the thermal emission rate is equal
to the applied (angular) frequency of measurement:

co =v„exp I
—[g(x ~ )+REF ]/kT I . (26)

Then, the imaginary and real parts of the admit-
tance per unit area are given (approximately) by:

C=e P1

eH }}/2+x}p}

a'"
=kT C2 —

qg (EF —p) ), —
N 2 P1

(27a)

(27b)

where H
&

and p& refer to the value of these func-
tions at, TPi=g(xi ). Note t11at C (as well as 6) Is a
function of both co and T via the relationship given

by Eq. (26).
Equations (27) give the steady-state admittance

at any applied bias as a function of temperature (or
frequency). It is also readily demonstrated that
nothing in the development of these equations pre-

to the case of discrete levels. For the present case
of interest, variations in g (E}may be considered
small over energies of order kT. In such a case we

argue that the correct expression for F will be

F(f,co)=qg (Ep g)—(1+icos)

where I/r=e, (bEF+Q) as given by Eq. (4). To
justify this, we first note that Eq. (25) has the right
high-frequency characteristics since for large 1(,
both 5p and F must vanish if levels are not able to
respond on a timescale of I/co. Verification of Eq.
(25) in the low-frequency regime follows immedi-

ately from Eq. (2) and the definition of F if we re-
call that
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eludes the applications of the methods to a non-
equilibrium charge distribution of the type con-
sidered in the previous section prouided this dis-
tribution does not change over the timescale of
1/co. This follows from the fact that F then van-
ishes well within the "equihbrium region" (region
C} of the charge distribution where p, H, and 8'
are also well defined. Along the same lines, Eqs.
(27) are correct even for cases of spatially nonuni-
form material provided the nonuniformity is con-
fined between the barrier interface and x =x~.

D. Deep-level transient spectroscopy

DLTS measurements are based on a well-defined

algorithm which is easily expressed mathematical-

ly. If, for example, the capacitance of the junction
at temperature T at a time t after the excitation is
d"noted as C(t, T), the DLTS spectrum S(T),
which is measured using repetitive excitation while
scanning temperature, is simply S(T)=C(ti, T)

C(t2, T)—, where ti and tz are two experimentally
chosen sampling times. A given pair of ti and t2
determines the decay time ~ (or rate window,
I/~ ) to which the measurement is most sensitive,

C(t, T)=f R (E)exp[ tA(E)]dE, —

where r(E) is given by Eq. (4). For b,t =tz ti-
& t~, we easily obtain, integrating by parts,

(29)

ln(t, /t, )

In Sec. II8 we introduced the energy-dependent
function for the response r, R„(E),which is a valid
means of expressing the evolution of the nonequili-
brium space charge provided variations in g (E) are
small over energy widths of order kT. This func-
tion describes the variation per unit energy of the
measured quantity r as gap state electrons respond
at an energy depth E from the band edges. We
now demonstrate that this function is nearly identi-
cal to the DLTS signal defined above.

For example, to obtain the capacitance DI.TS
signal from Rc(E), we first take the Laplace
transform of Rc(E) to express the capacitance
response in the time domain:

S(T)= h—t —f Rc(E}exp[ —t/r(E)]dE
Bt

dRC(E)

(t) dE

Xexp[ t lr—(E)]dE, (30)

where (t) =(ti+t2)l2. To a large extent the ex-
ponential factor merely truncates the integral at
ET kT l——n(v(t ) ). Thus we obtain

S(T)= —kTRc(ET) .hT
(31)

t
Apart from an overall minus sign, the essential
difference between the DLTS signal and R&(E), is
that the DI.TS energy "window" increases linearly
with temperature. This energy window gives rise
to the factor of temperature in Eq. (31) and to a
finite energy resolution 5E-Ez /10.

Qf course, the DLTS signal can be calculated
directly in the time domain without invoking the
slightly more restrictive assumptions needed to de-
fine Rc(E). The primary reason for following the
procedure we have is one of computational econo-
my. Defining Rc(E) allows us to recover both the
time and temperature dependence of the barrier
evolution process through one energy function. It
also demonstrates that to a certain extent the
DLTS signal is formally the Laplace transform of
the transient signal.

In experimental practice one usually uses a
double-boxcar integrator to obtain S(T). In this
case one replaces Eq. (30) with a slightly more
complicated expression:

t, +4~/2
S(T)= f, , C(t T)dt

1 f2+a~/2

f. . .C(t, T)dt, (32)

with C(t, T) given by Eq. (29). Here ht denotes
the width the boxcar gates centered at t] and t2.
Note that this more general equation imposes no
restrictions on the values of ti, t2, or b, t. Thus we
use Eq. (32) rather than Eqs. (30) or (31) to com-
pute actual DLTS spectra in Ref. 10.

For current DLTS, with a response energy func-
tion R&(E}defined in Sec. II, a slightly different
expression is obtained because it is the time deriva-
tive of the change in charge that is actually mea-
suIed:

'i+"" ~F(t, T} 1 'i+"" aF(t, T}S(T)= dt — dthT 'i -~'/'2 Bt b t 'z —~~/'2 Bt

1 [F(t, +9 t/2, T) F(t, bt/2, T) F—(t, +At—/2, T)+F—(t, bt/2, T)], — (33)
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F{t,T)=IRtt(E) exp[ t/—r(E)]dE . (34)

where v is the usual prefactor for thermal emis-
sion. This parameter is the ratio of the energy
depth of the response on a timescale 1/to to that
on a time scale I.~; it is essentially independent of
temperature. In Sec. III 8 we illustrate the effect
of varying y on the DLTS spectrum.

III. SPECIFIC CASE STUDIES

In this section we provide examples showing re-
sulting admittance versus temperature plus voltage
pulse and laser pulse DLTS spectra for several
classes of g(E). For this purpose we will adopt a
variety of assumptions, some of which have been
alluded to during the theoretical development in
Sec. II. It is important to identify that these as-
sumptions belong to one of two categories: (1)
those which are essential to our basic formulation,
and (2) those we adopt merely for simplicity of il-
lustration or because in lieu of explicit evidence to
the contrary they seem most likely to represent real
materials. However, assumptions in this second
category are readily modified within our theoreti-
cal framework. Included in the first category we
assume:

{i) There is a well-defined band (or mobility)
edge to wtuch the emission from gap states takes
place.

(il) Tllllc scales associated wltll tllc cIIllssloll alld
capture processes of interest are much longer than
dynamical limitations imposed by carrier transport
(dielectric relaxation times).

(iii) We may ignore any retrapping of emitted
carriers into deeper states within the depletion re-
gion. Note that retrapping into shallower states
poses no particular problem since reemission will

One further point concerns capacitance DLTS
for materials where the number of deep states is
comparable to or exceeds the total number of shal-
low (or donor) levels. In such materials, the admit-
tance itself varies markedly with temperature. In
capacitance DLTS there are then two relevant
timescales: that determined by the DI.TS gate
times r~, and that of the ac measurement frequen-

cy 1/co. These spectra will therefore be character-
ized by an additional parameter

ln(v/t0)
ln(v~ )

'

then occur on a much faster time scale than those
relevant for the measurement.

(iv) Variations in g{E)are small over energies
of order kT.

(v) The semiconducting material is laterally
homogeneous on a scale greater than the Debye
screening length.

(vi) The usual set of conditions which define the
usual Schottky-barrier problem under normal con-
ditions are valid. These include a well-defined
barrier height, nondegenerate statistics, validity of
quasi-Fermi-levels in describing steady-state be-
havior, absence of appreciable tunneling (except in-
sofar as it merely serves to redefine an effective
barrier), etc.

%ithin the second category we include:
(a) Thermal emission energies are assumed

equal to thermal equilibrium energies. In case of
doubt our energy scales should be interpreted as
the former.

(b) The quasi-Fermi-energy in deep depletion is
assumed to 11e near mldgap.

(c) All capture cross sections are assumed to be
independent of energy and we further assume elec-
tron and hole emission prefactors are equal.
(Where needed for illustration, we use the value
v=2)& 10' s ' obtained experimentally for a-
SiH' )

(d) The post-laser-pulse occupation function is
1

taken to be a constant (II= —,).
(e) We assume for the sake of simplicity that

the position of the equilibrium Fermi energy and
the magnitude of the energy gap are independent
of temperature.

We now apply these assumption to some specific
and hopefully relevant examples.

A. Quasidiscrete levels

Consider the case where g(E) consists of a series
of fairly sharply peaked levels, the most shallow of
which is relatively large. This case is designed to
simulate that of discrete levels in crystals with the
concentration of deep levels much less than the net
donor concentration.

Although the present formalism is less well suit-
ed to such a case, applying these techniques to this
situation is valuable for a number of reasons. First
of all, it verifies the validity of the numerical
methods for a class of measurements that is pre-
sumably well understood. Second, it allows us to
point out features in these measurements that are
carried over to more general examples of g (E)
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where the overall complexity of the spectra tends
to obscure the interpretation. Finally, whereas the
basic principles for interpreting discrete level spec-
tra are known, there are many details of such spec-
tra that are somewhat subtle in origin and not well

recognized. These calculations therefore point out
several aspects of discrete level spectra that have
either not been previously discussed or discussed in

only a qualitative manner.
The assumed density of states, shown in Fig. 6,

consists of five Gaussian "trap" levels, each with a
width parameter 0 of 30 meV, and a total trap
density NT of 1)&10' cm . The total shallow
donor concentration N„assuming E~ to lie 50
meV below E„is 5)&10' cm or 50 times NT.
This g (E) produces a nearly parabolic band bend-

ing within the space-charge region which is affect-
ed only slightly by trap state occupation. The
"width" of the depletion region, W =(2@V,j
qN, )'~, is a reasonably well-defined concept.

In Fig. 7 the results of a 10-kHz admittance
versus temperature measurements is simulated for
a sample of 2)& 10 cm area A and a silicon
(@=11.7) dielectric constant. The applied bias plus
barrier gives V, =5.5 V (Vq ———5 V). Note the
nearly constant value of capacitance at a value
close to eA /fV =55 pF. (The discrepancy is due
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I—
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FIG. 6. Density of states showing five Gaussian
"trap" levels, each with total integrated density 1X10"
cm 3, plus shallow "donor" level corresponding to a net

concentration of 5)&10' cm . The position of the bulk

Fermi energy is taken to be 50 meV below E, and the

gap energy is assumed to be 1.8 eV.
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FIG. 7. Imaginary and real part of 10-kHz admit-
tance obtained for density of states in Fig. 6 under 5-V
reverse bias (IIs ——0.55 eV). Note that the real part
6/co is also expressed in picofarads {pF) and is multi-

plied by a factor of 10 compared to the capacitive part
(which is offset). The junction area A is taken to be
2)&10 ' cm .

to the contributions to the charge density due to
the traps. ) Two small capacitance "steps" of less

than l%%uo of the total are observed at the tempera-
tures where emission and capture rates for each of
the two shallowest traps equal I/co. The real part
of the admittance shows a corresponding peak in
each case.

Figure g shows capacitance DLTS for the same
bias voltage using a series of different filling volt-

ages Vz from one volt above Vq to flat band.
(Here, Vz denotes the value of the bias voltage dur

ing the filling pulse, not the pulse height. ) Actual-

ly the spectra in Fig. 8 are the capacitance re-

sponse energy spectra Rc(E) as defined in Sec. II.
Temperature-scan DLTS spectra may be obtained
readily using Eqs. (31) or (32). The reason we

prefer here to display Rc(E), apart from its greater
generality, is that the DLTS peak amplitudes for
truly discrete levels are better compared to the in-

tegral of Rc(E) over each trap peak which is in-

dependent of temperature, rather than S(T). Thus,
for a 2& 10 -cm sample, the total capacitance
change hC& for the most shallow trap with Vz at
flat band (+0.5 V) is 0.31 pF. The other curves

may be scaled accordingly. Note that there is also
an overall sign difference between Rc(E) and the
DLTS signal S(1) as defined in Sec. IID.

It is interesting to compare these calculated re-
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FIG. 8. Capacitive response energy spectrum Rc(E)
for the density of states of Fig. 6 under —5-V bias for a
series of filling pulse voltages V~. Here, V~ refers to the
value of the applied bias during filling. or

sc=s &w =—C
2@Vs

suits with the standard formulas used to estimate
trap concentrations. In Fig. 8 we see the nearly
linear increase of signal height with filling pulse
voltage, which has been predicted. The trap con-
centration usually is given by

geA (Ns) 5(gC)
3 gyCo P

(36)

where Co is the steady-state capacitance at the ap-
plied bias. For the two traps seen in the figure we
obtain: NT(1)=7.4X10' cm and Nr(2)=6. 5
&(10' cm . The actual concentrations are
1)(10' cm . These discrepancies can be under-
stood if we realize that deep traps influence only a
fraction of the total depletion width depending on
where the trap level crosses the Fermi level as il-
lustrated in Figure 9. Equation (36) applies accu-
rately only in the limit of shallow traps or large
bias voltage.

This point is further illustrated if we examine
the dependence of the DLTS signal on bias voltage
as shown in Fig. 10(a). In each case V~ is the
flat-band voltage. The apparently complicated
dependence on bias voltage is easily derived using
principles well known from studying discrete trap
levels in crystals. First of all, for Ns p&NT, the
total change in capacitance 5C that occurs if NT
traps are emitted is

NT 25C

s Co
(37)

However, this is again true only if trap emission
occurs over the entire depletion width 8'. From
Fig. 9, we define the distance at which each trap
crosses the Fermi energy,

W„=W —[2e(E„hEp)/qNs]'i2 . — (38)

We recall that for capacitance DLTS the sensitivi-

ty to emission of trapped charge increases linearly
with the distance from the interface. Hence the
actual signal will be given by

W„

J "xdx
&Cmax ~ (39)5C„=

X dX
0

where 5C,„ is given by Eq. (37), or

W„NT(n) Co
n 2 Q 2

(40)

Using Eqs. (38) through (40), we list in Table I
values for 5C„expected for the two traps seen in
voltage pulse DLTS along with the total (integrat-
ed over energy) values obtained from Fig. 10(a).
The close agreement demonstrates the accuracy of
our numerical methods.

In Fig. 10(b) we show the corresponding DLTS
spectra for thermally stimulated charge-transport
measurements. Here the dependence on bias volt-
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age is much different from Fig. 10(a). This occurs
because the sensitivity to majority carrier emission
for current DLTS is largest at the barrier interface
and decreases linearly to zero at the edge of the de-
pletion region (due to cancellation from displace-
ment currents). The expected signal is

ggn 8'„
=qNT(n) I (1—x/8')dx

=qNT(n) $V„(1—8'„/2W) . (41)

I I
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PIG. 10. (a) Capacitive response energy spectra
Ac{E)for g (E) of Fig. 6 as a function of bias voltage.
In each case the filling pulse voltage Vz is the fiat-band
voltage (V~=+0.5 V), (b) Corresponding net charge
fiom energy spectra R~(E) for the conditions described
in (a).

A comparison between Eq. (41) and the numerical
results in Fig. 10(b) are included in Table I.

Figures 11(a) and 11(b) show the energy spectra
for the laser-pulse-induced capacitance and
charge-transport response for variable Vs. Several
interesting features in these spectra may be noted.
For the capacitive response, as expected, electron
and hole emission give rise to signals of different
sign. The negative signals at 0.2 and 0.8 eV corre-
spond to the traps 0.2 and 0.8 eV away from the
valence band, respectively. The positive signal at
0.4 eV is the electron emitting trap at E, —0.4 eV.
At 0.6 eV there is near cancellation from two traps
at 0.6 eV from valence and conduction bands,
respectively. The magnitude of both electron and
hole signals, as measured from the nonzero base-
line, agrees with Eq. (40) if we divide by two to
take the g= —, laser pulse filling factor into ac-

count.
In current DI TS, electron and hole emission

produce signals of the same sign. Therefore, in

Fig. 11(b) one sees four distinct peaks: the signals
due to the traps 0.6 eV from the conduction and
valence bands now add constructively. For elec-
tron emission the signal magnitudes obey Eq. (41)
multiplied by ri(E). However, for hole emission
we have the opposite spatial sensitivity (see discus-
sion at end of Sec. II B). Therefore, for minority
carriers,

gg n @1~

=qNT(n) (42)

This agrees quite well with the numerical calcula-
tion.

One striking feature in Fig. 11(a) is the baseline
behavior. This results from electron capture into
partially occupied states in the tail region (region C
of our discussion of Sec. II 8) as free carriers from
the bulk are able to penetrate the depletion layer.
Such a process also manifests itself as the small
negatiue current baseline that appears in Fig. 11(b).
This is a somewhat surprising effect which can
only occul when partially occupied states have
been induced helot the steady-state quasi-Fermi-
level for majority carriers. The effect disappears
as the emission process destroys the fractional oc-
cupation of these states.

The different spatial sensitivity for capacitance
and current signals is most dramatically illustrated
when spatially inhomogeneous materials are en-

countered. Suppose that within 500 A of the metal

interface a level exists which is 0.5 eV below E„
has the same width as the five "bulk" levels but is
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TABLE I. Comparison of the results of our numerical calculation for DLTS peak signals of different applied bias
voltages with standard formulas for discrete level signals as explained in the text. This comparison is made for both
the 0.4-CV (level l) and 0.6-CV level (level 2) as shown in Fig. 6 for both capacitance (hC) and current transient (i) Q)
measurements. Note the good agreement between the numerical calculation and values given by the discrete level for-
mulas.

ECj (pF)
Eq. {39) Numerical

AC2 (pF)
Eq. (39) Numerical

EQi (10 C)
Eq. (40) Numerical

EQi (10 ' C)
Eq. (40) Numerical

1.5
2,5
5.5

10.5

0.282
0.319
0.307
0.266

0.290
0.323
0.307
0.265

0.165
0.230
0.257
0.237

0.169
0.230
0.253
0.233

24.2
34,9
56.5
80.5

23.9
34.3
55.5
78.8

20.0
31.7
54.3
79.0

19.7
30.9
52.7
76.7
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FIG. 11. (a) Capacitive response energy spectra
R~(E) for g(E) of Fig. 6 as a function of bias voltage
foBowing laser pulse excitation. (b) Corresponding net
charge Aow energy spectra R~(E) for the conditions
described in {a).

present with an order-of-magnitude greater concen-
tration. In a voltage pulse experiment one would
expect a much greater influence on the current
transient signal than capacitance due to the greater
surface sensitivity for currents due to majority-
carrier emission. This is exactly the effect exhibit-
ed in Figs. 12(a) and 12(b). Note also the different
variations between the bulk and "surface" trap sig-
nals with voltage pulse amplitude. The surface
signal appears abruptly for both capacitance and
current as soon as the surface potential during fill-
ing is less than the trap depth. The bulk trap sig-
nals, on the other hand, increase monotonically
with the voltage pulse amplitude and saturate.
This behavior is quite general and may be used to
distinguish near surface states from bulk levels.

As a final illustration of our techniques, we use
Eqs. (32) and (33) to generate "experimental"
DLTS spectra for one value of applied bias from
the capacitance and charge-transport response ener-

gy spectra shown in Figs. 10 and 11. The resulting
spectra are shown in Figs. 13(a) and 13(b). The
boxcar gate settings indicated in the figure caption
coI'respond to a time constant w~ of 100 ms.
Apart fl'oiil tllc overall sigil diffclc11cc (whlcll 1c-
fiects the order of subtraction in the DLTS algo-
rithm), these spectra differ from their counterpart
response energy spectra in two major respects.
First, there is a temperature weighting factor [see
Eq. (31)] that changes the relative peak heights.
Second, whereas the temperature positions of the
capacitance DLTS peaks are given by T„=E„/
k In(vs~ ) as expected, the current DLTS peaks oc-
cur at a slightly higher temperature. This behavior
is well known; it occurs because current transients
involve one extra time derivative.

To be accurate we should also point out that our
approximation does not strictly apply for the spec-
tra shown in Figs. 13(a) and 13(b) since for the
deepest trap kT„=30 meV which is comparable to
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R E
F . . (a) Capacitive response energy spe tc ra
c( ) for a sample which has a "surface" region of 500

A contalmng a single trap level 0.5 eV below E~ of total
integrated concentration 1 g 10 crn . Beyond this
500-A region, g (E) is given by Fig. 6. Note the varia-
tion of the surface trap signal with filling pulse ampli-
tude and the relatively low sensitivity to this level corn-

pared with the two bulk levels. (b) Net charge Aow en-

ergy spectra R~(E) for conditions described in (a).
Note, in this case, the large sensitivity to the surface
trap level.

FIG. 13. (a) Capacitance DLTS spectra for a 10-s
rate window. These spectra were calculated from the

10 a
5-V reverse bias response spectra R (E) shown

' F'
(a) and 11(a) using Eq. (32) with t, =50 ms, t, =175

ms, and Af =30 ms, and a junction area A of 2X 10
cm . (b) Current DLTS spectra for a 10-s ' rate win-

dow. These spectra were calculated from the 5-V re™
verse bias response spectra Rg(E) shown in Figs. 10(b)
and 11(b) using Eq. (33) with t j ——59 ms, t2 ——175 ms
and ht =30 ms, and a junction area of 2&10 cm .

the width of these Gallsslall levels. Ill 'this partlctl-
lar example, restricting temperatures to, say, less
than 100 K, wouM ensure the accuracy of our
methods. However, the remainder of this paper
will deal with examples of g(E) where tempera-
tures exceeding even 500 K will pose no such prob-
lems.
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B. Constant density of states 100 10

We next consider a relatively straightforward
continuous density of states, that of g (E)
=const—=g. This density of states is shown in
Fig. jI4. For small values of applied bias the band
bending is given by the well-known exponential
function,

t)'J(x) = Vg exp( —x/xo),

where

80—

—60—
IJ
CL

IJJ

I- 40-
Cl
cf

(~REAL PART

xo ——(e/qg)'/2 . (43)

1018-

E
U

bJ

c(
1

17

tJ
O

I-
CO

LLJ

O

For larger values of bias there are two regions —an
exponential tail region and a parabolic deep de-

pletion region (see Fig. 2).
The exponential approach to neutral material in

the bulk precludes any well-defined meaning of a
"depletion width. " Figure 15 shows that, indeed,
the admittance varies quite markedly with tem-
perature. Artificial truncation of P(x) at some ar-
bitrary value (say 2kT) to define a "width" as dis-
cussed by some workers' does not give the correct
value for capacitance. Operationally, a depletion
width is a useful concept only to the degree that
capacitance is independent of temperature (or fre-
quency).

20
l

I

I I I I I I I I I

50 100 150 200 250 300 550 400 450
TEMPERATURE (K)

FIG. 15. Imaginary and real part of 10-kHz admit-
tance obtained for density of states of Fig. 14 under 5-V
reverse bias ($&=0.7 eV). The real part 6/co is ex-
pressed in picofarads (pF) and is multiplied by a factor
of 10. Note the substantial variation of capacitance
with temperature implying the lack of a well-defined de-
pletion width. The junction area A. is 2& 10 ' cm .

The capacitive response energy spectrum shown
in Fig. 16 further illustrates the kinds of difficul-
ties one can encounter. Neither the overall shape
nor quantitative estimates of g (E) using standard
formulas enable one to guess the actual density of
states. Note, however, that the trend for the signal
to decrease with energy does agree with the be-
havior shown for the quasidiscrete spectra. One
way of attempting at least an order-of-magnitude
estimate for g (E} is via Eq. (36). At a given tem-
perature T the experimental DLTS spectrum, via
Eq. (31), gives the capacitance change per unit en-

ergy at ET kT lnv(t ). If——, for Co, we use the
value of the steady-state capacitance, C(T), and
for Ns, the value indicated by the variation of C
with bias voltage using the standard profiler for-
mula,

C (T) dC(T)
CV

EqA
2 d Vtt

EO
F

1015 I I J I I I I I I I I I J I I 1f

1.5 1.0 0.5 0
ENERGY BELOIAr EC (ev)

FIG. 14. Density of states for g(E)=const=10"
cm 'eV ' showing position of bulk Fermi energy and
assumed band gap of 1.8 eV.

Equation (36) then gives an estimate for g (Er)
from the variation of Rc(ET ) with Vz (at small

Vz
—Vtt }. However, this serves as an order of-

magnitude estimate only as is apparent from Table
II. Note that better agreement is obtained, at
higher values of Vtt and at higher temperatures
(energies). This is expected from the discussion of
the discrete level case. The level of agreement, of
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course, also depends on the particular g (E) in-

volved. These remarks clearly demonstrate the
need of detailed analysis to properly interpret
DLTS spectra for continuous densities of states.

To obtain Fig. 16 we used a valued of y [see Eq.
(35)] of 0.7 which is appropriate for a 10-kHz
measuring frequency with a 100-ms rate window

(or a 1-MHz measuring frequency with a 1-ms rate
window, etc.). The effect of changing y is shown

in Fig. 17. For a 100-ms rate window the three
curves using y=0.9, 0.7, and 0.5 correspond to

FIG. 16. Capacitive response energy spectra R~(E)
for g (E) of Fig. 14 under —5-V bias as a function of
filling pulse voltage. The value V~ refers to the voltage
present during filling. The value of the parameter y, de-
fined by Eq. (35), is 0.7.

60-
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«f
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FIG. 17. Capacitive response energy spectra Rc(E)
for three values of y as defined by Eq. (35). The curves
for low, intermediate, and high frequency correspond to
y=0.9, 0.7, and 0.5, respectively. Here V~ ———5 V, and

Vz
——+0.5 V is the flat-band voltage.

measuring frequencies of approximately 100 Hz,
10 kHz, and 10 MHz. The two most noticeable ef-
fects are a shift in the low-temperature cutoff ener-

gy and change in the overall magnitude of the sig-
nal at higher temperatures. The cutoff arises from
the low-temperature freeze-out of the ac response
which necessarily shifts to higher temperatures (or
energies) as co is raised. This effect would also be
seen for the quasidiscrete g (E) described in the
previous section at much lower temperatures. The
second effect is due to the frequency-dependent
capacitance caused by the response of deep traps to
the ac voltage. This effect would not be seen in

TABLE II. Method of estimating the gap state concentration for a material with a continuous density of states.
This method uses the standard profiler formula [Eq. (44)] to compute Eci at each temperature and the variation of the
DLTS signal with filling pulse [Eq. (36)] to obtain an estimate for g(E) as described in the text. For this example, the
"sample" has a constant density of states of 1.00' 10' cm eV ' which is to be compared with the estimated values
shown at the extreme right. Note that such an approximate analysis gives at best order-of-magnitude agreement to the
actual g (E).

Energy depth
(ev)

TE for 10-s ' rate
windom (K)

10-kHz capacitance
at TE (pF)

&cv(&, )
(10" cm-')

aacyav,
(pF/W

Estimated g (E)
(10'7 cm 3eV ')

0.3
0.4
0.5
0.6
0.7
0.8
0.9

123.5
164.4
205.8
247.0
288.2
329.3
370.5

31.8
42.9
47.9
51.6
54.6
57.2
59.4

3.32
4.47
5.00
5.38
5.69
5.96
6.21

36.1
21.2
13.9
10.0
7.8
6.5
5.4

8.18
3.57
2.10
1.40
1.03
0.82
0.65
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the quasidiscrete example provided N~ &&NT.
Figure 17 suggests an inherent advantage for low-

frequency measurements. In practice one must
balance this against the better signal-to-noise ratio
and higher device Q's obtained at higher frequen-
cies.

In Figs. 18(a) and 18(b) the variation of capaci-
tance and charge transport is shown as a function
of bias voltage. Here V~ is the flat band voltage
for all cases. As with the quasidiscrete spectrum,
the variation of the capacitance signal with Vs is
quite complicated. Notice that at low energies the

50

(a)

signal varies inversely with Vz, whereas for
higher-energy emission nearly the opposite depen-
dence is exhibited. Also note that the capacitance
spectrum tends to flatten out (to better mimic the
actually density of states) at larger bias, whereas
for charge transport [Fig. 18(b)] the signal in-

creases more or less monotonically with Vz. In
both regards this behavior is similar to the quasi-
discrete case.

Figures 19(a) and 19(b) show the corresponding
laser pulse spectra. From our earlier discussion.
one expects to see the sum and difference of the
upper and lower halves of the gap for charge trans-
port and capacitance, respectively. Thus for capa-
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FIG. 18. (a) Capacitive response energy spectra
R~(E), for g(E) of Fig. 14 as a function of bias voltage.
In each case the filling pulse voltage V~ is the flat-band
voltage. The value of y is 0.7. (b) Corresponding net
charge flow energy spectra R~(E) for the conditions
described in (a).
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FIG. 19. (a) Capacitive response energy spectra
Rg(E) of Fig. 14 as a function of bias voltage following
laser pulse excitation. The value of y is 0.7. (b) Cor-
responding net charge flow energy spectra R~(E) for the
conditions described in (a).
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citance, one expects to see little or no signal. In-
stead, a predominantly holelike signal is observed
which decreases with increasing Vz. Recalling the
negative baseline for the quasidiscrete case, we im-

mediately associate this with electron capture into
the tail region of the space-charge region. The
charge-transport signal, on the other hand, is
surprisingly constant. This is due to the adding of
two signals (from the electron and hole emission)
whose spatial sensitivities vary in a roughly com-
plementary manner.

Finally, as shown in Figs. 20(a) and 20(b), we

again construct actual temperature-scan DLTS
spectra from Eqs. (32) and (33) for one value of
bias and a 100-ms rate window. The predominant
change to the shape of these spectra as compared
to Figs. 18 and 19 comes from the kT temperature
factor. Note that now the voltage pulse capaci-
tance spectrum has a striking resemblance to the
true g(E). This is a quite common occurrence for
continuous densities of states. One would normal-

ly expect that by dividing the DLTS spectrum by
temperature a better representation for g(E) would
be obtained. However, for continuous densities of
states where comparable numbers of shallow and
deep levels are present, the nonlinearity in the
capacitance response is such that the signal due to
the charge emitted from a fixed energy increment
tends to decrease with increasing temperature [see
Fig. 18(a)]. Thus the raw DLTS spectrum often
provides a better representation of g (E). This
point should be kept in mind as we turn to consid-
er the additional examples below.

C. Additional case studies

We now consider a host of examples of possible
. relevance for the study of semiconductors with

large continuous distributions of deep gap states.
Most of the densities of states to be considered are
similar to some being proposed for amorphous
semiconductors. For each g (E), we will specifical-
ly calculate the expected result for 10-kHz admit-
tance versus temperature under reverse bias and
both the 10-kHz capacitance and current DLTS
spectra (at a 100-ms rate window) for reasonably

highly doped material (REF 0.2 eV) with a jun——c-
tion area of 2)&10 cm . Toward the end of this
section we will compare the above results with C- V
measurements for each case and finally consider
one alternate approach for materials that are more
highly insulating (large DER).

To treat a larger number of possible cases we re-
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call that admittance and voltage pulse DLTS de-

pend, under our assumptions, only on g (E) above

midgap. Therefore, in each of Figs. 21 —23 we
match one g(E) for the upper-half gap with three
possibilities for the lower-half gap, thereby encom-

passing, with the inclusion of Fig. 24, ten possible
densities of states. We also point out that these ex-

amples are extended trivially to multiplication of

I I I I I I I I
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TEMPERATURE (K)

FIG. 20. (a) 10-kHz capacitance DLTS spectra for a
10-s ' rate window. These spectra were calculated from
the 5-V reverse bias response spectra Rc(E) shown in

Figs. 18(a) and 19(a) using Eq. (32) with t~ ——50 ms,
t2 ——175 mS, and ht =30 ms. Note the resemblance of
the voltage pulse DLTS spectrum to the actual density
of states. The junction area A is 2&(10 cm . (b)
Current DLTS spectra for a 10-s ' rate window. These
spectra were calculated for the 5-V reverse bias response
spectra Itu(E) shown in Figs. 18(b) and 19(b) using Eq.
(33) with tl ——50 ms, t2 ——175 ms, and Lt =30 ms, and a
junction area of 2)(10 cm .
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g {E)of (a) with V~ ———5 V. The laser pulse spectrum depends on features of g {E)below midgap as indicated.

Si:H, ' ' with and without a large hole tail. The
admittance [Fig. 21(b)] shows a broad plateau
whose value is determined roughly by the total in-

tegrated number of gap states between the Fermi
energy and midgap. In capacitance DLTS [Fig.
21(c)], we see a prominent peak at high tempera-
tures for voltage pulse filling and a broad band of
hole states under laser excitation. Except for the
symmetric case, the spectral shape mimics qualita-

tively the actual g (E).
Figure 22 includes a case very similar to that of

Sec. II8 [constant g (E)], except the shallow-state
density is increased due to the band tailing. This
produces slight changes in both admittance and
DLTS. This figure also includes the reverse of one
case in Fig. 21 which might be relevant for p-type
a-Si:H. Note that for this subcase, the predomi-
nance of states in the upper half of the gap actual-
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FKJ. 24. (a) Density of states as determined for a-Si:H from field-effects measurements of Spear and co-workers
(Refs. 31 and 32). Note that Eg =1.6 eV. (b) Capacitive (solid line) and real part 6/ru (dashed line) of 10-kHz admit-
tance for "S ear" (E) with V~ ———5 V. (c) 10-kHz capacitance DLTS for a 10-s ' rate window for Spear g(E) wit
Vg = —5 V. The solid line is the voltage pulse spectrum with p' =+0.5 V (the assumed pat band voltage)
dashed line is the laser pulse spectrum. (d) Current DLTS for a 10-s ' rate window for Spear g(E}with V~ = —5 y.
The solid line is the voltage pulse spectrum and the dashed line is the laser pulse spectrum.

known density of states obtained for a-Si:H from
field-effect measurements. ' The sharp peak in
the upper half of the gap (at 0.4 eV) is easily ob-
se~able in admi«ance (»g 24{»l »d voltage
pulse DLTS [Figs. 24c and 24(d)]. The very large

peak in the lower-half gap shows up prominently
in laser pulse DLTS.

One thing that should be clear from these exam-

ples is the relative advantage of DLTS over admit-
tance to deduce the underlying density of states.
The qualitative similarity between the measured

DLTS signals and g (E) is an enormous advantage
when attempting a detailed analysis of actual mea-

surements (see Ref. 10). However, admittance
versus T measurements are also generally useful,
are relatively easy to perform and often disclose
prominent features in g(E). This is to be contrast-
ed with C-V measurements where vastly different
densities of states produce only subtle changes. In
Fig. 25 we plot the results of C-V measurements,
calculated for 10 kHz at room temperature, for
each of the cases shown in Figs. 21 —24. Since the
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FIG. 25. 10-kHz capacitance vs applied voltage at
room temperature for a Schottky-barrier diode with four
different densities of states. The dotted, dashed-dotted,
dashed, and solid lines correspond to Figs. 21—24,
respectively. These C- V curves have been rescaled to
have the same value at zero applied volts (the flat-band
voltage is +0.5 V) with the actual value of zero-voltage
capacitance noted in the diagram. Note the close simi-

larity of all four curves, particularly of those orginating
from Figs. 23 and 24.

scale factor is related only to the overall magnitude
of g (E), we have plotted these curves to overlap at
V~ =0 and have indicated the value of C(0) for
each case in the diagram.

It would be difficult (at best) to obtain g (E) very
accurately from such C Vdata. The m-ost accessi-
ble information contained in such curves is an esti-
mate of the total number of states (between Ez and

midgap) obtained through Eq. (44).
For highly insulating material, for which AEF is

greater than 0.6 eV, such methods as low-fre-

quency C- V are perhaps not so easily dismissed.
Certainly DLTS becomes almost impossible to per-
form under such conditions. The recent approach
of several workers to employ admittance versus
temperature measurements for these materials' '
is perhaps the best alternative, in particular be-
cause measurements of this kind made under dif-
ferent applied bias could be used to test for spatial-
ly inhomogeneous films. Along these lines we will
consider one possible approach using admittance
versus temperature measurements to deduce the
magnitude and, in some cases, the slope of g(E)
just below EF.
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FIG. 26. In (a) 10-kHz capacitance vs temperature
displayed for the three densities of states shown in Figs.
21(a)—23(a) (as indicated by the dotted, dashed-dotted,
and dashed lines, respectively), where now the bulk Fer-
mi level E~ is assumed to lie 0.6 eV below E,. (b) Ratio
C (dC/dT) ' is plotted vs temperature. As explained
in the text, the slope and curvature of these curves are
directly related to the value and slope, respectively, of
g(E) at Ep.

In Fig. 26(a) the 10-kHz admittance for each

g (E) shown in Figs. 21 —23 is compared for a case
where the Fermi energy Ez is now assumed to lie
0.6 eV below E, . Since the magnitude of g(E) is
comparable in these three cases near midgap, the
capacitance for each case is also comparable and
varies roughly with the total integrated number of
states between E~ and Eg l2. The magnitude and
slope of g (E) below Ez is related to the slope and
curvature of these admittance curves; however, the
correlation is certainly not obvious. Moreover,
possible anomalies near the surface of real
films~ would be particularly troublesome if
such a detailed analysis were attempted on a raw
admittance data.

The interpretation becomes somewhat more
straightforward if the temperature dependence of
the quantity C~(dC/dT) ' is considered. From
the expression derived for admittance in Sec. II C
[Eq. (27)], one can readily demonstrate that this
quantity will be independent of applied bias provid-
ed the film is spatially uniform over the region
where the ac charge distribution is nonzero (beyond
the point x~ as defined in Sec. II C). Furthermore,
if we expand g (E) in a Taylor series around the
neutral bulk Fermi energy EF,

(Ep E)—
g(E)=gp(EF E)+g&—

2
+'
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then it also follows from Eq. (27) that
—1

C (T)
T

=A (kg p)'~i (T—Tp)

+— (T—Tp)
1 gi 2

3 gp

Vy kin

(46)

IV. DISCUSSION

In this paper we have demonstrated a method of
solution for the thermally stimulated transient
response of a Schottky-barrier space-charge region
for a semiconductor with a continuous density of
states. The method is quite general and applies to
any material with an arbitrarily shaped g (E) with
or without spatial variation. We have adopted
various assumptions, listed at the beginning of Sec.
III, of which some are necessary for our method of
analysis with several others adopted for calcula-
tional convenience or because they are believed per-
tinent to actual materials. In this setting we exam-
ined several specific cases of interest including one
of nearly discrete levels, to make contact with crys-
talline work, and several which are potentially
relevant to the study of amorphous semiconduct-
ors. These cases were treated primarily within the

where Tp is the "freeze-out" temperature of the ac
response (approximately 340 K in Fig. 26). Thus,
the first and second derivatives of C (T}
X(dCldT) ' are directly related to the magnitude
and slope of g (E) at EF.

In Fig. 26(b) this behavior is illustrated. The
density of states in Fig. 21, which has a relatively
low value and a positive slope at ~&F——0.6 eV,
shows a relatively small slope and positive curva-
ture for C (T)(dCldT) '. On the other hand, the
density of states in Fig. 23, which is larger but
slightly decreasing at ~I"-F——0.6 eV, shows a larger
slope and slight negative curvature. Care should
be taken, as with all admittance measurements, to
apply this analysis to temperatures sufficiently
above the "turn-on" of the ac response. The some-
what high temperatures indicated in Fig. 26 can, of
course, be reduced by lowering the measuring fre-
quency. An application of this kind of analysis to
experimental data can be found in Ref. 10.

context of two relatively versatile measurement
techniques: admittance versus temperature and
DLTS.

Our methods of analysis help fill a long standing
need of extending electrical transient measurements
from the very successful studies of gap states in
crystalline semiconductors to new classes of semi-
conducting materials with large concentrations of
gap states for which the basic principles of capture
and emission from these states or even transport it-
self may not be well understood. Only through a
detailed understanding of the basic junction
response, which allows direct comparison among a
variety of measurements, will unusual and perhaps
basic new behavior of such materials be recognized
and investigated. For example, whereas a capaci-
tance DLTS spectrum may be calculated, under
our assumptions, for practially any given density
of states the converse is not true: we cannot gen-
erate certain classes of DLTS spectra no matter
how we change the density of states. Were such
spectra to be observed, some of our assumptions
would have to be changed. By requiring that a
given density of states also agree with current
DLTS, admittance, TSCAP, C-V and other mea-
surements, the sets of possible assumptions become
very limited indeed.

In Ref. 10 these calculational methods are ap-
plied to a detailed investigation of the properties of
a-Si:H. In some cases a simpler analysis had indi-
cated possible discrepancies between admittance,
TSCAP, and DLTS. The fact that these can now
be resolved speaks quite strongly for the general
validity our assumptions for that material.
Nonetheless, certain inconsistencies remain between
this work and some of the work of other research-
ers. Through our method of analysis these incon-
sistencies may now be linked rather convincingly
to surface and near-surface anomalies in these
films.

In this regard it is important to reemphasize
those techniques which have been demonstrated
to be least susceptible to near-surface spatial
anomalies. As discussed in Sec. III, these are not-
ably capacitance DLTS, particularly when per-
formed at large reverse bias and relatively small
filling pulse voltages and, to some degree, admit-
tance versus temperature, also when performed at
larger values of reverse bias. For the latter mea-
surement, the ratio C (T)[dC/dT] ' was found to
be even less sensitive to regions near the barrier in-

terface and is perhaps the best candidate for ob-
taining information about g (E}in undoped materi-
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als (Fermi energy near midgap).
From such remarks it should also be clear that

without the complete methods of analysis of tran-
sient behavior at our disposal the signature of truly
new physical phenomena could be easily obscured.
Ultimately it is hoped that thermal transient mea-
surements on diode junctions may disclose in
amorphous semiconductors the existence of
negative-U or other complex centers as they al-

ready have in crystals. ' Perhaps such measure-
ments may even allow the nature of the mobility
edge or hopping conduction to be explored. Since
our analysis has been presented in a very general

way, it may easily be extended to include fairly
complicated trapping behavior or to using other
detection schemes for observing different aspects of
transient behavior in space-charge regions. Indeed,
some of these applications will most probably be
discussed at length in the near future.

der in P. The problem, in our case, is that Q is
given by an integral which depends on P so that
the quantity Q;+~ is not known. Specifically,

Q = e I g(E',x)dE' . (A

We define

Pi~i 2Pi ——P; —)+h Q;, (A4)

and

+O(h "P""'P") (A5)

P;+)——2P; —P; t+h Q;

+ (Q;+)+Q; )
—2Q; ))

h

and note that this is equal to P;+~ to fourth order
in P. Therefore

hEF-
Qi ~ )

—— , g (E',x;+ ))dE'—h,EF—P.
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APPENDIX A: NOUMEROV ANALYSIS
OF SPACE-CHARGE REGION

The Noumerov technique provides a rapidly con-
verging algorithm for numerically solving the in-
tegral differential equation describing the band
bending in the space charge [Eq. (1)]. For an
equation of the form

P"= (Al)

+O (h 6P(vi) (A2)

As indicated, this method is accurate to sixth or-

one usually divides the interval of interest into E
equal steps of size h and denotes the values of the
functions P and Q at the ith point as P; and Q;,
respectively. In the usual case, Q is a known func-
tion and the Noumerov method relates the value of
P at the next point, P;+], to its values at the
preceding points:

P;+I= 2P; P; I+h Q;—2

h2
+ (Q;~)+Q; i

—2Q;)
12

where Q,*+~ denotes the value of the integral on the
rhs of Eq. (A5). Equation (A6) has the same in-
herent accuracy as the usual Noumerov case [Eq.
(A2)]. For example, if g =constant so that P is
given by an exponential function, P-exp(x/xp),
then the correction term in Eq. (A6) is of order
(h/xp) . Thus for a step size which is 1/N the
characteristic length the overall accuracy is
N(1/N) =1/N .

Indeed, for the equilibrium problem such rapid
convergence is obtained for most g(E). As few as
10 integration steps over the characteristic width
xp are often sufficient. When applied to the non-
equilibrium case, however, this basic accuracy is
somewhat diminished because of the different re-
gions within the space-charge region. As a result,
P and Q will exhibit singularities in their higher
derivatives at the boundaries of these regions. For
the voltage pulse case, where Q is nonetheless a
continuous function (see Fig. 3), Eq. (A6) has been
applied with good results. The case study in Sec.
IIIA (see Table I) gave roughly a 1% accuracy for
the DLTS capacitance signal which itself repre-
sented only a 0.1% change of the total capacitance.
This overall accuracy of 1 part in 10 was achieved
with 150 integration steps over the depletion width
8'. This is quite impressive if we further recog-
nize that, for this case study, g (E) is perhaps the
least suitable to our methods due to its large higher
derivatives.
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APPENDIX 8: SOLUTION OF THE LOSER
DIFF8R8NTW I. aqU&TION

FOR ADMITTANCE

As discussed in Sec. IIC, Losee writes the com-
plex admittance per unit area for a Schottky-
barrier space-charge region as

H 1/2(y)

IV(g) ii= v,
' (81)

H (g) =—J p(g')d f',

For the laser pulse calculation g becomes dis-
continuous (see Fig. 5} and Eq. (A6) is, by itself,
unsuitable. For this situation me must apply this
equation to each of the two regions of the space-
charge region and match boundary conditions. For
spatially homogeneous films, however, this is par-
ticularly easy; Eq. (A6) is applied to the equilibri-
um region (region C of Sec. II 8) and then, recog-
nizing that region 8 will be characterized by a con-
stant charge density, the band potential is extrapo-
lated via the appropriate quadratic function to the
metal interface.

V — q [2UV c—or( U V—)] .
d EH EH 1+ro

First we consider Eq. (87) in two limiting cases:
(1) small f, where air « 1 and F =qg ( hE—p+g),
and (2) large f, where cur » 1 and F=0. In case
(1) we can immediately verify that

(89)

Hcncc thc complete solut1on 1s

U =@a'"—a'" . (810)

Here, x =x (P) is the inverse function of g(x }. We
define x i

——x ( gi ) by

cor= exp[(EE—p+fi)/kT]=1 .

is the correct solution since it satisfies Eq. (87) and

also the boundary condition that 8'—+0 as x~ oo

(see Ref. 5). For case (2) we may verify that
U = —xH'/2 is a solution of the inhomogeneous

equation and that O'=EH'~ satisfies the homo-

geneous equation

dU p
dP eH

and W satisfies the equation

(83)

Consider the behavior at love temperatures. This
limit is characterized by a nearly abrupt change
from case (1) to case (2) at a distance xi from the
barrier interface. Thus, we require

Here, p is the charge density for a given amount of
band bending 1(:

Qg

p(P)=q J g(E')dE'.

We argued in Sec. II C that, for a continuous den-

sity of states g(E), F will be given by

of

~H'/2(y, )K= +X] =-
p(gi)

H 1/2

+X~
Pr

ZH'"(q, ) x,H'/2(q, )=-eH(fi )

p(gi)

F(g,co) =qg ( REF g)(1+ic—or)— (85) Therefore,

r= —exp[(i}EF+g)/kT],

is the response time of a localized state at energy
depth bEF+f. Taking W=U+iV, we rewrite

Eq. (83) into its component parts

8U ) p
dg eH

[(U —V )+2corUV], (8'7)
eH I+a)

where Ho H(Vq}. Hence, ——
~1/2——Im ——e

/I co U(V )

C =A@
eH ) +X)P1

(812)
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For low temperatures we also have V« U.
Therefore for cur « 1, Eq. (88) becomes

~1/2
K"=kT I qg( «—z Q—I)

P1 2

with U =eH/p. The general solution is
V =K'(H'~ /p ); however, this solution will not
vanish for x-+ ao unless K'=0. Hence, V =0 for
cur«1. For cor«1, dV/dg=pV/eH, and
hence V =EC"H'~ . The constant is determined by
integrating V over the region where mv -1. Since
this region is assumed small at low T we may take
U =@HI /pl-const. Then

dV pl eHV+ I qg(«p+QI)
NT

d eHI pl 1+co 'T

(813)

The vahdity of Eq. (813) follows directly from the
assumed small variation of g(E) over energy scales
of order kT.

Since the first term on the rhs will be negligible
for V~~ U we obtain

pH) Nf'
b, V= I qg( «b QI)—f —I Id/,

Pi 1+co 7

1/2

kl —C—I Aqg( «p—QI) .—g 2HJ
2 p)

(815)

Although these expressions have been derived
for low temperatures, we have determined the error
111 uslllg Eqs. (812) R11d (815) to bc qllltc snlR11 Rt
temperatures of interest. This error may be es-
timated a variety of ways. A fairly straightfor-
ward method is to integrate Eq. (87) from /=0 to
the value 1(I, where cor= l. Over this region we
neglect the terms containing V and may take U to
glvcll by Eq. (89). Eqllatlo11 (87) bccoIIlcs

dU eH qg( «~ 4)— —
p 1+co%'

cow ~ exp[(EF+f)lkT],

and varies from a very small to a very large value
over the region in question. Hence,

4V= I qgkT f
P1 1+x~

aU=2ay f '—',
p 1+Nr

We define

a=for(p, )=—exp[(p, +«b )lkT]

(816)

eH]=kT I qg( «p —QI)—
P1 2

' (814) p=cor(gb ) =—exp[(gb+ «~)/kT] .

For large cur, where V =K"H', we therefore ob-
tain

We integrate by parts noting that qg dg/p
=dp/P:

b, U= 25/+
p 1+N f'

fb "b dp & eH 2u
22+ 2 ~QQ1+co'r' ~ p (1+u')'

eH 1

p 1+N s
—kT1 1+@ f& cH 2u

1+a' ~ p (1+u')'

The function 2ul(1+u ) is sharply peaked at
u =1 and has total a integrated area equal to 1.
Since H and p are slowly varying functions, taking
a « 1 and P= 1 (Pb —PI) gives

eH) eH,
AU= — —kT ln2,

P P

which indicates that the correction term is roughly
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kT ln2. This should be approximately doubled
since me have evaluated EU only over —, of the
relevant region.

How does this affect the calculated capacitance7
If we call the correction factor 5-2kT ln2, then
for Eq. (B12), we obtain

p«
«g2 ~

eH «+x «p«
—5p«H «

The relative error is

5(xiHI +EH'/pg)

This error is readily evaluated for the two cases
presented in Sec. III A and III B. For the first case
p=const=q(5X10' cm ), Hi ——2pgi/e, and

g, +Qg+-0. 5 eV for room temperature and 10
kHz. For the depletion region formed under —5
V applied bias, x «

-0.2 pm. The term in

parentheses is, therefore, about 2.5 V, while

5-0.035 eV; the discrepancy is only 1.4%.
For the second case, g =const=10'7 cm eV

p~ qgf——b and H~ ——qgg~/e. Again taking
/~+EEL-0. 5 eV, a 5-V depletion region gives

x« -0.3 pm. The term in parentheses is 1.7 V; the
discrepancy is 2%.
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