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Kink instability in planar ferromagnets
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The 360' screw kinks in a planar ferromagnet with an in-plane magnetic field are unstable
above a critical-field strength. %e show that this critical-field strength decreases rapidly as the
kink velocity increases toward its maximum value. As a consequence, square-root singularities
appear in the dynamic structure factor S(q, ai) at field-dependent cutoff values of ro/q.

Nonlinear solitonlike modes in one-dimensional
(1D) magnetic systems have recently attracted con-
siderable attention. ' Inelastic neutron scattering
experiments on the planar ferromagnet CsNiF3 in a
in-plane field by Kjems and Steiner2 were interpreted
to confirm Mikeska's prediction' of a thermal soliton
contribution to the dynamic structure factor S(q, ai).
This interpretation has subsequently been ques-
tioned, but recent measurements of the out-of-
plane structure factor seem to demonstrate'. that the
major part of the quasielastic peak is in fact due to
scattering from thermal solitons.

In this Communication we show that these kink-

type solitons in 1D planar ferromagents become un-

stable above a critical strength of the in-plane mag-
netic field which decreases rapidly with increasing
kink velocity. To our knowledge, this is the first
study of the instability of moving kinks. The static
case has been discussed by Hornreich and Thomas'
in a slightly different context, and more recently by
Kumar. ' As a result of our anlaysis, we predict
square-root singularities in the dynamic structure fac-
tor S(q, oi) at cutoff values of oi/q which are drasti-

cally reduced from the sine-Gordon result already for
moderate field strengths.

We consider a 1D planar ferromagnet described by
the Hamiltonian

H = X [—JS, S,+, +A ( Sf) gp, sBS|']-
l

where J, A )0, and the other notation is standard. '

Disregarding quantum effects, the spin configurations
at low temperatures are given by classical vectors
Si=Ssi of constant amplitude S(st =1). In the
continuum approximation s i(t) s (z, t) one obtains
the energy functional

t+oo

E[s]= J [—, s + —,s3 +b(1 —si)]dz (2)

and the equation of motion

Qs
Qt

= s && ( s —s3e3+ bet)

where the prime indicates 8/tlz. Here, the units of z,

t, and Eare So=a(J/2A)' ' (a is the lattice con-
stant), rii=t/2ASand Ee=S'(2AJ)' ', respectively,
and b =8/B„where 8, =2AS/g p,s is the anisotropy
field (54 kG for CsNiF3).

We are interested in solitary waves s (Z),
Z = z —ut such that t)/Bz = d/dZ, d/'dt = ud/d-Z,
with the velocity u in units of up = Sii/rp = aEs/gS. It
is convenient to represent the spin direction s by a
"meridional" angle 8 (IHI »

n/ 2) between s and the
easy plane, and an azimuthal angle q (0 ~ q ~2m )
between the planar component of s and the field
direction, such that s = (cosH cos q, cosH sinq, sinH).
Then, the equations of motion take the form

—u8'= j "cos8—28'y'sin8 —hsing (4a)

and determine the eigenvalues A.„ofE2 as functions
of b. The solution is linearly stable if all X„&0; the
limits of stability occur at critical fields b, found as
the roots of X„(b,) =0. The corresponding eigen-
modes (u„,p„) are for X„=O solutions of the linear-
ized equations of motion for (n, p), i.e., a critical
field b, is a bifurcation point where the solution
(8, q, ) is coexistent with a solution
(8, +a„,q, +P„) with infinitesimal (a„,P„). The
dependence of the amplitude of this bifurcating solu-
tion on b —b, may be studied by a perturbation ex-
pansion to higher orders in (a, p).

We are interested in solitary waves starting from
and returning to the state of uniform equilibrium
magnetization, whose q variation is a 2m kink, i.e.,

u q
'
cosH = 8 '+ (q ' —1) sinH cosH —b sin 8 cos q

(4b)
which are the Euler-Lagrange equations of the varia-
tional functional

K[8, &] =E[s] + u I qp'sinHdZ

In order to test the stability of a given solitary solu-
tion (H„tp, ) of Eqs. (4a) and (4b), we expand the
functional E to second order in the deviations (n, p)
from (H„q, ),

re[8, q, ] =a[8„q,]+—,'X,[~,P],
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we have the boundary conditions

8x(+~) =0, qx(y~) =0, 2n (6)

d 0!

d f2
+(h. —1 —b '+6sech'()o. =0

d
d f2

+ (A. —1 +2 sech ()P =0

(Sa)

which decouples into two Schrodinger-type equations.
The second equation admits (independent of b)

one bound state A. =0, P =2 sech) —= dpir(z)/d(,
which is the Goldstone mode reflecting the marginal
stability of the kink (7) against translations.

Equation (8a) allows two bound-state solutions
h. ~

= b ' —3, a~ = sech'$, and X2 = b ',
u2 = sinh(sech'(. The first yields the stability limit

b, = —, , i.e., 8, =8,/3 (18 kG for CsNiF3), of the

static kink against meridional perturbations o.. This
instability corresponds closely to the instability of a
360' domain wall described in Ref. 7. It was also no-
ticed recently by Kumar.

In order to study the solution bifurcating at b = b„
we expand the equations of motion to higher order in
n and P. To lowest order, the meridional deviation
from the kink (7) remains of the form n = nosech'f,
but there occurs an azimuthal deviation proportional
to 0.'0, determined by

P"—( b, cos px) P = (2n'q x + z a q~x') n

By using the fundamental solutions P~ =sech),
P2=sinhf+fsechf of the corresponding homogene-
ous equation, we find the bounded solution of Eq.
(9):

P=
2

n((1+2cosh'()sinh(sech f . (10)

In order to determine the dependence of the ampli-
tude o.p on b —b„we calculate the energy to order
0,0. After some tedious algebra in the evaluation of
the various integrals, we find

E=Sb'~'[1 —
—,', u| ——,'~((b —b, )] .

This shows that the instability of the static kink oc-
curs by "inverted" bifurcation of an unstable solitary
wave existing for b & b„whose azimuthal variation
is a 2m kink and whose meridional variation is a
pulse varying as no —

2 [15(b,—b) ]'~2 for b b,

We have shown that this type of unstable solution
exists down to b ~0 where its amplitude varies as
ao —m/2 —(2b) ' ' and its width diverges as b ' '.

A static solution (u =0) is the "azimuthal 2n kink"

81' =0, sin(px/2) =sech(, ( = b' 'z

with energy Ex(0) =Sb' and width 5~ b '2. The
stability analysis described above leads to the follow-

ing eigenvalue problem

tanP=u 'sinh(y 'Z)
sin8 = y

' sech(y 'Z) (12)

of energy E(u) =2y ' and width 5 ~ y.
For intermediate values 0 & u & 1 we have deter-

mined b, (u) approximately by extremizing the func-
tional X[8,9'] given in Eq. (5) for trial functions9

sin(N/2) = sech(Z/5)
tan(8/2) =D sech(Z/5) (13)

with 5 and D (~D ~
~1) as variational parameters.

This ansatz has been chosen such that it allows the
reproduction of the kink exactly in both limits u 0
and b 0, and E can be calculated explicitly as func-
tion of 8 and D The extremum conditions show that
for given u &0 there exists for small b three solu-
tions: a maximum at D~ & 0 and a minimum and a
maximum at D2 3 & 0.' The latter two merge at a
critical value b, (u). The critical curve obtained in
this way is plotted in Fig. 1, where it is compared
with the result of a numerical integration of Eqs. (4a)
and (4b).

The instability field b, (u) decreases rapidly with in-
creasing kink velocity u. The physical origin of this
result is the fact that because of the meridional com-
ponent s3 ~ 0 the field exerts a torque s x b which
can "throw the spin configuration over" more easily.

The behavior for
~
u

~
&& 1 may be found by a

Landau-type argument based on the functional E
considered as a function of the meridional amplitude

For the moving kink ( u &0), no general analytic
solution is available. General considerations show
that the azimuthal variation remains a 2m kink, but
there now occurs a meridional component s3 +0.
Thus the kink has the same symmetry as the expect-
ed instability mode, and the stability limit will coin-
cide with its existence limit: at b, (u), a stable and an
unstable solution of the same symmetry merge and
annihilate each other.

For weak out-of-plane dynamics, ~s3~ && 1, the
equations of motion (3) may by adiabatic elimination
of the meridional component, 8= @, be approximate-
ly mapped into the sine-Gordon (SG) equation'
V"—~ =sin%' with the traveling solitary-wave solu-
tion (lul &1, 1 —u'=7 ')

sin(Px/2) = sech(7 O' 'Z)

8x = —2u7 b''2sech(7 b'~2Z)

of energy Ex(u) = 87 b' ' and width 5 ~ 7 'b ' '. The
existence limit of this solution is obviously u = +1
for all b, but its limit of validity decreases from
b = ~ at u =0 (where it is exact) to b =0 at u = +1.
Therefore, one may only conclude that b, (1)=0.

The SG solution in the limit b ~0, u 1 is con-
nected to the unstable kink at u =0, b ~0 men-
tioned above by a branch of unstable m-kink solu-
tions of the form
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FIG. 1. Dependence of the instability field 8, on the kink
velocity u, obtained by variational calculation (upper curve)
and numerical integration (lower curve), respectively.

0, 5 LI/Up

Hp. Because of the symmetry E (Hp, u, b)
1=E(—Hp, u, b), K has near u =0, b = 3, the Taylor

expansion (d, e & 0)

It.'(Ho, u, b) =ICo+cuHo+rI(
3

b)Ho2 eHo
1

which yields, at negative Hp values, a minimum and a
maximum merging at

b, (u) —b, (0) —u'i' .

For
~
u

~ 1, on the other hand, both the variational
calculation and the numerical integration yield

b, (u) —(1 —u')' .

Figure 2 shows the kink energy as a function of u

for constant values of b, obtained from Eq. (2) with
the variational ansatz (13). Each of the curves for
stable kinks ends in a square-root cusp at a critical
value u = u, (b), where it merges with the curve for
the unstable kink. The value of u, (b) is considerably
reduced already at moderate values of b from the SG
value u,sG =1.

These results have important consequences for ine-
lastic neutron scattering experiments. In the

FIG. 2. Dependence of kink energy on kink velocity for
various values of field strength b = B/B„compared with
the sine-Gordon result.

independent-soliton approximation" one obtains a
dynamic structure factor, which for an arbitrary
velocity-dependent kink energy Ex(u) takes the gen-
eralized form

S(q, ro) ~ exp[ —PEx(u))[M(q, u) ]'—1 BE~

u -~/q

with M(q) the kink-shape function. For low tem-
peratures, S(q, tp) still has as a function of ro for con-
stant q a central peak, but the cusps in Ex(u) now

give rise to square-root singularities at the cutoff fre-
quencies ro = + qu, (b). This is to be contrasted with
the SG result where the cutoff occurs at co = + qup,
and the divergence of BElr/Bu is suppressed by the
Boltzmann factor because of the divergence of E~ for
u up. Observation of these effects would yield fur-
ther evidence for the soliton interpretation of the
neutron scattering observations.
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