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The transient nonlinear-optical phenomena associated with the extremely fast relaxation

processes in condensed matter are investigated from a microscopic viewpoint, taking into ac-

count the non-Markovian nature of the system. It is found that, in the ultrashort time region
comparable to the thermal-reservoir correlation time, the transient nonlinear-optical response
exhibits the characteristic time variation inherent in the non-Markovian nature of the matter

system. This result cannot be explained by the conventional phenomenological theory based on
the relaxation time description. The general formula obtained is applied, as an example, to the
transient four-photon parametric coupling generated by the two-pulse excitation of the

localized-electron —phonon system. It is found that not only the time variation of the signal in-

tensity, but also the dependence of the time-integrated intensity of the pulse interval exhibits

the characteristic feature which reflects the dynamics of the relaxation of the phonon system. It
is emphasized that this result provides us the most practical tool to observe the extremely fast

relaxation processes in condensed matter.

I. INTRODUCTION

Recently, the ultrashort relaxation processes in
condensed matter have been extensively studied by
the resonant nonlinear optical method, such as the
resonant Rayleigh-type optical mixing, ' the polariza-
tion spectroscopy, ' the resonant transient parametric
coupling, 4 and so on. In these studies the longitudi-
nal and transverse relaxation times T~ and T2 for
condensed matter have been estimated to be of the
order of the picosecond or less, by comparing the ex-
perimental data to the simple theory in which T~ and
T2 are phenomenologically introduced into the optical
Bloch equation.

However, special attention should be paid to the
fact that these extremely fast relaxation phenomena,
whose time scale is of the order of the thermal-
reservoir correlation time t„can no longer be
analyzed by the conventional phenomenological
theory based on the relaxation time description. This
is because in such an extremely short time region the
effect of the reservoir on the relevant electronic
states cannot be regarded as the Markovian process
(or equivalently the rapid modulation or the motional
narrowing situation); therefore the dynamical motion
of the reservoir caused by the strong system-reservoir
interaction should properly be taken into consideration.

The purpose of this paper is to present a theoretical
study of the resonant nonlinear optical phenomenon
associated with the extremely fast relaxation
processes in condensed matter, taking into account
the non-Markovian character of the interaction
between the relevant system and the reservoir. It is

shown by this first-principle theory which is applica-
ble to the transient phenomena in an arbitrary time
scale, that the signal radiation exhibits the charac-
teristic transient response reflecting the non-
Markovian nature of the condensed matter; this
result cannot be explained by the conventional
phenomenological theory which leads only to the ex-
ponential type decay.

In particular, the two-pulse excitation method is
shown to provide us a powerful tool to study the ex-
tremely fast relaxation phenomena (comparable or
less than picosecond), since the time-integrated signal
intensity also shows as the function of the pulse
separation the characteristic feature reflecting the
dynamical motion of reservoir. This is the decided
advantage of the present nonlinear optical method
over those associated with the linear optical
phenomena, such as the time-resolved spectrum or
the time-dependent degree of polarization' of the
resonantly scattered radiation.

In Sec. II we formulate the problem without speci-
fying the details of the matter Hamiltonian, in order
to preserve the wide applicability of the present
theory to various kinds of materials. The general for-
mula for the electric-dipole moment induced by the
third-order nonlinear optical process is derived.

In Sec. III the general formula derived in Sec. II is
applied to the case of the two-pulse excitation, in or-
der to investigate the dynamics of the relaxation
directly in the time domain. The expression for the
intensity of the radiation generated by the transient
parametric coupling is obtained by the cumulant ex-
pansion method.
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Before performing the specific calculation, the two
limiting situations of the long- and short-time cases
are considered in Secs. IV. and V, respectively. The
former leads to the new photon-echo phenomenon'
which is caused by the memory effect of the reservoir
in the extremely short-time region. The latter case is
associated with the opposite situation where the usual
relaxation-time description is allowed.

In order to give more specific considerations, the
localized-electron phonon system is taken as a typical
example of matter. The detailed discussions on the
results obtained by the numerical calculations are
made in Sec. VI.

II. FORMULATION

Let us consider a pair of well-separated energy
bands in condensed matter which is in resonance
with the coherent radiation. The Hamiltonian of this
system is expressed by

H(h) =Ho+H)( r, h)

HD= ig)Hg(g ~
+ [e)H, (e[ (2)

Hi(r. h) =—lg)d(elE'( r, h) le&d'(g IE-( r, h) .

(3)

In the matter Hamiltonian Ho given by Eq. (2),
H~(H, ) describes the ground (excited) subspace
Hamiltonian which is a function of the so-called
reservoir variables. It should be noted that the ex-
pression (2) is general in that Ho represents not only
the narrow two-level system in the motional narrow-
ing situation, but also the broad bands in the strongly
coupled system such as several color centers in ionic
crystals or dye molecules. The matter-radiation in-
teraction is expressed by Eq. (3) in the dipole approx-
imation; d is the matrix element of the dipole-
moment operator referring to the ground and excited
subspaces, and is in general a function of the reser-

voir variables. Since the exciting radiation is sup-
posed to be so coherent and intense, the positive
(negative) frequency part of the electric field is
represented by a time-varying complex function
E(r, h) [E'(r, h) ]. In order to confine our attention to
the essential point associated with the coherence ef-
fect of many oscillating dipoles, the direct interaction
between dipoles at different positions is discarded.

The equation of motion for the density operator in
the Schrodinger picture is given by

h
—p(h) =L(h) p(h),. d
dt

(4)

where the density operator in the interaction picture
ph(h) and the associated Liouvillian Lh(h) are defined
by

ph(h) = exp(iLoh) p(h)

Lh(h) =exp(iLoh)L)(h) exp( —iLoh) .

In above equations, Lo and L~(h) are defined by
[Ho. ] and [H~( r, h), ], respectively.

The induced electric-dipole moment is obtained by
evaluating the right-hand side of the following equa-
tion'.

(d(h)) =Tr[([g)d(e[+~e)d (g~)P(h)]

=Tr&„&(d(e~p(h) ~g)) +c.c. (8)

where Tr~„~ denotes the trace operation over the
reservoir variables.

Let us now consider, as a fundamental example,
the third-order nonlinear optical process: the four-
photon process. The corresponding term for the den-
sity operator is expressed by

where the Liouvillian L(h) is defined by the commu-
tator [H(h), ]. The corresponding equation of
motion in the interaction picture is expressed by

i Ph(—h) = Lh(h)Ph(h),
. d
dt

fat fat~ hat2

Pf"(h) = h „Ch, Ch2 J Ch3Lh(h, )L,(h, )Lh(h3)P( —~) . (9)

We assume that the excited band is well separated from the ground one, so that the initial density operator p(0)
takes the form

P( — ) = lg)Ps (g I

where

Ps =exp( —p~g)/Tr[exp( —pHh) ] .

Thus we find from Eqs. (9)—(11) the third-order off-diagonal density matrix element, which has the following
form:

(10)

(empt" (h) (g) = (e[exp( iLoh) pj" (h) ~g)—
f~ f'1 h'2

=i Jl dh~ Jl dh2 J dh3((eg ~exp[ —iLO(h —ht)]L)(h))

x exp[ iLO(h~ —h2) ]L~(h2) ex—p[ —iLO(h2 — )]hL3~( )Igh3g)) ps 02)
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Here we have made use of the hyperspace notation I ah)) instead of the usual Dirac notation I a ) (b I, since the
former is more convenient when we trace the time evolution of the density matrix element.

The matrix elements of the free propagator have the forms

((eg lexp( —iLp(rt —rp) I eg)) = exp[ i (—Ls+ V +E~)(i, —i,) ]

((gelexp( —iLa(tt —t2)lge)) =exp[ i(L—,—V —E~)(tt —i2)]

((gg lexp( —iLa(tt —t2) I gg )) =exp[ —iLs(tt —t2) ]

((ee lexp( —iLa(tt —t2) I ee )) =exp[ —iL, (tt —t2) ]

(13)

(14)

(15)

(16)

In the above equation, Ls,, is defined by [Hs„], and E,s=Tr[pa(H, Hs)] is—the Franck-Condon energy, and
V =H, Hs E—,s is—the system reservoir-interaction. Schematic diagrams associated with Eqs. (13)—(16) are
shown in Fig. 1. All off-diagonal elements, such as ((eel. . . leg )), vanish, since Ha is free from the interband
transition caused by the exciting radiation. The matrix elements of the interaction Liouvillian take the forms

((eglLt(r) lgg}) = ((eelL&(r) le)) = ((gglL&(r) Ige))= ((eglLt(r) lee)) = E( r, i)—d

((gelLt(t) lgg)) = ((eelLt(t) leg)) = ((gglLt(t) leg))= ((gelL, (r) lee)) =E'( r, t)d (18)

All diagonal elements vanish, since Ht( r, i) causes the transition between two bands.
Substituting Eqs. (13)—(18) into Eq. (12), we obtain the third-order off-diagonal density matrix element which

has the following form:

tet pt
~

iet3

(el p"'(i) lg) = i „dtt „dt2 J di3

x E( r, tt)exp[ —i(Lz+ V +Ex)(t —tt)]d [exp[ —iLs(rt —i2)] +exp[ —iL, (rt —i2) ]}

& (E"( r, t2) E( r, t3) d exp [—i (Ls + V +E s) ( t2 —t3) ]d

+E( r, t2)E'( r, t3) d exp[ i (L, —V Ee—r)(r2 —t3—) ]d}pit

It should be noted that, unlike in the case of the phenomenological theory, (e I
p"'(i) Ig) is still the operator for

the reservoir variables. Four third-order processes expressed by the above equation are schematically shown in

Fig. 2, which may help our intuitive understanding of the third-order nonlinear optical processes.
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FIG. 1. Schematic representation of the matrix elements
of the free propagator in the hyper-space I.see Eqs.
(13}—(16}].The thin and thick lines are associated with the
ground and excited states, respectively.

FIG. 2. Schematic representation of the possible four
time evolutions of the third-order off-diagonal density-
matrix element (elp 3 (r) Ig) expressed by Eq. (19). The
thin and thick lines are associated with the ground and excit-
ed states, respectively.
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III. TRANSIENT PARAMETRIC COUPLING
(TWO-PULSE EXCITATION}

In order to facilitate more explicit discussions, we
consider in this section the transient parametric cou-
pling generated by the two-pulse excitation. In this
case, the exciting electric field is expressed by

E{r, t) =Et(t) exp[i(kt r tat)—]

+E2(t —t, ) exp[i(k2r —rut)], (20)

where k~ 2 are wave vectors for the first and second
pulses, Et 2(x) is their pulse envelope function which
is peaked at x =0, and t, is a pulse separation. Sub-
stituting Eq. (20) into Eq. (19), we have four terms
with the wave vectors k~, k2, 2k2 —k~, and 2k~ —k2.
Let us consider the term with the wave vector
2k2 —k ~ which is associated with radiation generated
by the optical parametric effect. When two excitation
pulses are well separated, Eq. (19) is reduced to

(3)
fr

{e(p (t) )g) =i
&

dtt
&

dt2
&

dt3Et(t3)E2(t2 —t, ) E2( tt—t, ) exp[i(2k2 —kt) r ]

x exp[ —i (Le+ V +E„)(t —tt) ] {exp[—iLe(tt —t2) ] +exp[ —iL, (tt —t2)1)

(d')' p[ —(L, —V E)(t,— t, ) ldp— (21)

Substituting Eq. (21) into Eq. (8), and confining ourselves to the limit of short excitation pulse, we obtain

(d(t) ) = (ilg) 8t822exp[ —iEe(t —2t ) ] exp[i(2k2 —kt) ] (exp[ —i (Le+ V) {t—t, ) ] exp[ —i (L, —V) t, ]),
(22)

where (. . . ) denotes Tr(. . . ps). Figure 3 shows the schematic representation of the time evolution of the
system which is expressed by Eq. (22); the off-diagonal element (g [p"'(t)

~
e ), which is generated by the first

pulse applied at t =0, is transfered at t = t, to its Hermitian adjoint (e
~
p(3)(t) ~g ). In deriving Eq. (22) we have

assumed that the dipole moment is independent of the reservoir variables (Franck-Condon approximation), and

8,(i =1,2) are the so-called pulse area defit]ed by J 2Et 2(t) d dt.

The averaged value in Eq. (22) is simply evaluated by the cumulant expansion method, and we obtain

ln(exp[ —i(Le+ V)(t —t, )l exp[ —i(L, —V)t, l)
fat-t

dtt dt2(v(tt) V(t2)) + dtt J dt2(V(t2) V(tt+tg)) —
~ dtt J dt2{V(t2) V(tt)) . (23)

Here, higher-order cumulants have been omitted be-
cause of the following two reasons: (i) In the case of
the linear system-resevoir coupling, all higher cumu-
lants vanish. (ii) In both limiting situations of weak
and strong coupling, they make negligible contribu-
tion, irrespective of a specific form of the coupling V.

From Eqs. (22) and {23)we obtain the intensity of
radiation emitted into the direction 2k2 —k ~, which
takes, aside from the unimportant multiplicative fac-
tor, the form

I"'(t) = 8j842exp [—2[2S(t —t, ) +2S(t, ) —S(t) ]]

where S( t) is the real part of the cumulant, which is
defined by

ft ft)
S(t) = J, dtt „I dt2ke[( V(tt) V(t2) ) ]

FIG. 3. Schematic representation of the time evolution of
the system which is excited by the sequence of two short
pulses [see Eq. (22)]. The off-diagonal element
(g!p(3'(t) I e), which is generated by the first pulse at t =0,
is transfered to its conjugate element (e I

p(3l(t) Ig) by the
second pulse at t = t, .

a 'J(ca)(1 -costat)~ 2'
In Eq. (25) J(ta) is the power spectrum of the
system-reservoir coupling:

J(~) = dte'"'{ V(t) V(0))

The set of equations (24) and (25) enables us to

(26)
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know how the transient response associated with the
optical parametric process reflects the dynamical
behavior of the system-reservoir coupling. Before
performing specific model calculations in Sec. VI, we
will consider the long- and short-time limits in the
following two sections.

Here D is defined by

D'- J J(«)) = (V')~ 2%'

and is the measure of the system-reservoir interac-
tion energy. From Eq. (31), the radiation intensity
expressed by Eq. (24) becomes

IV. LONG-TIME BEHAVIOR
(MARKOVIAN LIMIT}

I" (t) —exp[ —D'(t —2r, )'] (33)

When observation time scale is much longer than
the correlation time r, [t, is the measure of the in-
verse of the width of J(co) ], we obtain the following
result independent of the specific form of the
system-reservoir interaction. In this case (t » t, ),
it is convenient to rewrite Eq. (25) into the form

S( ), d«) 1 —cos«)r J( )~-- 2m

which enables us to use the following well-known
asymptotic formula:

1 —coscut g( )j 2

(27)

(2g)

From this, S(t) defined by Eq. (27) [or (25}] is re-
duced to

(29)

We should here remark that, in the present long-time
(i.e., Markovian) limit, the function S(t) is found to
be linear in t. This situation causes the fact that, in
the argument of the exponential function in Eq. (24),
the t, dependence of the radiation intensity cancels
out; we obtain the following simple expression for
the radiation intensity:

If the system-reservoir interaction is so strong
(D » 1) that D ' is shorter than the pulse separa-
tion t„ then the right-hand side of the above equa-
tion expresses the fact that the echo with the Gauss-
ian profile is formed at 2t, . This is the new type of
photon-echo phenomenon which was recently
predicted by the present author. ' We should remark
that Eq. (33) expressing the echo profile has been
obtained without introducing the inhomogeneous
line-shape function which plays the essential role in
the conventional echo phenomena. The expressions
(33) and (30) have derived by the same equation
(24); the difference between them is due simply to
the different observation time scale, as is schemati-
cally shown in the Fig. 4. This new echo
phenomenon is caused by the memory effect of the
reservoir in the extremely short-time region; or
equivalent statement is that the slow frequency
modulation due to the reservoir plays the role similar
to the inhomogeneous broadening. Thus, the present
theory unifies the two concepts, the homogeneous
and inhomogeneous broadenings, from the micro-
scopic viewpoint.

2nd pules

I(3)( r) e J(0)t e-2 (30)

From this, we find that the radiation intensity decays
exponentially with the transverse relaxation time T2
defined by 2/J(0). Thus, if the present theory is ap-
plied to the limiting case of the long time (r » r, ),
the result obtained by the phenomenological theory"
is reproduced. 2nd pulse

V. SHORT-TIME BEHAVIOR

In this section, let us consider the opposite limiting
situation in which the observation time scale is much
shorter than the correlation time (t « t, ). In this
case, we can approximate the expression (25) to its
leading term of the power series in time t, which has
the form

0 t~ 2ts

FIG. 4. Schemat&c d&splay of the t&me dependence of the
intensity of radiation generated by the two short excitation
pulses, for the two limiting situations: the long- and short-
time regions. The upper (lower) graphs is for the case that
the excitation pulse separation t, is much larger (shorter)
than the correlation time t,.
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VI. MODEL CALCULATION
(ARBITRARY TIME REGION)

We are now in a position to answer the following
question: what kind of phenomena will arise in the
intermediate time region in which observation times
are of the same order as the correlation time t, ? To
answer this question we need specific information on

the frequency dependence of the power spectrum
J(cu) of the system-reservoir interaction. [We
should recall that in the preceding sections only the
two quantities J(0) and D = ( V') are of interest. ]

In this section, we consider as a typical example a
localized-electron phonon system. The system-
reservoir (i.e., 'electron-phonon) interaction Hamil-
tonian is expressed, up to the quadratic interaction
term, by

H, He ((—H, —He))—= xhkek(bk+bk) + —, Xxhkct(eked)'t (bk+bk)(bu+b, )
k k q

(34)

where ek is the phonon energy for mode k, and bk and bk are the associated annihilation and certain operators.
The first and second terms in Eq. (34) describe the linear and quadratic interactions, and hk and hk, u are their
dimensionless interaction constants. In many localized-electron phonon system, the quadratic interaction is very
weak, so that the higher cumulants can be discarded [see Eq. (23) and the discussion below].

The time-correlation function for the electron-phonon interaction V expressed by Eq. (34) can be easily calcu-
lated, and is found to be composed of the two terms for the linear and quadratic interactions;

( V( t) V(0) ) = ( V( t) V(0) ) + ( V( t) V(0) )g,
(V(t) V(0))t. = Xhkek {[n(ek) +1]exp( —iekt) +n(ek) exp(iekt)],

(V(t) V(0) ) g= X Xekeuht u {[n(ek) +1][n(e,) +1]exp[ t(ek+—e~) t]

(35)

(36)

+2n(ek) [n(e )u+1] exp[i(ek —eu) t] +n(et„) n(eu) exp[i(ek+eu) t]], (37)

where n (x) is the Bose-Einstein distribution function. In order to perform further calculations, let us assume
that hk and hi, u are constants (St, = hk, ~ and Sg = hku), and that the phonon density of states has the Gaussian
profile with the maximum at c»~ and with the width y~. Equations (36) and (37) are thus rewritten into the fol-
lowing forms:

Jt, (c») = (2Jm St/y~) c»'{[n (c») +1]exp[ —(cu c»~)'/yP8(—c»)+ n( cu)exp[ —(c»+—c»t )'/y~]8( c»)], (3g)—

Jg(c») = (4Sg/yt', ) „deexp[ (e —cu, —)'/y, ']

& {e(cu—e) [n(e) +1][n(c» —e) +1]exp[—(cu —e —c»~) /y~]8(c» —e)

2e(cu ——e) [n (e) +1]n (cu e)exp[ —(e cu — )c»'/ —]y8~2—(e —c»)

—e(cu+e) n(e) n( —cu —e)exp[ (e +c»+—c»~)2/y~i]8( —cu —e)] (39)

We show in Fig. 5 the numerical displays of J(cu),
Jt, (c») and Jg(c»), which are displayed by the thick
solid, the thin solid, and the dashed line, respective-
ly. (Here and henceforth, we use the unit of c»~ =1.)
Under the situation where the linear interaction is
much stronger than the quadratic one (St, ))Sg),
the power spectrum J(cu) is mainly determined by
the linear term Jt, (c»). However, for finite tempera-

I

tures, we should remark that Jg(cu) at low frequen-
cies becomes larger than Jt (c»), as shown in Fig. 5.
This is because the simultaneous phonon absorption
and emission process is induced by the quadratic in-
teraction, which makes the predominant contribution
to the power spectrum at low frequencies. As was
discussed in Sec. III, this low-frequency component
determines the long-time behavior.
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Sl/SP=40 ~ 0 s 7 =0.4. P= I.0
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FIG. 5. The power spectrum J(co) of the localized-
electron phonon system with the linear and quadratic in-
teraction. The linear part JL (ao) and the quadratic one
Jg(ru) are displayed by the thin solid line and the dashed
line, respectively. The energy scale of the abscissa is nor-
malized by the average phonon frequency au~ (i,e., co~ -1).

We show in Fig. 6 the logarithmic display of the
transient response of the radiation intensity, which is
obtained by the numerical integration of Eq. (25)
with Eqs. (35)—(37), for several values of the time
interval t, between the two excitation pulses. From
this figure, it is clearly observed that, in the extreme-
ly short-time region comparable to the damping time
of the phonon system (y~'), the emitted radiation
exhibits the characteristic transient behavior reflect-
ing the dynamical motion of the phonon system. We
should also note that, for shorter time interval t„ the
radiation intensity does grow immediately after the
second pulse. This unusual effect is the new photon
echo phenomenon' which is caused by the memory

effect of the reservoir, as was discussed in Sec. V.
In the longer-time region, we obtain the expected

result that the radiation intensity decays exponentially
with the transverse relaxation time T2. However, as
is observed form Fig. 6, the magnitude of the intensi-
ty takes different values depending on the position of
the second excitation pulse t, ; we should recall that
according to the phenomenological theory the radia-
tion intensity is independent of t, .4 This effect ob-
tained by the present theory indicates that the time-
integrated intensity (i.e., the total energy) of the em-
itted radiation also exhibits, as a function of t„ the
damped oscillation which reflects the lattice relaxa-
tion, as is shown in Fig. 7. We should remark that
this fact is caused by the nonlinearity of the
radiation-matter interaction. That is to say, the
behavior of the radiation generated by the two-pulse
excitation cannot be simply described by the superpo-
sition of the responses due to the two single-pulse
excitations, but depends essentially on the correlation
between two excitations. This is the reason why the
dynamics of the system-reservoir interaction is re-
flected to the t, dependence of the emitted radiation
energy.

It should be emphasized here that this result sheds
light on the experimental investigation of the dynam-
ics of the extremely fast relaxation phenomena in
condensed matter, since the measurement of the to-
tal radiation energy as a function of r, (Fig. 7) is
much easier than the measurement of the time
dependence of radiation intensity in the picosecond
or subpicosecond region (Fig. 6). Furthermore, we
should also remark that the transient parametric
method has the advantage in that it is free from the
restriction due to the energy-time uncertainty princi-
ple which limits the effectiveness of the method
based on the time-resolved spectrum, and is also
free from the details of the level degeneracy which is
essential in the method using the radiation polariza-
tion. '

C)

(/} i
S)/Sp---40. 0, 7p ——0. 4, P=-1. 0

C)

bo
O

C)
(U

I

C)
Y)

I

C)

0

bo
O

LA
i

FIG. 6. The logarithimc display of the time dependence
of the radiation intensity for t, 0.2, 0.4, 0.6, and 1.0; the
time axis is normalized by the average phonon oscillation
period 2'~ '. The first excitation pulse is applied at t =0,
and the position of the second one is indicated by the verti-
cal straight line.

FIG. 7. The logarithmic display of the time-integrated in-

tensity as a function of the pulse separation t, . The abscissa

is normalized by the average phonon oscillation period 2'~ '.
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