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Exact solution for space-charge broadened packets in semiconductors

D. F. Nelson
Bel/ I.abovatories, Murray Hill, ¹mJersey 07974

(Received 28 December 1981)

The transport equation for charge packets in time-of-Qight measurements of drift velo-

city in bulk semiconductors including full account of space-charge effects is derived. It is
found to be a nonlinear, partial, integro-differential equation. Two key transformations
permit finding an exact, analytical solution by decomposing the problem into separate
equations for the shape function, the broadening function, and the velocity function. The
solution consists of a rectangular-shaped charge packet which broadens linearly in time
and propagates with an exponentially increasing velocity until it begins entering the elec-
trode at which time the velocity can be expressed in terms of modified Bessel functions.
The observed current pulse in the external circuit is also calculated and it is shown that
experimenters have made a mistake in interpreting the pulse and so have deduced too
high a drift velocity. The error, however, has typically been small (-1%).

I. INTRODUCTION

Drift-velocity measurements of carriers subjected
to an electric field in bulk semiconductors have
been made by a time-of-flight technique for 30
years. ' The study of space-charge effects on the
current in such media is equally old, though the
analytical study of transient effo;ts dates from the
work of Many and Rakavy and of Helfrich and
Mark in I962. These papers and most of the later
work "have been concerned with the transient
approach to a steady state arising from an abrupt
turn-on. Recent work by Benson'2 and by Johnson
and Lonngren' has addressed the more general
problem involving an arbitrary initial condition.
They have been able to obtain explicit expressions
for the charge density and the electric field in
terms of a single function. It, however, is the solu-
tion of a differential equation that is exceedingly
complicated in the general case. None of the pa-
pers has dealt with the propagation of packets of
charge used in time-of-flight experiments in semi-
conductors. It is for the purpose of accounting for
space-charge effects on packet propagation that we
undertake this analysis of the transport process.

The time-of-flight technique involves forming a
thin sheet of excess charge just inside the surface
of the semiconductor and measuring the time it
takes to reach the opposite electroded face of the
sample under a given applied electric field. The
sheet of charge is formed either by injection from a
junction or by some ionizing radiation which

creates boih holes and electrons. In the latter case
one sign of charge is collected by the adjacent elec-

trode, while the other drifts through the semicon-

ductor to the far electrode. The current pulse ob-

served at that electrode is a rather flat-topped
pulse lasting for the entire time of flight because it
consists of both displacement current and particle
current. Alternately stated, the current pulse con-

sists of the flow of image charge, which is initially

on the input face electrode, around the external cir-
cuit. to the output face electrode throughout the
transit time. The falltime of the current pulse is
noticeably longer than its risetime because of
charge-packet broadening during transit.

Our analysis proceeds by first deriving the equa-

tion of transport for a propagating, broadening,
conserved charge packet. This turns out to be a
nonlinear, partial, integro-differential equation. In
spite of its forbidding appearance we find that two

key transformations reduce it to a problem admit-

ting an exact, analytical solution The eff.ect of the
transformations is to break the equation into three
equations, one each for the shape function, the
broadening function, and the velocity function.
The first two become trivial first-order linear dif-
ferential equations. The third must be solved in
two intervals, one corresponding to the packet be-

ing entirely between the two electrodes, and the
other to the packet entering the far electrode. In
the first interval, this third equation is also a first-
order linear differential equation, while in the
second interval it is a generalized Riccati equation.
An additional series of four transformations then
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allows the latter equation to bc solved exactly in
terms of modified Bessel functions of index zero.

The exact solution found takes the form of a
rectangular density packet that broadens linearly in
time and drifts with a velocity that increases ex-
ponentially in time while the packet is entirely be-

tween the electrodes and with a more complicated
dependence involving modified Bessel functions
while the packet enters the electrode.

The solution is then used to obtain a simple ex-
pression for the detected current pulse. The

analysis shows that the points on the current pulse
chosen by experimenters to measure the drift inter-
val have been incorrect, though the resulting per-
centage error on the velocity is small. Our solu-
tion concerns only the transport process within the
semiconductor, and the current pulse derived
should be used as a current source in whatever
external circuit is used for its detection. The rise-
time and faHtime of that circuit must be con-
sidered in experimental evaluation of the current
pulse.

II. ELECTRIC FIELD

A planar geometry, shown in Fig. 1, is used in bulk time-of-Aight experiments. A thin sheet or packet of
charge having a density n (x,t) (measured in electrons per unit distance in the direction of travel) is initial-
ized by bombardment of the left surface with an ionizing radiation such as high-energy electrons. This
creates a thin sheet (-1 pm) of charge which then drifts in a uniform applied field to a collecting electrode
whose current is observed. What complicates the problem, of course, is the field of the charge packet itself,
that is, the space-charge field.

An explicit expression for the space-charge field can be obtained for an arbitrary density function from
Poisson's equation,

en (x, t)

where E is the electric field, e the magnitude of the electron charge, eo the permittivity of free space, a the
dielectric constant of the semiconductor medium, and A the area of the electrodes. Integrating (1) twice and

applying the voltage conditions V(0)=0, V(L) = Vo (see Fig. 1) yields the voltage

I I

V(x, t) = + f f n (x",t)dx" dx' ——f f n (x",t)dx" dx'

from which the electric field is found to be

Vp
E(x,t) =—

I.
x 1 L x

7l X,I; X — 7l X «f X dX
E0KQ 0 I 0 0

J

III. DERIVATION OF TRANSPORT EQUATION

Under many experimental conditions used in bulk time-of-flight experiments the transit time is too short
for s1gn1ficant trapping of recombination to occur. Thus thc charge dcQslty satlsf les thc charge-conscfvat1on
equation,

371 BJ
Bt BX

where j is the flux (electrons/s). For typical applied electric fields drift is more important than diffusion
and so we drop the latter for simplicity and write the Aux as

J =Plv «

where v is the drift velocity.
In a semiconductor such as silicon the drift velocity is known to be a saturating function of the dectric

field, that is, at low fields the velocity is proportional to the electric field but- at high fields it becomes a
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constant independent of the field. Measurement of this function is, of course, the object of the time-of-
flight experiments. Our previous study' of time-of-flight experiments on surface transport in MOS (metal-
oxide —semiconductor) structures showed that the transport can be quite accurately characterized by using a
first-order Taylor-series expansion of the velocity as a function of field. Since the velocity of an electron
and the electric field are opposite in direction, we write

~o aU
u( —E)=v(Vp/L)+

L BE

x ] L x'
=up+a f n (x', t)dx' ——f f n (x",t)dx "dx'

o ' L o o

where

up =—u( Vp/L), (7)

e BUa—:
Go K~ ~E E=+vo/L

and we assume a & 0. If we consider a constant mobility p, region where v =p,E, then (6) is exact with the
alternate definitions vp =p Vp/L and a =ep/EpKA'

Combining (4)—(6) leads to the transport equation

Bn Bn 8 ", 1
+up +a n f n dx' f——f n dx" dx' =0, (9)

which is a nonlinear, partial, integro-differential
equation.

IV. SOLUTION OF TRANSPORT EQUATION

A. Shape and broadening functions

The first step in solving the transport equation
(9) is the realization that the double integral in it is
a function of time only, can be brought outside the
space derivative, and so can be seen to be a time-
dependent velocity change. We are thus led to in-
troduce a traveling coordinate

t
g=x —f vT(t')dt', (10)

where

a L x'
uT(t) = up f f n—d—x"dx' .

o o

Since the trailing edge of the packet begins at t =0,
x =0, which gives (=0, we see that /=0 repre-
sents the trailing edge of the packet and vr(t) is
the velocity of that point in the packet. The trans-
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FIG. 1. Planar geometry of bulk time-of-flight exper-
iments.
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port equation then becomes

Bn 8+a n I ndg' =O.

We now look for a solution of the form

(12)

2
cizF=aF Fdz'+c2 .

p

The integration constant c2 must vanish as can be
seen by setting z =0. It is then apparent that

F(z)n= t
w(t)

(13)

a FJFdz'

dz'
thus allowing each side to be set equal to a con-
stant c~.

Integration with respect to time then yields the
broadening function

(15)

w =wp+cit (16)

and integration with respect to z yields

z =glw (t), (14)
which represents a propagating, broadening, con-
served packet which retains its same functional
form during broadening. We call F the shape
function and w the broadening function. Substitu-
tion of this into (12) leads to separation of vari-
ables,

F=c&/a, 0&z&1.

Outside this interval F=0 is a solution. If we
denote the total number of electrons in the packet
as N, we see that N =ci/a. Thus we have found
that the packet is rectangular in shape,

n (g, t) = [S(g)—S(g—w (t))],
w(t)

where S(g) is the step function,

0, /&0
S(g)=

1 k 0

and the packet broadens linearly in time'

w (t) =wp+ a¹, (21)

both remarkably simple results. This solution ap-
plies if the packet is initialized with a width wo at
t =0 with its trailing edge at x =0. This would

appear to be an adequate characterization of the
ionizing radiation bombardment usually used.

B. Velocity function

We now must substitute the density function into (11) and solve for the velocity function,

[(L —xT) S(L xz') (L —xT —w—) S(L —xT —w)],dxr aN 2

dt 2Lw (22)

where xT denotes the trailing-edge position. Con-
sideration of this differential equation is naturally
divided between two different intervals of time: (a)
the packet being entirely between the electrodes,
0 &xT &xr +w &L, and (b) the packet entering the
collecting electrode, 0&x& &L &x~+w.

In interval (a) we have

S(L xT) =S(L —xr —w) =—1

and (22) becomes

aN
1

wo a N

I

where we have required xT ——0 at t =0. The velo-

city in interval (a) is then

Uy = Uo — + oNt /L aN g5)
2 2L 2

Thus we see that the packet trailing-edge velocity
depends exponentially on time because of its own

space-charge effect. Of course, as N~O, uT ~uo,
which is the drift velocity at the particular applied
field. The velocity of the leading edge is just (25)
plus aN as seen from (21).

In interval (b) we have S(L —xr }= 1 and

S(L —xT —w) =0 and (22) becomes
(23)

which is a first-order linear differential equation
that is easily solved for

dxr aN(L 2Lxr+xT}-
dt 2L(wo+aNt)

(26)

xz = LUo L wo ~~,]I aÃt
aN 2 2 2

——+ (e' ' —1)—

(24)

This can be recognized as a generalized Riccati
equation, ' that is, a first-order differential equa-
tion containing a quadratic nonlinearity. The gen-
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eralized Riccati equation can be transformed to a
second-order linear differential equation. In this
case the required dependent variable transforma-
tion is

d'f df
dr

Transformation of the independent variable,

(32)

2L(wp+aNt) dy

aNy dt
'

with the result

(27)
2 =2~'/', (33)

now converts it to the modified Bessel equation'
of index zero,

d y
dt

vpaN a N
y =0.

2L (w p+aNt ) 4(w p+aNt)i

df df
dz dz

(34)

(28)
The general solution of (34) is a linear combina-

tion of modified Bessel functions of index zero,
We are led next to transform the independent

variable to ~ by f=aiIp(z)+aiKp(z) . (35)

pp(wp+aNt)

2aNL

which leads to

(29)

dy 1 —4v

dr 4r y =0. (30)

(31)

converts it to the conventional form of the modi-
fied Bessel-Clifford equation of index zero,

We recognize this as the normal form' of the
modified Bessel-Clifford equation' of index zero.
Transformation of the dependent variable,

This can now be substituted into (31) and thence
into (27). Since (27) is a ratio of dy/dt and y, only
the ratio of the constants, R =a i/ai, will enter
(27). Thus there is only one arbitrary constant in
xr as expected since it originated from a first-
order differential equation. Thus we obtain

R [Ip(z) +zIi(z)]+Kp(z) —zKi(z)
xT —=L

RIp(z) +Kp(z)

(36}

as the general solution for the trailing edge posi-
tion in case (b). In (36) z should be regarded as a
function of time through (33) and (29). The veloci-
ty is then

I Rz [Ip(z) —Ii(z}]+z[Kp(z)—Ki(z)]+2RzIp(z)Kp(z)+2RzIi(z)Ki(z)I . (37)
z [RIp(z)+Kp(z)]

vals (a) and (b), respectively, can now be substitut-
ed into the definition (10) of the traveling coordi-
nate g in the terms in which the density solution
(19) is expressed. Note that the solution to the
original very complicated equation (9) is reduced to
three separate and, for the most part, simple solu-
tions for the shape, broadening, and velocity func-
tions through the use of two key substitutions (10),
(11) and (13), (14).

The positions (24) and (36) for intervals (a) and (b)
must be joined at the time t~ when the leading
edge of the packet reaches the electrode, that is,
when

Lvp L N p aiyt, /L. aNt
~——+ (e —1)+ +wp L. ——

aN 2 2 2

LziKi(zi ) —w(ti )Kp(zi )R=
w(ti)Ip(z, )+Lz,I, (z, )

(39)

where zi =z(ti ). —
The solution is now complete. The velocity

function pr given by (25) and (37) for time inter-

Equating (24) and (36) at time t i leads to a value
for the arbitrary constant R, V. CURRENT PULSE

The observed quantity in the bulk time-of-fiight
experiment is the current in the external circuit
joining the electroded faces of the semiconductor.
It is equal to the current in the semiconductor,
which consists of the displacement current, which
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flows throughout the time of flight and to the par-
ticle current which Aows only during the time that
the packet is entering the electrode. The total
current is

where the last expression is obtained by integrating
(4). Substitution of the functional dependence (13)
into (41) gives

I=A EoK +I,
Bt

(40)

(41)

I

where i is the particle current density. The latter
is given in terms of the particle flux j of (4) by

j
X=+ —f—n (g, t)dx,

O

e x —xyi= — n(x—xz,—t) uT+
r dt

ComblIlmg (40) and (42) and tnsert1ng the expres-
sions (3) and (19) for E and n, respectively, into the
combination yields the total current

eaNI= (x —xz)S(x —xr) —(x —xT —w)S(x —xz —w)
w

1
[(L —xz ) S(L xT) (L——xT——w) S(L —xT —w)]2

21.

eN
(uz +aN)S(x xz w) —uz S—(x ——xz )

I——[(L xz w)(—ur+—aN)S(L xT w) —(L —xz)u—z S(L——xz )]I.

eN (x —xz )aN
[S(x—xz )—S(x —xr —w)] uT+

In time interval (a) (24) and (25) are used here for xT and uT and in time interval (b) (36) and (37) are used.
This general form for I is less illuminating than its specializations to intervals (a) and (b). They are easily

obtained to be

eN aNuT+, xT &x~+w&I. (44a)

eN(L —xT ) aN (L —xT )

I.w UT+
2w

xr &I. &xT+w . (44b)

In this form it is apparent that I is independent of
x, as expected, because from Maxwell's equations
the divergence of I vanishes.

sponds to minimal packet broadening, need not be
met. In the aN((uo limit (44) becomes

eNuo
xy &xT+w &I (45a)

VI. DISCUSSION

Since time-of-fiight experiments are aimed at
measuring uo, we now must determine how uo is to
be extracted from a current pulse measurement.

First, it is apparent that small packets should be
used to reduce space-charge effects. More precise-
ly, packet sizes obeying aN « uo should be used.
However, the limit aNJ «wouo, which corre-

eN(L —uot)uo
xT (L (xr+wL wo+a¹

Thus a simple test of the observance of the
aN « uo limit is the constancy of the current in
time interval (a). This has been understood by
time-of-flight experimenters. '

Second, it is apparent from this analysis and
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from simple physical reasoning that the only part
of the packet that travels the whole sample thick-
ness I. under drift conditions is the trailing edge.
It begins at t =0, the beginning of the observed
cuffcnt pulse at xy =0~ and fcachcs thc electrode~

xT ——I., when the current pulse returns to zero as
seen from either (44b) or (45b). This fact does not
seem to have been realized by time-of-flight experi-
menters since they have measured the arrival time
as being that instant at which the current pulse has
dropped to one-half of maximum. This makes
their deduced velocity high, but bccausc they have
used small packets and long transit times the error
is small (-1%). Under less favorable conditions,
however, the error could be substantial. %C
should, however, remark that the solution found
here has not considered the external circuit rise-
time and falltime which must be considered in an
experiment. Equation (44) should be regarded as
the current source for that circuit.

Figure 2 presents a plot of the calculated electric
fleld and density at four times during transit for
conditions applying to a particular measurement
made by Norris and Gibbons. Figure 3 plots the
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FIG. 3. Current vs time for conditions of Fig. 2.

resulting current pulse. It is apparent that they
have worked in the small-packet limit where the
space-charge electric field causes only a minor per-
turbation to the applied fleld and where the current
pulse is essentially flat-topped indicating a nearly
constant velocity during transit.

Figures 4—6 show a similar case except that the
total number of carriers in the packet is 20 times
larger. Figure 4 shows the velocity versus time.
The exponential rise in interval (a) is apparent here
because of the larger value of N, while the leveling
off of the velocity in interval (b), caused by the en-
trance of the charge packet into the electrode, can
also be seen. In Figs. 5 and 6 note the greater
packet broadening, the substantial space-charge
field, and the noticeable lack of a flat-topped
current which indicates an accelerating charge
packet.
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FIG. 2. {a) Density vs position at four different
times. The conditions correspond to a particle measure-
ment (Ref. 20), m'here a =8.15&10 m/s, J. =488 pm,
N =5.85 &107, uo ——3.65X10 m/s, and mo ——1.0 pm.
(1) Electric field vs position for the same four times as
in part {a).
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FIG. 4. Velocity vs time for N =11 7&10~ and other

parameters the same as in Fig. 2.
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FIG. 6. Current vs time for conditions of Fig. 4.
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FIG. 5. (a) Density vs position at four different
times. Conditions same as Fig. 4. (b) Electric field vs

position for the same four times as in part (a).

We conclude with a few remarks on the linear
broadening of the charge packet in this geometry
of bulk time-of-flight experiments. Such a simple
dependence would raise few questions were it not
for the comparison to recent derivations' ' ' of the
broadening of charge packets in MOS structures
which is proportional to the cube root of time.
The essential difference in the geometries that

causes this difference in time dependences is the lo-
cation of the image charges of the packet and the
consequent difference in the space-charge fields.
In the MQS structure the image charge resides on
the gate with the electric field lines between it and
the packet forming a capacitor field which is per-
pendicular to the direction of travel. On the other
hand, in the parallel electrode geometry of Fig. 1

the image charge of the packet resides on the two
electrodes, changing its proportion on each one
during the transit, and the electric field joining the
image charge and the packet is parallel to the
direction of travel. Thus the altered space-charge
field causes the altered broadening dependence on
time.
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