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Present theories of the capacity of the metal-electrolyte interface are discussed with
particular emphasis on the contribution of the metal. A unified treatment of the inter-
face is presented in which the potential distribution is calculated from nonlocal electro-
statics. Two models are treated in detail: In the first model the boundary between the
metal and the electrolyte is considered as sharp; it is shown that such a model is difficult
to reconcile with the experimental data. The second model allows for the spill-over of the
metal electrons into the solvent. Rough estimates show that this type of model is more in
line with experimental results.

I. INTRODUCTION

The distribution of the electrostatic potential at
the metal electrode-electrolyte interface, usually re-

ferred to as the "double-layer problem", has been
the subject of electrochemical research, both
theoretical and experimental, for several decades.
This continued interest in this area is due to the
important role which the double layer plays in all

processes of adsorption and charge transfer at elec-

trodes, and its resulting influence on such techno-
logically important processes as electrocatalysis
and corrosion.

In spite of the intensive research in this area, ex-

isting theories of the double layer have taken little
notice of recent advances in the related areas of
solid-state and surface physics. Thus, it is still
customary to consider the metal as a region of con-
stant potential, though it has been known for some
time that metals have a finite screening length
which is only slightly smaller than the thickness of
the Helmholtz layer. Also, the solvent is generally
treated as a dielectric with a permittivity varying
rapidly over the extension of one or two solvent
molecules, a view which is hardly compatible with

contemporary models of dielectrics.
So it seems desirable to introduce modern con-

cepts of the dielectric behavior of metals and polar
solvents into double-layer theory. In this paper we
shall discuss some of the older theories from this
point of view, and propose a new theoretical ap-
proach to the problem, which is based on the con-
cepts of nonlocal electrostatics, a convenient tool to
describe the structure of the dielectric medium.
Thereby we can account for the structure of the
solvent and the electrode in our model in a con-
sistent manner.

Since the introduction of nonlocal electrostatics
complicates the mathematics of the problem con-
siderably, we shall restrict our present work to the
region of small electric fields, where the response
of the system is linear, i.e., to potentials near the
point of zero charge (PZC), and we shall further
assume that there is no specific adsorption at the
electrode.

II. THE GOUY-CHAPMAN-STERN THEORY
AND SOME EXTENSIONS

The classical theory of Gouy, ' Chapman, and
Stern (GCS) is still the basis of most experimental
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1/C =1/CIt+1/Ce . (2.1)

Since region II is free of charge, its capacity CH is
independent of the electrolyte concentration, and is
given by

Eg
Ca 4L (2.2)

where e, is the "effective dielectric constant" of
the Helmholtz layer. The diffuse layer capacity
Cd, in contrast, depends strongly on the electrolyte
concentration. In the region near the PZC, to
which we restrict our consideration, it is:

s&
Cd ——

4m
(2.3)

and theoretical work on the double layer. In order
to set our subsequent calculations into the right
perspective, we shall briefly recall the main points
of this theory.

In the GCS theory the interfacial region is divid-
ed into three parts (see Fig. 1). The metal (region

I, x &0) is treated as a perfect conductor, so that
the electrostatic potential q is constant in this re-
gion. The adjacent layer of solvent molecules con-
stitutes the Helmhotz layer (region II, 0&x &L),
which in the absence of specific adsorption is im-

penetrable to ions and is thus free of charge. The
dielectric properties of this region are supposed to
differ froin those of the bulk electrolyte (region III,
I. &x). In the latter region the potential y is
determined froin the Poisson-Boltzmann equation,
which predicts a roughly exponential decrease of y
with the Debye length, originally introduced by
Gouy as a characteristic parameter.

From the division of the electrolyte into two
separate regions it follows immediately that the in-
verse capacitance 1/C of the double layer splits
into contributions 1/CIt from the Helmholtz layer
and 1/C~ from the diffuse layer in region III:

K is the inverse Debye length of the electrolyte,
which varies with the square root of the concentra-
tion, and es is the bulk dielectric constant of the
solvent.

It should be noted that the Poisson-Boltzmann
equation, on which the GCS theory is based, holds
strictly only at low electrolyte concentrations.
More exact statistical-mechanical treatments have
been attempted (see, e.g., Ref. 4); in the limit of
low electrolyte concentrations they reduce to the
GCS theory, so that Eq. (2.3) can be considered as
a limiting law.

Equations (2.1)—(2.3) can be tested experimental-
ly by studying the capacity as a function of the
electrolyte concentration. The best studied system
is NaF in aqueous solution in contact with a mer-
cury electrode, which very probably has no specific
adsorption. Parsons suggested that a plot of 1/C
vs 1/Cd at various electrolyte concentrations is a
good test of the GCS theory. For the above-
mentioned system one obtains the predicted linear
plot over a broad range of electrolyte concentra-
tions with a concentration-independent part
C~ =20 pF/cm at the PZC. If this is identified
with the Helmholtz capacity C~, one obtains
L/e, =0.3 A. The thickness L of the Helmholtz
layer is usually estimated as I.-=4 A., which gives
for the effective dielectric constant e, = 12, a rea-
sonable value at first glance.

In any case these experiments indicate that there
is a concentration-independent contribution 1/C,
to the inverse capacity of the double layer. An al-
ternative interpretation of 1/C, was given earlier
by Rice. He noted that the electrostatic potential
in the metal is not constant, but varies over a dis-
tance of the order of the Thomas-Fermi screening
length. Consequently, the metal also gives a con-
tribution 1/Cbt to the inverse interfacial capacity
Using a free-electron model for the metal, Rice ob-
tained

(t)(xj
1 |

KTF~eb
(2.4)

0

FIG. 1. Potential distribution at the interface metal-
electrolyte in the GCS theory {solid line) and in a model
allowing for field penetration into the metal {broken
line). Region I: metal; region II: Helmholtz layer; and
region III: bulk electrolyte.

where vTF is the inverse Thomas-Fermi screening
length of the free-electron gas. eb is the back-
ground dielectric constant of the ion cores; Rice es-
timated this as eb =8 from the polarizability of
mercury halides. This value is, however, surpris-
ingly high from the viewpoint of the modern
theory of solids, according to which eb is associat-
ed with fast interband transitions. For simple me-
tals like mercury we should expect eb to be of the
order of unity. (See Note added in proof) Only for



TABLE I. Experimental values for the inverse capacities 1/AC+ and calculated values
for the Thomas-Fermi screening lengths of several metal-mater interfaces. The data for C
were taken from Ref. 29, xo

' was calculated from Ref. 30.

Metal

(A) 0.37

(A) 0.49

0.3

0.508 0.488

0.17 0.07

0.505 0.546 0.526 0.502

semimetals like bismuth with a small gap, or for
certain transition metals with small, closely lying d
bands, can es reach values of 10 or so. In Table I
we give the Thomas-Fermi lengths and the experi-
mental values of 1/4IIC, for several s-p metals of
electrochemical interest. An inspection shows that
Rice's formula is at variance with the experimental
data: It generally predicts too high values for the
inverse capacity; particularly the data for Ga, In,
and Cd are much smaller than one would calculite
from Eq. (2.4). Also, the experimental data show
no obvious correlation between the inverse capacity
1/4rrC, and e&. While the liquid metal mercury
and the semimetal bismuth have about the same
value of I/4IrC~, we would expect their back-
ground dielectric constant es to differ considerably,
as outlined above.

We are thus faced with a paradox. From a
theoretical point of view it would be reasonable to
combine the work of Rice with the GCS theory
and postulate three contributions, 1/C, 1/C~,
and 1/C~ to the inverse capacity, of which 1/CsI
and 1/CII are concentration independent. Howev-
er, such a theory, although physically plausible„
contradicts the experimental data, since
1/C~+1/CII is considerably greater than the ex-
perimental value 1/C, .

Most research workers in this area have taken
the view that the Helmholtz capacity akne gives
C, . The main argument for this point of view
comes from the strong potential dependence of C,
observed experimentally. The metal capacity as
given by Eq. (2.4) is practically independent of the
electrode potential while the Helmholtz capacity
C~ depends on the applied potential through the
effective dielectric constant c„which depends on
the potential through saturation effects.

Still, the situation is far from satisfactory since
it is not at all clear why the metal should give no
contribution. A tentative explanation for this was
offered by Mott and %atts-Tobin, "mho suggested
that the boundary between the metal and the elec-

trolyte is not abrupt, but that there might be some
interpenetration between the electrons and the sol-
vent molecules. However', this idea, which 'would
modify the current views of the Helmholtz layer,
was not pursued further. Later work in this area
has mostly concentrated in constructing more de-
tailed models for the Helrnholtz layer (see, e.g.,
Refs. 12 and 13). While such work has led to a
better understanding of the potential dependence of
C~, it has Qot been able to Iesolve the paradox dis-
cussed above. Instead, this problem has generally
been ignored.

III. A NONLOCAL ELECTROSTATIC MODEL
%PITH A SHARP INTERFACE

A. Basic equations

In the following two sections we shall calculate
the interfacial capacity from a nonlocal electrostat-
ic model. %e are thus interested in the electrostat-
ic potential as a function of the external charge on
the electrode. Nom, it is mell known in electro-
chemistry, that due to the presence of solvent di-
pole layers, the electrostatic potential in the inter-
facial region is not zero or constant at the potential
of zero charge. Physicists generally tend to ignore
this fact ' for the reason that it has no effect on
the capacity. %e shall follow the physicist's prac-
tice here; this means explicitly that in the follow-
ing we denote by p(x) the elle:tro. tatic potential
minus its value'at the pzc. The corresponding con-
vcIltloI1 ls used fol' tllc fields E(x) alld D(x).

In nonlocal electrostatics the dielectric displace-
lllcllt D(x) ls llot slnlply ploportlollal to tllc clcc-
tric field E(x) at the same point, but depends also
on the electric field in the neighboring region

D(x)=J e(x,x')E(x')dx', (3.1)

where c(x,x') is the nonlocal dielectric function of
the medium that correlates the displacement and
the field at different points in space, and thus re-
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fleets the structure of the medium. Since, in our
case the electric potential varies only in the x
direction, we need to consider the one-dimensional
case only.

Since the system metal-solvent is not homogene-
ous, the dielectric function e(x,x') depends on x
and x' separately, while in a homogeneous phase it
is only a function of

~

x —x'
~

. In this section we
assume that the metal and the solvent are separat-
ed by a sharp interface, so that e(x,x') correlates
only points belonging to the same subsystem. So
the dielectric function separates into two parts, e~
for the metal and e, for the solvent, with the pro-
perties

eM(x, x')+0 only if x &0 and x' &0,

e, (x,x')+0 only if x &0 and x'&0 .
(3.2)

As in ordinary electrostatics, the potential P(x) is
obtained by solving the Poisson equation, which
now reads

d ",dPe(x,x'), dx'=4irp(x) . (3.3)

=K0$(x)e(x L) for x & 0—, (3.4)

where Kp is the inverse Debye length for an electro-
lyte with a solvent dielectric constant of unity.

For the metal we incorporate the screening effect
of the free electrons into the dielectric function. In
this convention the metal is charge free, so that its
dielectric displacement DM is constant:

f eM(x,x ),dx
0

=—D~ ——const for x &0. (3.5}

Equations (3.4) and (3.5) must be supplemented by
boundary conditions. If U is the total potential
drop across the interface, we have

P( —m)=U, P(m)=0, (t(x), D(x)

continuous at x =0 as boundary conditions. They
determine a unique solution of the integro-
differential equations.

We can use the condition of continuity of the
dielectric displacement to derive a useful expres-
sion for its value DM in the metal in terms of the

For a sharp interface this equation splits up into
one equation for the solvent and one for the metal.
For the solvent we use a modified GCS model.
The Poisson equation then takes on the form

f e, (x,x'), dx'd ",d((

potential in the solvent. Combining Eqs. (3.3) and
(3.4), and integrating once, gives

DM a f——dxg(x) . (3.6)

The inverse capacity I/O of the interface is then
determined from

47rU

DM
(3.7a)

B. The solvent capacity
in the limit of small Kp

Since the Poisson-Boltzmann equation, on which
our present treatment is based, applies strictly only
to low electrolyte concentrations, we shall restrict
ourselves to this case, thereby reducing the com-
plexity of the problem. Specifically, we assume
that a. ' is greater than both the thickness L of the
Helmholtz layer and the characteristic decay
length of the dielectric function e(x,x'), which we
denote by 1,. As far as e(x,x') is concerned, we
shall keep our treatment quite general.

Under these conditions, Eq. (3.5) for the poten-
tial in the solvent can be solved by means of the
singular perturbation technique that is, we seek a
solution of the form

P(x) =$(0) g [a"y„(x)+a" '4„ i(xx)],
a=1

(3.g)

where the functions q&„(x) are exponentially small
in the region x -a ' and the %'„(ax}are almost
constant at x=l, «~

Substituting Eq. (3.8) into (3.5), and equating
terms with the same order in v, we obtain a series
of equations for y„and 4„. These can be solved

by considering separately the regions of small x
and large x, and matching the solutions in the in-
termediate region. This procedure is carried out in
Appendix A, where the solution is derived explicit-
ly up to the order of ~ . The resulting expression
for the solvent capacity is:

1

AC,
l +L +I —rK+0(K2)
sK 6s Es

(3.9)

where / is a length characteristic for the range of
the spatial dispersion of the dielectric function and
I is a constant; both l and I are defined in Ap-
pendix A.

It splits up into a metal and a solvent contribution:

4n'[ U —$(0)] 4m $(0)
M D ~ s D

(3.7b)
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The first term is simply the capacity of the dif-
fuse layer as in the GCS theory. The second term
contains both the capacity of the Helmholtz layer
and a contribution due to the spatial dispersion of
the dielectric function. It is interesting to note
that up to this order in a, the latter term is simply
that of a capacitor with a plate separation l. Note
also that in contrast to Eq. (2.2) our result contains
the bulk dielectric constant e, in the concen-
tration-independent term. The third term predicts
that in the plot of 1/C vs 1/Cd a deviation from
linearity should be observed for large a, i.e., for
large concentrations or small values of I/Cq. A
deviation of this kind has indeed been observed ex-
perimentally in some cases, e.g., by Parsons and
Zobel for the interphase between mercury and an
aqueous solution of NaH2PO4. However, since this
deviation occurs at high electrolyte concentrations
of the order of 1 M, where our theory may no
longer be adequate, it is not certain that this is the
effect predicted by our Eq. (3.9). For a given
dielectric function of the solvent, the capacity C,
can thus in principle be calculated, the concentra-
tion independent term being given by the second
term in Eq. (3.9). In Appendix B this is demon-
strated for a simple model function, and the order
of magnitude of C, is estimated. These results are
further discussed below.

C The metal capacity
in the specular reflection model

We noted above that in the presence of a boun-

dary the dielectric function eM(x, x') of the metal
differs froin the bulk function @sr(x —x'}. A use-

ful model, which approximates the former through
the latter, is the assumption of specular reflec-
tion'

d ~, , dP(x')dx'e~(x —x'), =0 .
dx dx

(3.12)

We split E(x —x') into its local and its nonlocal
part

eM(x x')—=eh 5(x —x') +e(x —x') (3.13)

and extract the constant part U from the potential

y(x) =P(x)—U . (3.14)

(3.16)

where e~(k) is the Fourier transform of
pM(x —x'). At the interface we have in particular

q)(0) =P(0)—U = ebp'( —0)LM, — (3.17)

1 dk 2 f dk
—~ k2EM(k) ~ "0 k e~(k)

(3.18)

has the dimensions of a length. In the second step
of Eq. (3.18) use has been made of the fact that
eM(k) is an even function. In our model the
dielectric displacement D of the metal is constant.
It is conveniently evaluated at the interface x =0;
here the nonlocal part of e(x —x') cancels, so that

Substituting these definitions into Eq. (3.12) and
integrating by parts gives

@by"(x)+I dx'e(x —x')y" (x') =2@(x)y'( —0) .

(3.15)
This equation is easily solved by Fourier transfor-
mation. Taking account of the discontinuity of
q'(x) at x =0, we obtain

Esr(x,x }='EM(x —x ) —&sr(x +x ) ~ (3.10)
D =ebq)'( —0) . (3.19)

P(x) for x & 0

P( —x) for x &0. (3.11)

Substituting Eqs. (3.10) and (3.11) into our basic
equation (3.4) for the metal, we obtain

This is a reasonable model for a medium with a
sharp interface. We shall use it to derive a simple
expression for the capacity of a metal electrode
with an arbitrary bulk dielectric constant. For this
purpose it is convenient to extend formally the
electrostatic potential P(x) in the metal, which is
defined on the negative axis x &0, to the right by
the definition

This gives for the inverse capacity the suq risingly
simple result

(3.20)

Th~s characteristic length I.~ has been studied
in different physical contexts and has been calcu-
lated for various model dielectric functions includ-
ing those of Lindhard, Hubbard, and Sham (see
Ref. 20). A particularly simple expression is ob-
tained in the Thomas-Fermi approximations,
which give
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(3.21)

1 ~ I +l
M+ (3.22)

If we compare this result with the experimental

value for the mercury-sodium fluoride system at
the pzc, we are once again faced with the paradox
discussed in Sec. II: The predicted value is too
big. For mercury we have I.~-0.5 A, taking

es =1. The extension of the Helmholtz layer is
about 1.=4 A so that I./e, =0.05 A. The contri-
bution l/e, due to space dispersion is estimated in

Appendix 8; the smallest reasonable estimate is

l/e, =0.2 A. This gives a theoretical estimate
which is more than twice as large as the experi-
mental value I/AC, =0.3. A.. Moreover, this
discrepancy is not only found with mercury, which

according to Bloch and Rice~' might have
anomalous surface properties. In Table I we com-
pare experimental values for the inverse capacity
1/AC~ of several electrode systems with the
Thomas-Fermi lengths, and in all cases the latter
are bigger.

It is difficult to see how the theoretical estimate
derived from our model could be made smaller.
One escape mould be to postulate a larger back-

ground dielectric constant eb for metals, say
es = 10 for Hg, or es =50 for Ga. Since such high
values are not realistic for bulk metals, they could
only be due to a surface effect. This could be en-

visaged in such a way, that the screening of the
electric field is largely effected by the tails of the
electronic wave functions spilling over the
geometrical surface of the metal. In this region
the first layer of solvent molecules would contri-
bute to the background dielectric constant e~, and
could well raise it to the required order of magni-
tude. Such a picture is, however, not consistent
mith a sharp interface between the metal and the
electrolyte as we have assumed in this section. So
our above estimate indicates that a sharp interface
model is not applicable to the mercury-water and

where x~F is the inverse Thomas-Fermi screening
length for a free-electron gas in vacuum. Both this
and the other models mentioned give similar values
for II, which for simple metals lie in the region
of 0.3—0.8 A.

D. Discussion

Combining the results of Secs. III8 and III C,
the concentration-independent part of the inverse

interfacial capacity is

to the other metal-water interfaces given in Table
I.

For other solvents the situation appears some-
what more favorable. For instance, for a solution
of sodium fluoride in acetonitrile in contact with
mercury, the experimental value (Ref. 22) is
1/4n C, =0.6 A, which could just be reconciled
with the above estimate. However, since in these
estimates we took the smallest possible values for
the contributions to the inverse capacity, some de-
viation from the sharp interface model is likely
also in this case. So it seems necessary to lay the
foundations of a model with a diffuse interface, al-

lowing for a spilling over of the metal electrons
into the solvent. This will be done in the next sec-
tion.

IV. THE MODEL WITH
A DIFFUSE INTERFACE

During the last decade the structure of the
metal-vacuum interface has been investigated in-
tensively from a theoretical point of view. The
variation of the electronic density p, (x) near the
metal surface was calculated within various ap-
proaches. It was shown that outside the positive
ionic background p, (x) drops to zero over a dis-
tance of several angstroms. Both the linear and
the nonlinear response of the electronic density to
an external electric field were analyzed. 23 In
particular the influence of the electronic tails on
the capacity of the interface was considered; the re-
sults varied only little from that for the usual
model with a sharp surface. The main effect is
that the effective surface is shifted somewhat with
respect to the first layer of the ionic cores.

A theoretical description of the metal-polar sol-
vent interface is considerably more difficult. No
attempt has yet been made to calculate the elec-
tronic density of the metal and its penetration into
the solvent. The exphcit form of the dielectric
function e(x,x'), in the interfacial region, is un-
known. Therefore, in this section we shall make a
general analysis of the capacity in terms of the
general properties of e(x,x'), using concrete model
functions only for illustration.

We describe the dielectric properties of the sys-
tem metal-electrolyte by a single dielectric function
e(x,x'). Far from the interface, e(x,x') reduces to
the dielectric function of the solvent and the metal,
respectively; and in the interfacial region, it de-
pends strongly on the properties of the boundary.
In this general case, our basic relations (3.11) and
(3.3) remain valid, while the Poisson-Boltzmann
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equations (3.4) and (3.5) are combined into one
equation:

e(x,x'), =Kop(x)8(x L)—. (4.1)
co

1 forx&0
e(x)= . e, for 0&x &L

e, for x&L .
(4.6)

1 1 R a s+———(2R, +—)
4&c 6'K 6' 6 4

(4.3)

where thc characteristic length R of thc system ls

given by

I dx'ee '(x,x') —8(x —L.)

(4.4)

and 8 i is defined in Appendix C.
For illustration we consider the following simple

model, in which

Similarly, the inverse dielectric function c' '(x,x')
is now defined through

J e(x,x')e '(x', x")dx'=5(x —x") . (4.2)

The boundary conditions are the same as before.
Equation (4.1) is solved in Appendix C for the case
of a large Debye length of the solvent by an itera-
tive method. The resulting capacity is

This gives the following expression for the inverse

capacity:

1+6, tanh
1 Eg

0
K ~yg KL

1+@, tanh

(4.7)

V. CONCLUSIONS

The physical meaning of this model is that the
electronic density of the metal extends a distance L
into the solvent, which in this region has an effec-
tive dielectric constant e, . This leads to an appre-
ciable reduction of the inverse capacity I/O,
which is illustrated in Fig. 2. Of course, this
model is too simple to be a realistic description of
the interface, but it shows that the penetration of
the metal electrons into the solvent leads to the
desired reduction of the constant part of the in-

verse capacity.

e(x,x') = c(x)5(x —x')

—J Ko8(L —x")dx", (4.5)

In our work above we have treated the interf~~~
metal electrode-liquid electrolyte by the method of
nonlocal electrostatics, and obtained expressions for
the concentration-independent part of the interfa-

1.0

0.8

0.6

0.4

0 ~ 2

0.00.0 1 ~ 0 2 ~ 0

log to g,
FIG. 2. The normalized inverse capacity a /AC+ as a function of the effective dielectric constant e+ according to

Eq. (4.7) for three different values of K L: (1) K L = 1; (2) KOL =3; (3) K L =5.
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cial capacity. The main advantages of our model

over the exisiting theories are:
(1) It represents a unified formalism by which

we can treat both the two bulk phases and the in-

terface.
(2) It is a convenient means for taking the struc-

ture of the system into account.
(3) It avoids the dubious concept of a dielectric

constant varying rapidly over a distance of several

angstroms.
(4) The corresponding concept has been used

successfully in solid-state and surface physics, so
that our treatment forms a bridge to these closely
related subjects.

A disadvantage of the method is its relative
mathematical complexity, which restricted our
present work to potentials near the PZC and to the
limit of small electrolyte concentrations. The cru-
cial quantity in nonlocal electrostatics is the dielec-
tric function e(x,x'). While for a bulk metal and a
bulk solvent reasonable models for this function
exist, only little is known about its behavior in the
interfacial region. We have therefore attempted to
keep our treatment quite general, and used specific
model functions for e(x,x') only to obtain numeri-
cal estimates. Ultimately, such an explicit expres-
sion for e(x,x') must come from a microscopic
model of the interface.

In the first part of our work we have made the
assumption, inherent in practically all theories of
the double layer, that the metal and the solvent are
separated by a sharp interface. The most impor-
tant conclusion which we draw from this study is
that such a model is incompatible with the experi-
mental data. This result is largely independent of
the models which one takes for the subsystems.
For all the various approximations to e(x,x') of
the metal which have been used in solid-state phys-
ics the contribution of the metal to the inverse
capacity is too large. So a realistic model of the

interface must allow for a diffuse interface, which
lets the metal electrons spill over the geometrical
surface and interact with the solvent molecules. In
Sec. IV we have presented a general framework
which can take such effects into account. Such a
model will give interfacial capacities which are
more in line with the experimental results for the
following reason. When the electronic tails
penetrate into the solvent over a distance of 1 —3
A, then the shielding of the electric field by the
electrons occurs in a region where the presence of
the solvent molecules provides for a relatively high
background dielectric constant. Thus the contribu-
tion of the metal electrons to the inverse capacity
is considerably reduced and brought closer to the
experimental values. While we think that these re-
sults are important, a detailed, quantitative theory
of the interphase is still lacking. For this it is
necessary to go beyond the phenomenological ap-
proach, which we have used here, and to construct
a quantum-mechanical model of the interphase on
the microscopic level. This seems no easy task.
While for metals and metal surfaces reasonable
quantum-mechanical models exist, the electronic
properties of solvents are understood to a far
smaller degree. We hope that this work points the
way in which future research should be directed.

Note added in proof. eb of mercury has recently
estimated as 2 [see G. W. Ford and W. H. Weber,
Surf. Sci. 110, 1.587 (1981)].
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APPENDIX A: CALCULATION OF THE POTENTIAL BY
SINGULAR PERTURBATION THEORY

Substituting Eq. (3.8) into (3.4) gives

00 00 00 00I dx e(x,x )[Ip+(x )+g+ ~(Kx )]=ee(x L) g + tn ——2(x)+ g lr /pe —2(ax)
dx

Pl =3 7l =2
(Al)

We shall consider this equation separately in the regions of small and large x.

1. x Qlq g(K
The main contributions to the integrals come from the region x'&i, «a '. Therefore, the 1b„ in Eq.

(Al) can be expanded into a Taylor series about ax =0. Equation (Al) is then reduced to
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f dx'e(x, x')y'„(x')+ g g — g„' +, "(0) f dx'x'~e(x, x')

00 00 00 n +ttt
=e8(x —L) g ~"q„,(x)+ g g, 1(( ',(O)x

n=3 n =2m =0
L

~ (A2)

This can be split into a series of equations by equating terms with the same power in ~. We ~rite down the
first two equations explicitly:

CO 00f dye(xy)yi(y)+Co(0) f dye(x, y)=0,

d 00 00f dy&(x,y)yj(y)+1('|(0) f dye(x, y)+pp'(0) f dye(x, y)y =e8(x —L)gp(0) .

(A3)

2. X K
—1

K n 2KX
n=2

The first three equations in powers of a are

(A6)

In this region the y„ functions are small and can
be neglected. The main contribution to the in-

tegral comes from the region close to x, where

i
x —y i

(I,. Therefore, the g„can be expanded
about the point ~x. Also, we note, that for
x,y» I, we have e, (x,y) =e, (x —y), since the ef-

fect of the boundary is no longer felt. From this it
follows that the moments

f dye, (x —y)(x —y) =f dye, (y)y—:M™,
(AS)

are constants. In particular, M' '=e„and all odd
moments vanish, since e(x) is an even function.
Taking these considerations into account, we ob-
tain for the potential:

00 00 ~(2k)n+2k+I y{2k+2)( )
n = i k =o (2k).

(A1S)

The constants Co and Ci can be found from the
values of the integrals at infinity. We have

lim f dy e(x,y)q&i (y) =0,
x~m

lim f dye(x, y)dy =xe,
x~~

(A16)

so that

From (Alo) —(A12) it follows that

gp(0) = —Pp(0) = —go(0), g', (0)= —P,(0) .

(A13)

Let us return to Eqs. (A3) and (A4). Integrating
once and using (A13), we obtain

f, dye(»y)yI(y) =So(0) f, dye(x, y)+C, ,

(A14)

f dy e(x,y)q2(y) = 1(i(0)f dy e(x,y)

—gp(0) f dye(x, y)y

+e8(x L)(x —L)gp—(0)+Cl .

Pp' (ax) =Pp(ax),

PI'(ax) =1t i(ax),

(A7)

(AS)

Co = —e1(jp(0) Ci = —equi(0)+eLpp(0)

(A17)

P2'(xx) =$2(ax) Qp' '(ax) . —
26'

Their solutions are

4o(y) =Co(0)e

1(,(y)=g, (0)e ~,

$2(y)= $2(0)+gp(0) y e ~.
4e

(Alo)

(Al 1)

(A12)

We now apply the inverse dielectric function
e, (x,x') defined by the relation:

f dx e, '(x",x)e, (x,x')=5(x' —x"), x',x")0.
(A 1g)

p', (x)= —1('o(0) f dy [e, '(x,y)e 5(x —y)],—

(A19)
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q&z(x)= —f,(0) f dy[e2 '(x,y)e 5—(x —y)]+tPp(0) f dy I e, '(x,y)a[LB(L —y)+yB(y —L)]—y5(x —y) I .

(A20)

At this point it is convenient to introduce the following notations:

l(x)= f dx" f dx'[e, '(x",x')e, —5(x"—x')],
I =/(0),

S(x)=f dx" f dx'I e, '(x",x')e, [x'B(x' L)+—LB(L —x")]—x'5(x' —x")I,
S=S(0),

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)

1 m 2, 1 de, (k)
s =— dyy2e, (y =x —x')= ——

2
Ez

—~ Es'dk k p

t= f l(x)dx .

With the aid of these definitions the terms for the potential can be written in a concise form. Integrating
Eqs. (A19) and (A20) over x gives

q|(x)=fp(0)&(x),

g2(x) =$|(0)l(x)—fp(0)S(x) .

(A27)

(A28)

The equations (A10)—(A12), (A27), and (A28), together with Eq. (3.8), determine the distribution of the
electrostatic potential p(x), which is expressed through the dielectric function e(x,x ) and the still undeter-
mined constants P„(0). The latter can be determined by considering Eq. (3.8) at the point x =(), which

gives

fp(0) =1,
f)(0)=—yl(0) = —l,
$2(0)=—q)g(0) =I +S .

Inserting these terms into Eq. (3.8), we obtain for the potential up to second order:

(A29a)

(A29b)

(A29c)

p(x)=p(0) lcl(x) sc [ll(x)+—S(x)]+e ~
1 ltI+QI2+p—

4
(A30)

In order to calculate the corresponding capacity we next require the dielectric displacement D~ in the meta
which according to Eq. (3.6) is obtained from the potential by integrating over x:

L2
Dst cap(0) 1 ———«(I+L)+tr I ~S+lL + +t+ — +O(a ) .

2 4
(A31)

Making use of Eq. (3.7b), we obtain finally for the capacity of the solvent:

1 1 I+L I+ ——«+O(a ),
4~C, e a e, e,

where

I =y+s/4=S+t , L Ll+s/4, ———

(A32)

(A33a)

(A33b)y=S+t ,L Ll = f dx—f—d—x'+ f dx' f dx (x' L)[e,e, '(x,x') —5(x —x') . —
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APPENDIX B: THE SOLVENT CAPACITY C,
IN THE SHARP INTERPHASE MODEL,

CALCULATED FOR A MODEL
DIELECTRIC FUNCTION

1

4m.C,

1 L 1 1 —8
1 —— A

sK &s ~s 2

e(x,y) =e(x —y) —pe(x +y),
x,y &0, 0&p&1 . (81)

This is somewhat more general than the specular
refiection model used in Sec. III C, which

corresponds to p=1. For the physical meaning of
this approximation, and particularly of the reflec-
tion coefficient p, we refer to Ref. 27.

A simple but useful model function for the
dielectric function e(x —y) of the bulk solvent is

the Inkson model. In the one-dimensional case
this reduces to

As an illustration of our general equations (3.17)
for the solvent capacity we consider a model, in
which the dielectric function e(x,y) is expressed
through the corresponding function e(x —y) for
the bulk solvent in the form

+aA 1 ——[—,—(1—e)e "] .
&s

(86)

We are particularly interested in the contribution
C,"of the space dispersion to the concentration-
independent part C, of the capacity. Making use
of the fact, that generally e, &g 1, and 0 &p & 1, we
obtain the relation

1—— A&A . (87}A 1 1 1 —8
e 4n C~'

The correlation lengths of solvents generally lie in
the region of 2 —10 A, the minimum value being
determined by a molecular diameter. Thus the
smallest reasonable estimate for the contribution of
the space dispersion is

(88)

e(x —y) =5(x —y)+ exp
e—1 fx —y/

2A e A e

(82)

APPENDIX C: ITERATIVE SOLUTION
FOR THE POTENTIAL IN A SYSTEM

WITH A DIFFUSE INTERFACE

e '(x,y) =5(x —y) — 1 —— ( e
1 1

e 2A

~ee —x+y/A)

(83)

where

e= ~e—1 —p(~e+ 1)
v e+1—p(V e—1)

This gives for the characteristic parameters I, y,
and s

(84)

where A is the characteristic correlation length of
the spatial dispersion. The inverse dielectric func-
tion for (81) and (82) is

(Cl)

where

D = lim D(x),

x'e-' x,x' D x',
dx

P(x) = U+ f dx'P'(x') .

We shall again consider the regions of large and
small x separately.

(C2)

(C3)

We shall now derive an expression for the capa-
city in the model with a diffuse interface restrict-

ing our treatment again to the case of large a
For this purpose it is convenient to rewrite our
basic equations in the following form:

D(x)=D —ea f dx'P(x'), x ~1.

I =(e, —1) A,1 —e (85a} 1. The region of large x

s =2(e, —1}A

y= —(e—1)A [1—(1—e)e /"] . (85c)

At x -a. ' we may expand P'(x') about x:

P'(x') =P'(x)+(x —x')P"(x)

The corresponding expression for the capacity is + —,(x —x') P"'(x) (C4)
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and e(x,x') may be replaced by the bulk solvent
dielectric function e,(x —x'). Equation {4.1) can
then be written in the form

obtained by neglecting the integral in (Cl) and set-
ting Do(x )=D const. Substituting this value into
Eq. (C2) gives

tI)"(x)+—P' (x)=» P(x),
2

(c5} 0o(x)= D—f dx'e '(x, x') .'

where s has already been defined in Eq. (3.13). For
s» &~ 1 the solution of this equation is

P(x)=1( exp[ —»(x —L)(1—»zs /2) '~2]

»» (x—L)2
=t/i 1 —{x—L)» 1 ——s +

It is convenient to introduce the function

g(x)= f « '(x,x')dx' —8(x L) .—

This is now substituted into Eq. (C7). After in-

tegration we obtain for the zero-order approxima-
tion

Po(x) = U ——(x —L)+—[R (x)—R], (C9}
8 D

g is an undetermined constant, which will be ob-
tained by matching this solution with the one for
short distances.

R {x)=f dx' g(x'), R =R ( —ao } . (C10)

2. The region of small x

For x ~g» ' we solve the system of equations
(C1)—(C3) by iteration. The zero-order solution is

The next-order approximation is obtained by sub-
stituting (C9) into (Cl), and subsequently into
(C21) and (C3). After some straightforward but
tediogs calculations we obtain the following as-
symptotic expansion for P~(x) in the region
I ggx gQK

Pi( )x=U(1+R»i) ——R —» Ro f dxR(x)+ R2+» RR—
&J 2

+»2 f dx" f dx'« '(x",x') f, duR(u)

—(x L)—1 —» — dx'R(x') ——s +0(x —L)
L 2

(Cl 1)

R„=f dx gn(x)

1 for n=0
g.(x)=f dx'« '(x,x')(x' L)" 8(x —L)X—x —L, for n =1-

(x L) s for n =—2—
L

3. Matching the solutions

The solutions (C6) and (C12) are now matched by equating the coefficients with the same power in
(x L). Considering t—he zero and first order terms we obtain:

r

Q=U(l+» R, )——R »Do f dxR—(x)+» RRi+ —Rz+» f dx ' f dx'« '(x",x') f, dxR(x)

(C13)
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1 —z xRx —z 2s = s'il — 4s (C14)

These two equations determine the unknown constants g and D. The resulting expression for the inverse

capacity is

1 U 1 R+———s/4+Rt+ I R(x)dx +0(tt ) .
4mC D ex e e .

For the special case of sharp interface this result reduces to that derived in Appendix A.
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