
PHYSICAL REVIE% 8 VOLUME 25, NUMBER 8 15 APRIL 1982

Theory of electromigration in noble and transition metals

Ra~u P, Gupta
Centre d Etudes Nucleaires de Saclay, Section de Reeherches de Metallurgic Physique,

Ã18 Gif sur y-ver-te Cedex, France
(Received 21 September 1981)

%C have used the scattering theory and the muffin-tin approximation to evaluate the

clcctron %'1nd force acting on Rn atom 1Q an clectr1c flicld. %1thIQ thc relaxation"time ap-

proximation, the force depends in an intricate manner on the nature of the Fermi surface,

the electronic wave functions, the Fermi velocities, and the host- Rnd the solute-metal

phase shifts. The formalism is general and applicable to both simple and transition met-

als. The effective valences for several solutes in noble-metal hosts have been evaluated.

It is shown that in general the effective valence cannot be related to the residual resistivi-

ty of a solute, even for host metals which have nearly spherical Fermi surfaces but non-

negligible phase shifts at the Fermi energy. However, for a jellium matrix, the electron

wind force is directly proportional to the residual resistivity; this is a result which has

been obta1ned here, with1n the framework of the Boltxmann equation, from a nonlinear

calculation of thc impurity potcnt1al.

I. INTRODUCTION

When a constant electric field is apphed to a
solid there is a force exerted on the atoms by the
electric field which causes the transport of atoms.
This force is in addition to the one which already
exists in the absence of the electric field due to the
concentration gradient of point defects. The elec-

tric field exerts the force on the iona in two ways:
First, there is a direct electrostatic force on the
ions. Second, the electric field causes a slight
change in the distribution function of the Fermi
electrons. This is proportional to the electric field
and exerts an indirect e1ectronic or polarization
force on the moving atom. In most cases this is
the dominant contribution to the driving force for
electromigration. The contribution of this elec-

tronic term was first calculated by Bosvieux and
Friedel' within the Born approximation in a
pioneering work some 20 years ago. They also cal-
culated the residual resistivity of the solute within

the same approximation and showed that the elec-
tronic contribution to thc driving force could be re-

latixl directly to the residual resistivity of the
so1ute. Sorbc11o and Gcnoni and Huntington
have fcccntly Used thc pscudopotcntial method

[within the one and two orthogonalized-plane-wave

(OPW) framework, respectively] to estimate this
contributioIl 1n simple IIlcta1S. %c remark in th1s

connection that in the cases where the perturbation
created by an impurity or a defect is not weak, the
screening of the defect is unlikely to be treated

properly %'It41n thc 11ncaI'-scfccIllng appfoxlmatlon.

In this paper we propose a new method, based
on flic muffin-tin approxiiilatioil, wliicli allows
the calculation of the effective valence for simple
as well as transition metals. Section II is devoted

. to the calculation of the force on the moving atom
and it is shown that, except for a free-electron me-

tal, the force cannot be expressed in terms of its
residual resistivity. In Sec. III numerical ca1cula-
tions for noble-metal-based alloys are presented
and concluding remarks are given in Sec. IV.

Within the Born-Oppenheimer approximation,
the force, F(R), exerted by the electron gas on an
atom situated at R, may be written as

where 1t)k is the Bloch function of an electron with
wave vector k and band index n (k —=k, n), V(r)
the screened potential at r, and f(k) the Fermi dis-
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f(k)=fo(k)+g(k),
aj,(k)

g(k)= e~(—k)Vk E
aE

(2)

where fo(k) is the Fermi distribution function in
the absence of the electric field, w(k) is the relaxa-
tion time due to scattering by phonons, and Vk is
the electron group velocity. The force due to the
electric field is governed by the function g(k) in
the Fermi distribution function. At low tempera-
tures when the Fermi surface is well defined,
dfzldE is a 5 function and the component of the
force exerted by the electric field in the direction
of the electric field at an atom situated at the ori-
gin may be written as

2Qp dSkI er(k)Vk E
8m'3 Fs p'kEk

X J d r Pk(r)Pk(r)

X(.- E)"""'
dr

where Qp is the unit-cell volume and the integra-
tion in Eq. (4} is over the Fermi surface. Hereaf-
ter, Rydberg atomic units (e =2, Pi= 1, m = —,)

will be used.
We now make the muffin-tin (MT} approxima-

tribution function which in the presence of an elec-
tric field, E, may be written, within the linearized
Boltzmann-equation approximation as

tion in which the whole crystal is divided into
touching spheres (muffin tins) and the potential
outside these spheres (the interstitial region) is as-
sumed constant. within the augmented-plane-
wave (APW) formalism, the wave function inside
a MT sphere can be written as

Qk(r)=, ~ gi Ai (k)YI (r)RI(k, r))i j2 Nl

where

Ai~(k) = g Ji(ksR ) Y(~(ks )

with ks=k+g. Here as(k) are the coefficients of
expansion of the wave function which can be readi-
ly obtained in an APW calculation, jI is the spheri-
cal Bessel function, Yi~ the spherical harmonics,
and Ri the radial wave function which, of course,
depends on k only through the energy Ek. RI is
normalized so that at the MT radius 8,
Ri(k,R)=1. g denotes a reciprocal-lattice vector.

The form of the wave function given in Eq. (5)
results in a considerable simplification of the in-
tegrals occurring in Eq. (4), and one finds

dSkF= I er(k)Vk. E I(k), (7)
k k

where

R
I(k)= —g &i + A~~(k)Ap~ (k) I dr r Ri(k, r)Ri(k, r)

" f dr Y~~(r)Yi~ (r)cos(},
1m l'm' dr

where we have assumed the field E to be in Z direction and cos8=r-E. The integral over the solid angle,
dr, can be easily evaluated using the Clebsch-Gordan coefficients, ' and is given by

' 1/2 ' 1/2

I dr +/pfg ( ) Ypffg (r }cose='l,
1

5p, i i5yJg'yg + l, 5p i+ i5fJg'yg ~

{l—m)(l+m) (l —m +1)(l+m +1)
2l+1 2l'+1 ' 2l+1)(21'+1)

(8)

Since the potential outside the muffin-tin sphere is constant the radial wave function in the interstitial re-
gion may be expanded in terms of the spherical Bessel (ji } and Neumann (ni) functions,

1
Ri(k, r)= [ji(kR)cos5i(E) —ni(KR)sin51(E)],

where

N&{K,R)=ji(KR)cos5i(E) —ni(KR)sin5i(E),
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K=v E, and 5i(E) is the phase shift of the muffin-tin potential V(r) evaluated at the energy E. With this it
is easy to show using the Schrodinger equation (see Appendix A for the derivation) that

d V sin[5'+, (E)—5i(E)]
riRi(k, r)Ri+i(k, r)

dr Ni K,R Ni+i K,R
(12)

I/2
8 ~ (1—m+1))1+m+1)

(21 +1)(21+3) sin(5i+i —5i)1m[At {k)Ai+i, {k)1
1 7+1

(13)

Pi=A+0'u~ . (14)

The scattered wave can be expressed in terms of
Henkel functions hi =j~+in',

where Ni and Ni+ i are the values of Ni(K, R) and

Ni+ i(K,R), respectively, evaluated at the Fermi en-

ergy Er, and Im denotes the imaginary part of the
function. Equation (7) in conjunction with Eq.
{13)thus gives the electronic contribution to the
force on an atom of the matrix in its normal stable
position. By using the properties of spherical har-
monics it is easy to show that this force vanishes.

To calculate the force Fs on an impurity atom
in substitutional position one needs to calculate the
electron wave functions in the presence of the
solute potential V (r}. We neglect here the size ef-
fect of the solute and assume the potential to be
zero outside the muffin-tin sphere. Following or-
dinary scattering theory"' the wave function gx
inside the muffin-tin sphere can be written as a
sum of two terms, the wave function g» of the un-

perturbed lattice and an outgoing spherical wave

Pg = gi A(~(k)Ri (k, r)Yi~(r),
lm

(16)

where, again R~ is normalized to unity at r =R.
Outside the muffin-tin sphere, RI may be written
in terms of the phase shifts 5i of the impurity po-
tential

RI (k, r) = s [ji(Kr)cos5i (E)
Ni (K,R)

—ni(Kr)sin5i (E)], (17)

Ni (K,R )=j i(KR }cos5i(E)—ni(KR)sin5i (E) .

(18)

The requirement that the wave function and its
radial derivative determined from Eq. (14) be con-
tinuous to those from Eq. (16) determines both Ai
and B~~. In particular, we have

((q s, ) N( (K,R)
Ai (k)=e ' '

Ai (k) .

Pz(r)= giiB~~hi(Kr)Y~~(r) „rpR .
Ina

(1S)
Proceeding as before for the calculation of F, we

may now calculate the force Fs on the impurity
atom in its substitutional position:

Inside the muffin-tin spheres, Pj, may also be writ-

ten as a linear combination of the solutions Ri of
the radial Schrodinger equation for impurity po-
tential

dSkFs f er(k)V EI (k)~
I ~»E» I

where

1/2

s(k) 8 g (1—m+1)(1+in+1) . (5s 5s) . {g g )
(21 +1)(21+3) + + NiNi+1

XRe[A(' (k)AI+i (k}], (21)

and hi =5i —5i. Re denotes the real part of the function.
Equations (20) and (21) are the main results of this paper and show that the force exerted by the electron



THEORY OF ELECTRGMIGRATIGN IN NOBLE AND. . .

gas on an impurity atom depends on the nature of the Fermi surface, the electron group velocities at the
Fermi surface, the solute phase shifts 5i, the excess solute phase shifts b,i, and the wave-function character
Ai~(k) at the Fermi surface. It also depends on the details of the electronic relaxation time r(k), due to
phonon and impurity scattering at the Fermi surface. Equation (20) also shows that the force on an atom of
the solvent vamshes since hi =0 as was found from Eq. (7).

For a jellium matrix we have

5i=0, &i=5i, N(=ji, Ai (k)=j((kR)Y(* (k),

' 1/2

I (k)= ——g sin (hi+1 bi)R—C[Fi~(k)I'1+1 ~(k)] .8 (l —m +1)(l+m +1)
(22)

p; = 1 g (l + 1)sin (hi+1 —hi)
4n fi

Z p (25)

is the residual resistivity (per defect) of the solute,
and

Ng
po=

tlat' T'p

is the resistivity of the jelHum metal of valence Z
and electron density n =Z/Qz ——k~/3m, and r~ is
the relaxation time assumed constant, zz —r(kz).
Thus the standard result derived by Bosvieux and

(26)

With this and using Eq. (9) one finds

44k'ps= —cE g (l+1)sin2(hi+1 —bi)
3&8'

(23)

=—ZcE(p /po)

Friedel' and by Turban et al. , 's and Shams that the
force due to electronic polarization in a free-
electron gas is directly related to the residual resis-
tivity of the solute, is recovered in our formalism.

Returning to the more general case, Eq. (20)
shows that in contrast to the residual resistivity of
a solute which, within the relaxation-time approxi-
mation, depends only on the excess phase shifts dpi

of the solute via the term sini(hi+1 —hi), the force
depends explicitly on both the solute and the

host-metal-atom phase shifts. Thus for host me-
tals whose phase shifts aie nonnegllgige in com-
parison to those of the solute, the force on the
solute atom cannot be expressed in tcims of the
residual resistivity of the solute.

It is instructive to see how the expression for the
force is modified for a metal whose Fermi surface
is nearly spherical. In this case it is easily shown
that F is given by Eq. (24) with p; replaced by p;,
where

IP

JiJi+i . Z
Pg =

Zk
—

~ g (l + 1)sin(5i+1 —5i )sin(by~ 1
—b,I) .

i i i+1
(27)

The expression for p; is thus very similar to that of
the residual resistivity p; in a free-electron gas.
However, thjs similarity should not be taken too
far since in contrast to p;, which is always positive,

pq can be positive or negative depending on the
values of 5i and 5i. Equation (27) thus allows the
effects associated with the host phase shifts to be
accounted for in a simple manner while neglecting
the Fermi-surface effects for metals with nearly
spherical Fermi surfaces. Such an approximation
has been shown to yield residual resistivities in no-
ble metals in good agreement with more precise
calculat10118. Howcvci', fol' Inatrlccs whci'c tllc
Fermi surfaces are compHcated, as is the case for

most of the transition, rare-earth and actinide me-
tals, or where Fermi velocities differ considerably
from the free-electron values, Eqs. (20) and (21)
will have to be evaluated numerically.

The use of the formaHsm presented above re-
quires a detailed knowledge of the electronic struc-
ture of the host matrix including the wave func-
tions at the Fermi surface. Such a study is under-
way and is planned to be reported later for the case
of niobium in a separate publication. In this paper
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we have chosen to present the results for noble me-
tals for two reasons. First, the approximation of
the spherical Fermi surface allows the use of Eqs.
(23) and (27), and second, the phase shifts for
several solutes are available from a fit to the exper-
imental data. ' These phase shifts are given in
Tables I and II. %e note here that these phase
shifts, and approximations similar to the ones in-

troduced above in deriving Eqs. (23) and (27),
yielded a rather good agreement of the calculated
resistivity both with the experiment and with the
resistivity calculated using more elaborate Fermi-
surface integrals. ' This gives us confidence in our
calculation of the effective valences for noble me-

tals using Eq. (27).
The calculated values of the effective valence for

several solutes are presented in Table III. The
values using the resisitivity formula [Eq. (25)] are
also given for comparison. In these calculations
we have assumed, following Bosvieux and Friedel, '

that a direct force ZeE (Z =1 for noble metals) is

exerted in the substitutional position but that no
direct force exists in the saddle-point position.
The average force during the jump is calculated by
assuming a sinusoidal variation of the force, '

which leads to the following expression for the ef-
fective valence Z*,

(28)Z" =Z[1—(p;+p~ )/po]/2,

where p; and p; are the values of p; in the stable
and the saddle-point configurations of the moving
atom, respectively. We have assumed for the cal-
culation of p; that when the atom moves to the
saddle-point position it rigidly carries its screening
charge with it. Further, the contribution due to
the vacancies to the driving force has been neglect-
ed since numerical calculations' have shown it to
be rather small. The following values of the metal
resistivity po (in pQ cm) have been used in calculat-
ing Z* from Eq. (28); these values have been taken
from the Handbook of Chemical Physics':

po = 1.673+0.0068( T —293) Cu,

po=1.590+0.0041(T—293) Ag,

po=2 350+0.0040(T—293) Au,

where the temperature T is in K. %e have
neglected here the resistivity due to the defect itself
in comparison to the phonon resistivity, as the
former makes a negligible contribution at elevated
temperatures.

We observe that for all the solutes presented in
Table III the effective valences are large, in general
much larger than the solute-metal valence. Low
resistivity of noble metals is an important reason
for the high effective valences of solutes in these
metals. There is an extremely large dispersion in
the measured values of the effective valences of
solutes in noble metals in the literature; for exam-
ple, the experimental value of Z* of Ag in Cu is
quoted' to lie between —2 and —32. Further, for
most solutes studied here experimental measure-
ments have not been performed. %e again em-
phasize here that the choice of these solutes was
dictated by the fact that their phase shifts are
available from a fit of the experimental data We.
note, however, that Doan' has obtained a value of
-9.0 p, Qcm/at. % for the sum p;+p; for Sn in
Ag by the tracer-diffusion method. This is in good
agreement with our calculated value of 10.13
pQ em/at. %. Also, Bocquet" has obtained a
value of Z' = —7.6+2 for Ag self-diffusion which
is to be compared with our calculated value of
Z' = —4.6. We observe that the resistivity formu-
la reproduces quite well the results obtained from
Eq. (28) which includes the corrections for
the host-metal phase shifts. This is essentially due
to the fact that the contribution from the saddle-
point position is larger than in the stable position,
and further the phase shifts of noble metals at the
Fermi energy are quite small. Vfhat matters most
is the difference AI+~ —A~ as compared to

TABLE I. Phase shifts 51 (in radians) of noble metals at the Fermi energy.

Metal
Lattice parameter

a (a.u.)

Cu
Ag
Au

6.8090
7.6901
7.6825

0.0755
0.2097
0.2496

0.1298
0.1188
0.0632

—0.1186
—0.1019
—0.2426
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TABLE II. Excess phase shifts AI (in radians) of the solutes in noble metals at the Fermi
energy of the host.

Alloy hp

CQ(AU)

Cu(Zn)
CQ(A1)

Cu(Ge)
Cu(Ni)

Ag{Au)
Ag(Sn)

AQ(CU)

Au{Ag)
Au(Zn)
Au(Ga)

0.1820
0.4935
0.2100
0.1500

—0.0690

0.1760
0.2010

—0.2100
—0.2770

0.2550
0.9800

—0.0870
0.2672
0.4800
0.7480

—0.0380

0.0870
0.7860

0.0770
—0.0720

0.1800
0.4100

—0.1470
0.1276
0.2800
0.1800

—0.2580

—0.0850
0.2230

0.1030
0.0510
0.2370
0.1600

5i+ i —5i. For Cu and Ag one finds for the solutes
studied, that EI+ i

—AI &)5I+i —5g, and hence the
correction due to 5I is small. On the other hand,
for Au-based alloys, this is not always the case,
and thus significant correction to the effective
valence is obtained.

IV. DISCUSSION AND CONCLUSION

We have presented a formalism, using scat-
tering-theory approach, which allows the calcula-

tion of the force on a moving atom, and hence its
effective valence, due to the electronic polarization
created by the displacement of the Fermi surface
in an electric field. The formalism can be applied
to both simple and transition metals. We have
shown that the effective valence, within the
relaxation-time approximation for the solution of
the Boltzmann equation, depends intricately on the
electronic structure of the host matrix as well as
that of the solute, the nature of the Fermi surface,
and a detailed knowledge of the Ferini velocities

TABLE III. Effective valence of solutes in noble metals. Z* is the value calculated froms sp
Eq. (28) using p& and p; with the value of pp at 1000 C. Z, is the value obtained by usings s-s
the resitivity pf in place of p;, p;, p;, and p~ are all in JM,Qcm/at. %.

Alloy pi
s

p&

sp
Pf Zres

CQ(CU)

CQ(Au)

Cu(Zn)
Cu(A1)

Cu(Ge)
Cu{Ni)

Ag(Ag)
Ag(Au)
Ag(Sn)

Au(Au)
Au(Cu)
Au(Ag)
Au(Zn)
Au(Ga)

0.0
0.54
0.52
1.44
3.77
1.11

0.0
0.38
4.38

0.0
0.49
0.34
0.76
2.10

0.0
0.79
0.56
1.48
4.40
1.83

0.0
0.83
4.70

0.0
—0.12
—0.30
—0.05

2.54

0.63
1.66
1.20
2.11
SA8
3.12

0.58
1.84
5.43

1.67
0.95
0.75
0.81
4.49

—3.2
—14.0
—10.0
—20.7
—57.8
—28.7

—4.6
—23.0
—88.5

—12.6
—6.0
—3.0
—5.5

—54.8

—3.2
—12.5
—9.6

—20.5
—54.0
—24.S

—4.6
—19.0
—85.7

—12.6
—10.8
—8.1

—11.9
—51.4
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and the wave-function character at the Fermi sur-
face, and also the phase shifts at the Fermi energy.
%e have also shown that in the case of host metals
whose phase shifts at the Fermi energy are negligi-
ble, the effective valence can be related directly to
the residual resistivity of the solute in the substitu-
tional and the saddle-point positions. This is a re-
sult which was first obtained by Bosvieux and
Friedel within the Born approximation, and later
more rigorously by Turban, Nozieres, and Gerl'
and by Sham. %e have shown herc that this is a
general result and essentially valid for a jellium
matrix within the framework of the linearized
Boltzmann equation. However, for simple metals
with significant phase shifts at the Fermi energy
(for example, Al) the final expression involves not
only the excess phase shifts b, i of the solute, which
determine its residual resistivity, but also the
solute-metal phase shifts 5i (or alternatively the
host-metal phase shifts 5i), and in this case the ef-
fective valence cannot be reduced to a form resem-

bling the residual resistivity of the solute. Thus
the relationship between the effective valence and

the residual resistivity is, strictly speaking, valid

only for host metals where the jelhum approxima-
tion can be considered adequate.

The calculations for the transition metal Nb are
in progress, but are necessarily complicated since
detailed Fermi-surface integrations requiring
knowledge of the electronic wave functions need to
be performed. We have first applied it to the case
of noble metals where considerable simplifications
can be achieved by assuming a spherical shape for
the Fernii surface, an approximation which is not
too bad since it has already yielded residual resis-

tivities in good agreement with both the experi-
ment and those calculated by evaluating much
more involved Fermi-surface integrals. ' We have

found that the effective valences for solutes in no-

ble metals are, generally speaking, much larger
than the solute-metal valence. Even for the atoms
of the matrix Z'. is significantly larger than Z, the
solvent-atom valence. Among all the cases listed
in Table III, Z*is smallest for the case of Cu(Cu}
with a value Z' =—3.2, which is more than 3
times the valence of Cu. We believe that these
large values of the effective valences (as compared
to the solute- or the host-metal-atom valence,
whichever may be the case), wlllch are 111 part due

to the low phonon resistivities of noble metals,
render the much controversial problem of the
direct force rather academic in these cases. Note
that a complete neglect of the direct force in the

worst case of Cu(Cu} will change Z* from —3.2 to
—3.7, while its full inclusion, including the contri-
bution also from the saddle-point position, will re-

sult in a Z' of —2.7. (We recall that the
Bosvieux-Friedel model allows the direct force con-
tribution in the substitutional position and is equal
to the valence of the host-metal atom. ) In our
view either value of Z* is large as compared to the
valence of Cu and the difference between them

falls within the precision of the experimental mea-

surements.
In the present calculation, the contribution due

to a single vacancy adjacent to the solute in the
substitutional position and the two half-vacancies
in the saddle-point position has been neglected.
This contribution cannot be easily calculated. A
partial correction can, however, be made by includ-

ing their contribution via the potential and hence
the phase shifts of the solute since the presence of
these vacancies does somewhat change the poten-
tial of the solute. Bosvieux and Friedel also
neglected in their model the contribution from the
two half-vacancies in the saddle-point configura-
tion, but calculate the contribution from the vacan-

cy adjacent to the substitutional atom. Doan, '

following this prescription, has evaluated this con-
tribution in Ag. He finds that it lowers all the ef-
fective. valences by approximately 2 at 800'C (i.e.,
Z' is changed to Z" —2). Thus according to this
calculation, the effect will be the largest where Z'
is small. The formulation presented here also
neglects the backscattering from the host lattice.
This is a rather complex problem and not easily
treated. Coleridge, Holzwarth, and I.ee' have,
however, suggested a procedure to include the
backscattering effects via a suitable modification of
the solute-atom phase shifts. The phase shifts

given in Table II include these effects since they
have been determined from a fit to the experimen-

tal data. '
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APPENDIX

%e have

dV R dV
RIR]+] r dr= ululy] ul=rR] .

0 r 0 dr
(Al)

The radial wave equations for ul and ul+1 at energy E are

I (l ~1)—ul+ +V ul ——Eul,2
(A2)

(1 +1)(I+2)—ul+1+
r 2 +V ul~1 ——Eul~1,

where u] du]i—d—r, u] du] ld——r, etc. Differentiating (A2) and (A3) with respect to r, multiplying them,

respectively, by ul+1 and ul, and then summing them up, one obtains

dV 1 l (l y 1 ) (f +1)(&+2)
ulu ulul ~1+ E—V—— ul y lul +ulul y1+ul ~1ul

dr 2 r2 r 2

(A3)

4(l ~ 1)~+ 3 ulul+1
r

1 .. . 2(l pl). .. . 2(l ~1) .
2

—ul+lul+ 2 ulul+1 —ulul+1 —
2 ul+lul+ulul+1+ul+lul

r

4(l y 1)+ 3 ulul+1
r

~ ~ " 2(I +1) 4(l ~1)'
(ulul y]+ ul y]ul 2ulul y] }+

p (u]u]y] —u]y]u] )+2 dr r r
u]u] ~] . (A4)

Multiplying (A2) by u]+] and (A3) by u] and subtracting we have

2(]t y 1)
r

ulul+1 ul+1ul ulul /1 . (A5)

Substituting (A5) in (A4} one has

dV 1 d .. .. . . 2(1~1)
ulul g1 ——— ulul /1/ul /1ul —2ulul /1'df 2 dr r (ul+]ul u]ul+]) (A6)

Hence, from (Al)

1 .. .. . . 2(l y 1)I=—ul ul+1+ ul+1ul —2ul ul+1+
2 r (u]~]u] —utu]~])

~ R

1
~ 4 ~ ~=

2 [r'(R]y]R]+R]R]+] 2R]R]y]) 2R]R—]y]+2(f +—1)r(R]y]R] R]R ]y])l r =—]] .

Substituting for R] and R]+] from Eq. (10}in Eq. (A7), and using the properties of spherical Bessel and
Neumann functions, it is easily verified that

sin(5]+ ]—5])I=

(A7)

(A8)

where El and 5l are evaluated at energy E.



RKIU P. GUPTA 25

C. Bosvieux and J. Friedel, J. Phys. Chem. Solids 23,
123 (1962).

2R. S. Sorbello, J. Phys. Chem. Solids 34, 937 (1973).
3T. C. Genoni and H. B. Huntington, Phys. Rev. 8 16,

1344 (1977).
4J. M. Ziman, in Solid State Physics, edited by H. Ehren-

reich, F. Seitz, and D. Turnbull (Academic, New

York, 1971), Vol. 26, p. 1.
5L J. Sham, Phys. Rev. 8 12, 3142 (1975).
%.L Schaich, Phys. Rev. 8 13, 3350 (1976).

7R. S. Sorbello, Phys. Rev. 8 23, 5119 (1981).
sJ. M. Ziman, Principles of the Theory of Solids (Claren-

don, Oxford, England, 1965).
~T. L. Loucks, Augmented Plane 8'ave Method

(Benjamin, New York, 1967).
t M. E. Rose, Elementary Theory ofAngular Momen

turn (Wiley, New York, 1957).
~tN. F. Mott and H. S. W. Massey, The Theory of

Atomic Collisions (Clarendon, Oxford, England, 1965).
Q. J. Morgan, Proc. Phys. Soc. London 89, 365 {1966);

P. T. Coleridge, N. A. %. Holzwarth, and M. J. G.
Lee, Phys. Rev. 8 10, 1213 (1974).

~3L. Turban, P. Nozieres, and M. Gerl, J. Phys. (Paris)

37, 159 (1976); M. Gerl, Z. Naturforsch. A 26, 1

{1971).
R. P. Gupta and R. Benedek, Phys. Rev. B 19, 583
(1979).

~5N. V. Doan, These de Docteur es Sciences Physiques,

Faculte des Sciences d'Orsay, France, 1970 (unpub-
lished).

' Handbook of Chemical Physics, 55th ed. (Chemical

Rubber Co., Cleveland, Ohio, 1974).
' J. N. Pratt and R. G. R. Sellers, in Electrotransport in

Metals and Alloys, Diffusion Monograph Series, edit-

ed by F. H. Wohlbier, (Trans. Tech. Publications,
Cleveland, Ohio, 1973).

' J. L. Bocquet, These de Docteur es Sciences Phy-

siques, Faculte des Sciences d'Orsay (France), 1973
(unpublished).


