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%'e describe a general procedure for building up reduced heatbaths simulating a many-

body system of coupled harmonic oscillators, Finite lifetimes of phonons can be taken

into account by the appropriate generalization of the Mori formalism that provides the

tool for modeling the real phonon reservoir. The rdated Fokker-Planck equation is also

discussed.

I. INTRODUCTION

The classical subjtx:t of the lattice dynamics of
solids is an active and rapidly developing field of
investigation', no longer focused on the harmon-
ic approximation. The statistical properties of a
system of coupled oscillators have also been widely
investigated. Since a number of properties of
interest can be calculated exactly, this many-body
system constitutes a natural candidate to test and

apply new theoretical techniques. The problem of
building up reduced heatbaths to simulate actual
solids has recently received increasing attention '

because of its important implications. So far, how-

ever, the attempts have been confined to harmonic
crystals mainly in the Debye approximation. The
purpose of this paper is to provide a systematic
and simple procedure for replacing a true phonon
reservoir including anharmonic effects with an

equivalent one with a few degrees of freedom.
This purpose is achieved by appropriate generaliza-
tion and application of the Mori memory-function
form a11sm.

It is well known that the Mori formalism has
been successfully applied to a large variety of phe-
nomena concerning relaxation. For example I.ado
et al. used a procedure of the Mori type for build-

ing up a general approach to the line-shape prob-
lem in nuclear-magnetic-resonance spectra. This
work contains elements of considerable interest. In
particular Lado et aI. pointed out a close relation-

ship between the Mori procedure and the "classical
moment problem" of mathematical analysis.
They expressed the Laplace transform of the corre-
lation function (A ~A(I)) (A is the variable of in-

terest) by a continued fraction expansion. The

parameters of this continued fraction are then ex-

pressed in terms of the spectral moments

(~ l(IL, )" l»Z(~ la) wh«c L ls the dynamic»
operator driving the variable of interest

~

A ) ac-
cording to the law'

Their results completely agree with Dupuis's find-

ings. " However, Dupuis by using mathematical
arguments did obtain a continued fraction what-

ever the nature of I. is. Qn the contrary, the Mori
theory is strongly based on the assumption that I.
is Hermitian. This ambiguous feature is complete-

ly clarified by the present work. We shall show, in
fact, that the Mori approach can be extended to
the case of dynamical operators without definite
symmetry properties. Schneider' in his effort to
generalize the Mori theory confined his attention
on pseudosymmetric dynamical operators.

Our point of view is closely related to that of
Ref. 13 and to the recent theoretical developments
of the Mori school, ' ' which in turn generalize
the procedure derived by De Raedt et a/. ' in the
context of studies on the classical Heisenberg
chain. In this recent work, ' in fact, the Mori
scllool I'ccoglllzcs tllc 1IIlpoItallcc of stlldy111g tllc
time evolution of the flux variables. This is indeed
the kind of time evolution to be studied for build-

ing up the Fokker-Planck equation driving the
phonon operators of interest, considered as stochas-
tic variables.

Our strategy is as follows. In Sec. II, we give a
brief survey of the generalized Mori theory, which
is our basic tool for describing phonon baths in the
presence of anharmonic effects. The parameters of
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the Mori chain are evaluated with the help of the
Dupu18 algorithm, which allows a fout1Ile calcula-
tion of the quantities of interest. In Sec. III we
provide for the first time a systematic procedure
for replacing a real-phonon thermal bath with an
equivalent one with a fcw degrees of freedom. In
Sec. IV we illustrate operatively our procedure by
applylilg lt to tllc spcclfllc case of tllc Einstein Rnd

Debye models. In Sec. V we further exploit the
complementary aspects between the generalized
Mori theory and the Dupuis algorithm. %hereas
thc lattcl' makes lt possible to gct R fast colllplltR-

tional approach, the former enables us to replace
thc quantum-mechanical Liouvillian driv1ng thc
thermal bath with a quite useful mathematical
tool, i.e., the Fokker-Planck operator.

(A
~
exp(iLI) ~A)
(~ [~&

can be written as follows,

(4)

Z —Q2—

a„=— P [A,P„(A,)P, (A,)],D„

bo ——0, I„=Dnan-Z

Dn

The orthogonal set of polynomials P„(A,) is given

The parameters a; and b; of this continued fraction
are defined as

In this section we give a brief account of the
theoretical tools which are needed for modeling
harmonic or anharmonic phonon baths. The nov-

elty of this section is given by the general relation-

ship, here established for the first time, between
the Mori theory and the computational algo-
rithm ' "(referred to as the Dupuis algorithm
from the author" who first gave a detailed account
of it). For the benefit of the reader, throughout
tllls papcl wc llsc falliillar IlotRtl oils boIYowcd fl'0111

the quantum-mechanical formalism.
Given a variable of interest A, consider the stan-

dard equation of motion

d—A =i' .
dt

After properly defining a scalar product among
operators, we can adopt the quantum-mechanical
formalism, to which Eq. (1) is related. The stan-
dard Mori theory is based on the assumption that
I. is Hermitian with respect to the scalar product,
1.e.,

(~ [I. fa) =(a [L, [~ }*.
In order to treat anharmonicities we shall simulate
their inAuence on the normal modes by suitable
opclatoI's local 1n time, which dcstloy thc HerI11i-
tian nature of the I.iouvillian 1. As a conse-
quence, a major care of this section is devoted to
avo1dlng thc Hcrmltlan assumption.

Without using the property of Eq. (3), Dupuis"
showed that the Laplace transform of the correla-
tion function,

So S1

S1 S2

P„(A,) =
Dn-i

Sn —1 S S2n —1

4 ~

The symbols D„denote the Hankel determinants

S2 ' ' Sn+1

Sn Sn+I

(~ ~(il. )"~~)
(A iA)

The symbol M denotes a scalar product for poly-
nomials defined by

W(IXO+CXIA, +IXIX, + ' ' ' )

=AOsO+A1s1 +2s2+

By llslllg this gcllcl'Rl Rlgontlllll lt, ls strRlglltfol-
ward to build up the continued fraction of Eq. (5)
in terms of the moments s„.Dupuis" could not
entirely exploit the generality of his approach, in
that he was obliged to make the HerInitian as-
sumption on I. for establishing a relationship be-
tween his and Mori's approach. %C can establish a
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wider connection simply by noticing that Mori's

approach can be extended to the case of a non-

Hermitian Liouvillian. Such an interesting result
can be obtained by building up the following se-

quence of biorthogonal variables'

Ifo&=~

If& & =(I—Po)iL I fo &

(f, I
=(f IiL(1 P),—

If2 & = &I —PI)(1—Po)iL If I &

(f2 I
=(f& IiL(l —Po)(1 Pi), —

P2 If2)&f21f2) &f2 I

etc. By a straightforward extension of the stan-

dard Mori approach, we then obtain

1
@o(z)= J2

Q2
z —A1+

Z —A2+ '''

times are quite important, in that some phonons
vibrate not more than ten times, or even less before
decaying.

To keep our problem to the essential, we consid-
er for simplicity a solid with one atom of mass M
per unit cell. In the harmonic approximation, the
nuclear motion is described by the Hamiltonian

Ho ——g fin) (a„.a. -.+ —,),1

J

where a -. and a . are the creation and annihila-J
tion operators for the phonon of wave vector q,
branch index j, and frequency co- -. In our case ofqJ
a simple lattice with N unit cells, j takes only three
values, while q runs over the N allowed values in
the first Brillouin zone.

When the crystal is in thermal equilibrium, the
only nonvanishing scalar products between creation
and annihilation operators are those of the type
(a . Ia . ) and (a . Ia . ). In the classical

limit of temperatures much higher than the Debye
temperature, we have

1

q J I q J Iscu /AT.
where

(Sa)

AT
Ia q, &

qJ

(Sb)

It is evident that Mori's parameters A,; and 5; can
be identified with Dupuis's parameters a; and

&I respectivel y. We can thus write

The equations of motion of the operators a qJ
and a -. driven by the Liouvillian Lo correspond-

ing to the Hamiltonian Ho are

—a -.=~Loa -.= —tao-.a -. ,qJ qJ qJ qJ '

~ [AP;(A, )P, (A,)], (9a) —a -.=iLoa -.=iso-.a - . .qJ '

D;D;
(9b)

III. MODELING OF PHONON BATHS
IN THE GENERAL CASE

In recent years it has become almost standard
procedure to investigate (theoretically or experi-
mentally) not only the phonon dispersion curves
but also the phonon lifetimes due to anharmonic
effects. ' In a number of cases the phonon life-

The Dupuis expressions (9a) and (9b) for A,; and b;
are much more convenient from a computational
point of view than the corresponding Mori expres-
sions (Sa) and (Sb). We have now available all the
tools required for a thorough treatment of phonon
baths.

iLa-.—= ( i'- ——I -.)a-. ,

iLa - :(i'-.—I -..—)a - . .qJ qJ qJ qi

Thus,

( —ice~ .—r~ .)ta- (t) =a .e.
qJ qJ

{t co
q J r

q
)t

a (r) —a~ e &IJ qJ

(13)

(14)

and the correlation functions for phonon annihila-

When anharmonic effects are taken into account,
we expect a (small) renormalization of the phonon
dispersion curves and a damping parameter I . toqJ
be added in the equation of motion of the opera-
tors a-. and a- .. The effective I.iouvillian L be-qi
comes
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—ice~ t —I'~.tq' and

1 A'

vQ ~. qj 2Mto-.
qi

where the polarization vectors e (assumed to be

real for simplicity) satisfy the orthogonality condi-
tions e- ..e-., =5jj. We consider as our variable

tion and creation operators are e
iN-+ ~ —I -+ .t

e " q J, respectively.
Throughout this paper we @re interested in the

autocorrelation function of the displacement of a
generic atom belonging to the solid. The pro-
cedure here outlined can straightforwardly be ex-
tended to the other variables of interest (such as
"the interaction modes" of the work of Takagahara
et al. ' on second-order optical processes).

The displacement u„ofthe atom in the generi-
cal cell r„(without loss of generality we keep
r„=0)can always be expanded in normal modes'

' 1/2

(a-.+a -.),qJ qJ

of interest the component u of the atomic dis-
placement along, say, the x axis:

' 1/2
1 fi

vN . "qj 2M
q J

X(a- +a- ) . (16)

Let us evaluate the normalization factor:

X(a-.+a-. Ia-.+a-.) .

(17)

To eliminate inessential difficulties, we assume that
the crystal has cubic symmetry. This enables us to
replace the polarization vectors in Eq. (17) with the
—, factor. Using Eq. (11) we have

(18)

where the symbol ( ) is a shorthand notation to denote the average on the phonon branches and on the
Brillouin zone.

If we define the adiabatic frequency as

we can write Eq. (18) in the compact form

AT
Mao,

The calculation of the moments is also straightforward. Using Eqs. (11), (13), (16), and (20) we have

&fo I
(iL )

I fo ) Mto 1 A' [(a-.
I
(il )

I
a-.)+(a-„.

I
(il )

I a-i)]kgT 3N . 2M'qj qJ

=co [( ice ——I .) +(iso-.—I .) ]=2 1 ~ m ~ m
qi

(20)

(21)

The explicit expressions of the lowest few moments

s~ are (omitting for simplicity the indices qj on
co-. and I-., whenever this does not generate

confusion)

so ——1,

3

$4 =N~ P

CO

—5~'r+ 10~'r' —r'
S5 =COg

C02

+15~ r 15~ r +r
$6 =cog

CO

(22)
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7N I —35N I +21N I —I
S7 =N~

N

2 N8 28N6I"2+70N4I 4 28N2I 6+ I 8

S8 =Ng
N

and so on.
The average over the Brillouin zone in Eq. (22)

could be performed using finite sets of special
points along the concepts proposed by Balderes-
chi and implemented by several authors. ' From
the knowledge of the phonon frequencies and pho-
non lifetimes, we can calculate with Eqs. (21) or
(22) and the Dupuis algorithm the parameters of
the Mori chain. This solves the problem of model-

ing any real thermal bath of a solid.
The modeling of a real thermal bath with an

equivalent one involving only a few variables is of
value for an improved comprehension of a number
of problems such as gas-solid collisions, the
electron-phonon system of the Kubo school. ' The
full potentialities of the modeling method do not
appear to have been thoroughly exploited in the
literature. This paper, however, is confined to the
modeling problem and for this purpose it is con-
venient to provide the exact expression of the auto'-

correlation function of the atomic displacement,
against which one can check the few-body simula-
tion. In fact the system of coupled oscillators is
one of the very few examples of a many-body sys-

tem, in which a number of properties can be calcu-
lated exactly. From Eqs. (14), (16), and (20) we
have for the correlation function

eo(z) = 1 z

No Z +Np
(24)

The simplicity of the present model allows us to
recover the above result also starting from Eq.
(23b).

B. Anharmonic phonon bath in
the Einstein approximation.

As a second illustrative example, we consider the
case in which all phonon frequencies N . are re-

qJ
placed by an average value Np and all damping
parameters I . are replaced by an average valueqJ
I p.

Equation (22) for the moments gives

2 2Sp=1& $]=—I p& $2= —No+I o'

furthermore, in the harmonic approximation the
damping parameters vanish.

Eq. (22) for the moments gives

2sp= 1~ s] =0~ $2= —Np ~

$3 =0, $4=No, $5 =0,
6 ~ 8S6= —Np, S7 =u, $8 =Np,

etc. The Dupuis determinants are

2Dp=1 D] = —No D2=D3= ' ' ' =0 .

From Eqs. (9) we see that A,; =0 and the only non-

vanishing parameter is A~ ——Np. The continuous
fraction of Eq. (7) is exactly truncated in the form

(folfor &

&fo I fo &

=2 1 —1

2 COSN .teqJN~qJ

while its Laplace transform is

(23a)

$3 =3NoI o—I o $4=No —6NoI o+I o
2 3 4 2 2 4

$5 ———5Noro+ 10NOI 0—ro4 2 3 5

$6 = —Np+ 15NpI p
—15NpI p+ I p

6 4 2 2 4 6

$7 =7NpI p
—35NpI p+ 21NpI p

—I p
6 4 3 2 5 7

$8 =Np —28NpI p+70NpI o
—28'NpI +~p ~

6 2 4 4 2 6 8

'qjt'+ qi'+ qi~

The application of the results of this section to the
cases of the Einstein and Debye models is il-

luminating, and is considered below.

IV. MODELING OF PHONON BATHS
IN SOME PARTICULAR CASES

etc. The Dupuis determinants are

Dp ——1, Dj ———Np, D2 ——D3 ——. . —0.2

From Eqs. (9) we see that

2 2~o=~& = —I o~ ~i =No

while 4z ——0. %e have thus the truncated continu-
ous fraction

A. Harmonic phonon bath
in the Einstein appraximation

In the Einstein approximation all the phonon
frequencies are replaced by an average value Np,

'

C'o(z) =
2

Noz+I o+ z + p

(25)
(z+ I'o)'+~o
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The simplicity of the present model allows to re-

cover again the above result also starting from Eq.
(23b).

C. Harmonic phonon bath

%C consider now the case of a generical phonon
bath, with the only assumption that the damping
parameters are negligible. The moments, given by
Eq. (22), are

2Sp= 1, $1=0, $2= —COg,

s3=0, &4=~~(~ )» ss=o»

$6 = —6)g (CO ), $7 =0, Ss =Cog ( CO ),2

etc. The Dupuis determinants up to D4 are

Dp ——1,
2

D1 ———a)~,

D, = —a).'(&~'& —~.'),
D =—,'(& '& —,')(& '&' —

& '&)

D, =—cps((a)'&' —&co') )

(26)

y [(&co'&—~,')( &rp'& —2&i0'& &rp'&+ &~'&')

~2 (~') —2(rp'&(~'&+ &~'&' ~2
~2~2

—3.
2 3

An alternative way to recover the results Q7) has
been presented in paper, to which we refer for a
detailed application to the Debye model and for a
discussion of the relationship between the (Hermi-
tian) Mori theory for modeling harmomc phonon
baths and the original treatments reported in the.
literature.

The parameters of the Mori chain can be ob-
tained using Eqs. (9) and (26). We note that all A,;
are zero because all odd moments s2„+1are zero.
For the coupling parameters we have

2 2

42= (CtP )—COg»

a,'= [(~')—(~'&']a~,',

We could keep on with specific cases, consider
reasonable interpolation schemes for phonon fre-
quencies and lifetimes, and apply the powerful
tools of the previous sections; however, we think
that the examples so far reported have already
made transparent the Mori modeling procedure
also from an operational point of view.

V. CONCLUDING REMARKS

%c w1sh to stress thc slgniflicancc of thc 1csults
obtained with a few considerations on the specific
case of spectroscopic applications. Suppose that
the problem to be studied is the coupled electron-
phonon system of the kind of Ref. 18. In such a
case the interaction mode plays the typical role of
a multiplicative stochastic variable. Kubo
showed how to build up the Fokker-Planck-type
equation for the whole system in terms of the
Fokker-Planck-type equation concerning only the
multiplicative variable. It becomes, therefore, quite
useful to succeed in building up the Fokker-Planck
equation for any variable of interest. This aim can
bc accomplished as follows.

First of all, we relate the dynamicaI operator il.
to the basis set of orthonormalized states,

;&= /f;&&&f; /f;)'".
Using the Eqs. (6) and (8), we obtain

Ag ib( 0 0

i5) A1 ih2 0

o ia,
O 0 o ~ o

It is convenient to transform the matrix of Eq. (29)
into real form, with appropriate multiplication of
rows and columns by phase factors. The operator
of Eq. (29) is equivalent to the following one:

A,p
4

0 (30)

The equation of motion

—fp =ELfp,dt

when I. is a generalized-Liouvillian, does not satis-
fy, in general, the requirement that for t~ ac a
correct therrnodynam1cal equilibrium must be at-
tained because of the dissipative contributions.
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This important requirement can be satisfied by re-
placing Eq. (31) with the following multidimen-
sional Langevin equation:

lows.

(+;+j(t)) =2QP(&) . (33)

dA =r W+F(r), (32)

where I' is given by the matrix of Eq. (30), and A
is the vector of variables (fo,fl, . . . ) regarded as
being driven by the Liouvillian I..' ' The mul-
tidimensional stochastic force F has been intro-
duced in order to account for the dampings present
in the parameters A,,"s. This stochastic force is de-
fined through its matricial second moment as fol-

The attainment of a correct thermodynamical
equilibrium is insured by the following
fluctuation-dissipation relation

I'E '+E 'I'+ = —2Q,

where

(E '),J ——(AiAJ ) .

By following Ref. 23, it is then straightforward
to arrive at the following Fokker-Planck equation:

+ \ ~ ~

Q11
P(A, t) . (34)

, aA',

a a 8 B 8P(A—, t) =DP(A, t) = —hi A t
— Ao —b2 A2 — A,

a Qoo 8' a
o ~o—

BAp A,o ()AO BA t

The operator D has to replace the rigorous one in

any spectroscopical application of the results ob-

tained in the present paper.
It is worthwhile to establish a link between the

present paper and the wide literature on fluctuation

and noise in physical systems ";in our opinion

these papers contain the germ of the ideas

which will allow us to clarify some questions still

unanswered within the context of our approach.
First of all, we have in mind the cases where the

high-temperature approximation cannot be made.
In Ref. 25 it is shown how to build up "quantum
mechanical" Fokker-Planck equations along the
lines suggested by Wigner. ' We believe that no
theoretical difficulty should be met in joining the
basic ideas of the present paper to the quantum-

mechanical procedures described in such a litera-
ture. As a fruitful outcome of this theoretical
reinforcement, it should be possible to build up the
quantum-mechanical counterpart of Eq. (34).

A second important point concerns the
quantum-mechanical extension of the regression of
fluctuations, to which Lax gave decisive contribu-

tions. In a later work Lax established the com-

plete equivalence between the Markoff property
and the regression theorem. Therefore, after replac-

ing the "real" thermal bath with his Markovian
"simulation" we are in the right position to use

this important theorem. This is the implicit reason

why it has been possible to get a complete evalua-

tion of the emission spectra of non-Markovian sys-

tems in the presence of strong driving fields.

I

The algorithm developed in the present paper al-
lows us to relate the variable of interest to a com-

plete Markovian set of variables. This is indeed
the main condition required for the regression
theorem to be applied.

Another related important point concerns the
number of Mori states to be used for replacing the
real non-Markovian thermal bath with an
equivalent Markovian one at the desired degree of
accuracy. Since our approach, when applied to
Hermitian Liouvillians, recovers the results by
Adelman and co-workers ' we can refer to their
important results for discussing the problem.
Their work shows that a fairly limited number of
additional variables allows one to get a faithful
simulation of real thermal baths.

Our approach for building up "reduced" thermal
baths is basically a development of the main ideas
outlined having in mind the problem of radiation-
less decay in molecule. With respect to the pro-
cedure of Adelman and co-workers, our approach
contains significant elements of originality. A ma-

jor one consists in the fact that the theory of the
present paper can also be applied in the case of
non-Hermitian dynamical operators (effective
Liouvillians or Fokker-Planck-type operators).
This important feature of our approach, for exam-

ple, allows our analysis to be extended to multipli-
cative stochastic processes, ' the study of which
is one of the major aims of current investigations
on nonequilibrium statistical processes.
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