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The dynamical theory of x-ray spectra due to Nozieres and De Dominicis (ND) is
evaluated here numerically for numerous model systems including cases ~here the core-

hole potential possesses a bound state. It is shown that the resulting emission spectra
obey the final-state rule rather accurately. An approximate but analytical derivation of
this rule is given which provides insight into the mechanisms leading to the final-state

rule. The evaluations are performed with the use of two methods, one based on an in-

tegral equation together with a separable core-hole potential and the other based on deter-

minantal wave functions for a finite number (Ã) of electrons in a box. The equivalence of
the two methods is demonstrated both formally and numerically. By comparing them we

prove the finite-N approach to be accurate already for rather small X. %'e also show that
a separable potential does not give rise to any spurious results but can actually be chosen

to yield the same ND spectrum as a local potential. The ND theory of x-ray photoemis-

sion spectra is discussed and from calculations of the exponent function a(m) for several

model systems closely corresponding to simple metals we conclude the equivalence of this

theory and its asymptotic approximation as far as the extraction of asymmetry indices is
concerned. Recent criticism of the major conclusions reached here and in previous work

is refuted.

I. INTRODUCTION

The present paper is devoted to a discussion of
current theories of x-ray spectra with regard to
their capability of yielding quantitative predictions
for experiments on simple metals. We will mainly
be concerned with the overall shape of x-ray emis-

sion (SXE) and absorption (SXA) spectra but will

also discuss the threshold singularities and the re-
lated line shape of x-ray photoemission (XPS) spec-
tra from core levels.

Until very recently all quantitative calculations
of x-ray spectra of metals were based on a one-

particle approach in which the x-ray transition is
viewed as occurring between a core orbital and a
valence Bloch state of the perfect crystal. This
simple approach is known to give an accurate
description of the experimental emission spectra'
and if the one-particle result is also amended with

a multiplicative power-law singularity and
bmadened, the agreement with experiment becomes
almost perfect. Thus, the fact that there is a
strong perturbing potential due to the presence of a
core hole in the initial state of the emission process
seems to have a very small effect on the shape of
the x-ray spectrum except close to threshold.
Within a one-particle approach it would have been

equally justified to picture the x-ray transition as

taking place between a core orbital and a valence

state obtained in the one-particle potential that in-
corporates both the periodic solid and the screened
core hole. We know now ' that such a picture re-
sults in emission spectra which have very little
resemblance to experimental spectra in simple met-
als.

In the case of x-ray absorption spectra, which

probe the unoccupied valence states, there is not
such a drastic difference between the two one-

particle approaches —that neglecting the hole (the
band case) and that accounting for the hole (the

impurity case). Also, there exist no accurate calcu-
lations of x-ray absorption spectra in simple metals
based on the impurity approach. Therefore, in

these systems, there is not yet enough empirical
evidence for preferring one approach over the oth-
er. In atoms, however, it is well known' that a
one-particle approach will give reasonable photoab-
sorption cross sections only if the outgoing electron
is allowed to feel the potential fmm the fully re-
laxed (screened) hole left behind.

Guided by the empirical facts presented above, "
the present authors were led to the final-state
rule ' according to which accurate emission and
absorption spectra of simple metals can be ob-
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tained from a simple one-particle approach provid-
ed the transition matrix elements are calculated
from wave functions obtained in the potential of
the final state of the x-ray process, i.e., with the
core hole in absorption and without the core hole
in emission. The final-state rule also states that'
even the singular behavior of the spectra near
threshold can be accurately described by multiply-

ing the one-particle result with power-law factors;
one for each angular-momentum channel contri-
buting to the spectrum. Thus, in emission, the
6nal-state rule exactly corresponds to the common-

ly used procedure for interpreting experimental
spectra Sp 16 2 1

As mentioned above, the experimental informa-
tion' ' ' leaves no doubt as to the validity of the
final-state rule. However, in order to explain the
rule from basic theory one clearly must go beyond
the one-particle formalism and incorporate the
basic dynamics of the x-ray process; namely, that a
very strong perturbation due to the core hole is
switched off (on) in the emission (absorption) pro-
cess. The simplest possible theory which accounts
for this switching is due to Nozieres and DeDom-
inicis'2 (ND). It is well known, that this theory
gives a definite prediction for the shape of edge
singularities in x-ray and XPS spectra. More im-

portantly, however, the ND theory provides an
answer for the overall shape of the main band of
these spectra. %C have previously9'5 evaluated
this theory numerically for model systems which
were chosen to correspond closely to real simple
metals. We then found that the resulting spectra
were accurately described by the final-state rule.
We later evaluated the ND theory for other model
systems including systems with very strong core-
hole potentials. We also used different numerical
methods and the results are unambiguous. As a
matter of fact, to this date, no case is known for
which the solution to the ND theory does not obey
the final-state rule rather accurately. Since the
final-state rule is in accord with experiment, so is
the ND theory, which could be considered to be
somewhat surprising in view of the fact that this
theory does not account for the interactions be-

tween the valence electrons other than in the static
screening of the core-hole potential. Dynamic
screening is, e.g., not taken into account. It
should, however, be remembered that the agree-
ment between ND theory and the final-state rule or
experiment, although rather good, is only approxi-
mate and there is still room for minor modifica-
tions of the spectra due to core-valence exchange

and valence-valence interactions.
In retrospect the final-state rule can be con-

sidered as a restatement of basic facts. At the time
it was suggested, ' the final-state rule seemed to be
rather controversial, several workers had previously
either assumed. or proposed what would be
equivalent to an initial-state rule for emission
and also for absorption. More serious, however,
is the fact that the final-state rule was later impli-

citly challenged in a letter presenting an investi-

gation which was also based on the ND theory. In
this work Swarts, Dow, and Flynn evaluated the
ND theory for several model cases using a method
first discussant by Friedel and later used by Ko-
tani and Toyozawa. ' The method is based on
Slater determinants for a finite number of electrons
in a box. Swarts et a/. interpreted their results for
weak to moderately strong core-hole potentials as
being rather well described by one-particle theory
using wave functions obtained in the presence of
the core hole, i.e., by an initial state rule in the
case of emission. For stronger potentials they stat-
ed that the spectra could not be described by either
an initial-state or a final-state rule, using the termi-

nology introduced above. Thus, these conclusions
of Swarts et al. are in clear contradication to our
claim that the ND theory satisfies the final-state
rule. Consequently, Swarts et a/. questioned the
widespread procedure implicitly based on the
final-state rule and used by many workers '6 ' in
order to interpret their experimental spectra and to
extract threshold exponents. It would be a quite
serious matter if these objections were justified.
%C show here, however, that, properly interpreted,
the results of Swarts et al. do in fact support the
final-state rule. As will be demonstrated in the
present paper, this rule is indeed obeyed rather ac-
curately by the ND theory in all cases considered.

Our earlier evaluations of the ND theory were

based on the integral-equation formulation which

was first introduced by Nozieres and De Domin-
icis, and which is simplified considerably by the
use of a separable potential. We will show here
both formally and numerically, that this method is
equivalent to the determinantal, finite-N approach
used by Kotani and Toyozawa. ' In fact, with

only 80 s-waves in a box, the latter approach gives
thc same spcctfun1 as thc formci wlthi11 thc experi-
mental uncertainties. %C will also show that real-
istic systems may be modeled satisfactorily by us-

ing separable core-hole potentials. For instance, a
square-mell potential and a separable potential give



5152 ULF von BARTH AND GUN'1"ER GRGSSMANN

nearly identical ND (dynamical) spix:tra provided
the parameters of the separable potential are
chosen so as to make the static initial-state spectra
agree as closely as possible. In particular, the
Fermi-level phase shifts and the integrated intensi-
ties should be chosen equal. In this paper we also
offer further illustrations to the numerical accura-
cy of the final-state rule in comparison with the
ND theory. %e will, e.g., present results for cases
where the core-hole potential is strong enough to
pull a bound state out of the continuum. We will

here only present results for emission because the
static influence of the core hole is in this case
much more drastic than in the case of absorption.
For the final-state rule in absorption we refer to
Ref. 15. The calculations presented in this paper
were carried out using both the integral-equation
formulation and the finite-E approach. In particu-
lar, we repeated several of the calculations by
Swarts et al. to demonstrate that the resulting
spectra do indeed obey the final-state rule rather
accurately.

Given the accuracy of the final-state rule it
would be desirable to have an explanation for the
rule in simple physical terms. What we offer in
this regard is only an approximate treatment
within the finite-X approach, which can be solved

analytically and which leads naturally to the final-

state rule. This analysis also shows that the "exci-
tonic" part of the singularity is approximately
multiplicative in frequency space. That part of the
singularity which is due to the Anderson ortho-
gonality catashrophe and which is known to be
multiplicative in time space (a convolution in fre-

quency space) is, however, lost in this approxima-
tion.

The shape of the main line in photoemission
spectra from core levels is rather accurately
described in terms of the one-core-hole spectral
function. As mentioned above, ND theory offers
a definite prediction AND(co) for this quantity.
Since there is no valence-valence interaction in the
ND theory, AND(co) does not have the correct sa-

tellite structure, e.g., due to plasmon production,
It is, however, believed ' that AND(co) provides a
rather accurate description of the asymmetric main
XPS line. The spectral function of the ND theory
behaves asymptotically as a power-law singularity
Cco ' for energies co very close to the XPS edge.
This behavior with the same exponent a is general-

ly believed ' to be correct also for fully interact-

ing electrons. This fact forms the basis for the
theoretical interpretation of the experimental XPS

lines which are fitted by a broadened version of the
asymptotic line shape Ceo '. In this way,
the core-electron binding energy, the core-hole life-
time, the phonon broadening, and the asymmetry
index a can be extracted from experiment.

The spectral function of ND theory, AND, obeys
the sum rule JAND(co) den= 1, which expresses the
fact that there must be unit probability for finding
the remaining system either in the ground state or
in some excited state after the XPS process. Now
clearly, the asymptotic spectrum (CaP ') does not

obey this sum rule since the corresponding fre-
quency integral diverges. Therefore, it is a
mathematically correct but vacuous statement to
say that the ND spectral function (AND) deviates
from the asymptotic spectrum away from thresh-
old (co+0). Nevertheless, Dow and Flynn and

Bowen and Dow ' have recently criticized the ex-
perimental procedure discussed above on precisely
this ground. In this paper we will address the
more relevant physical question: How large are
the errors in the experimentally extracted broaden-
ings and asymmetry indices that are introduced by
using the asymptotic line shape rather than the full
result of ND theory. This question we answer by
computing AND(co) for model system relevant to
real simple metals, applying both Lorentzian and
Gaussian broadening to the result, and, finally, by
trying to retrieve the input parameters (broadenings
and asymmetry index a) through the fitting pro-
cedure mentioned above. In all cases we find
the errors to be smaller than the corresponding ex-

perimental uncertainties. %e can thus say with
confidence that ND theory is equivalent to its
asymptotic version in simple metals.

From this investigation we can, however, not say
anything about the relevance of ND theory to real
x-ray or x-ray photoemission spectra. For this we

must rely on a comparison with experiment or on a
deeper theoretical analysis which also accounts for
the valence-valence interaction. There is, however,

presently no experimental, ' ' ' or theoreti-
cal reason to expect that the results of ND theory
would be substantially altered by taking this in-

teraction into account —at least not as far as the
main features of x-ray and x-ray photoemission

spectra are concerned. A realistic comparison with

experimental spectra also requires the inclusion of
exchange effects not accounted for in ND theory.
These effects can have a considerable influence on

the relative intensities of, e.g., the J 2 and L3 com-
ponents of absorption spectra and may also affect
the singular behavior at threshold in both emission
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and absorption. We do, however, not expect any
larger modification of the general shape of the
spectra due to these effects.

II. THEORY OF SXE
AND COMPUTATIONAL DETAILS

The determinantal approach' ' ' and the
integral-equation formulation' represent two exact
ways of solving the same problem. This
equivalence will be demonstrated explicitly in this
section. The integral-equation formulation was de-
rived by Nozieres and DeDominicis using the di-
agrammatic technique of many-body perturbation
theory, which makes their work less easily accessi-
ble than the conceptually simpler determinantal ap-
proach. Following the work by I angreth, we
will here present an elementary but nevertheless ex-
act derivation which assumes no familiarity with
Green's-function techniques. In this section we
will also give the theoretical and computational de-
tails which are needed in order to understand how
the results presented in Sec. V were obtained.

We start with the golden-rule expression for the
x-ray emission intensity I(co)

(2.2)

I(co)=g i &f i
T

i
i & i 5(co+EI E; ) . (2.1)—

f
The full expression also involves a slowly varying
factor Cco which has its origin in the photon de-

grees of freedom, but for simplicity this factor will

be omitted here. It must, of course, be included
before comparing to experiment. As we will

present here only emission intensities, our formulas
will only pertain to this case, but the case of ab-
sorption represents no additional difficulties. The
initial state

i
i & =

i
N- & of the emission process is

assumed to be the quasiground state of N valence
electrons in the presence of the core hole, i.e.,
ctc

i
N- & =0, where the operator c annihilates a

core electron, and we write the energy of' this state
as E; =Ep(N). The possible final states

i f & =c
i
N —l,s & are excited states (s) of N —1

valence electrons, the core orbital being occupied.
The energies of these states are written as

Ef—Eg(N —1 )+e„where e, is the unrelaxed (e.g.,
Hartree-Fock) core-electron energy. The operator
T, responsible for the x-ray transition, is, in the di-

pole approximation, given by

T=QP,kc ak,
k

where p,k ——&c ip i
k & is the one-particle dipole

matrix element and where k labels a set of annihi-
lation operators (ak) corresponding to a complete

orthonormal set Igk(r) I of one-particle valence or-
bitals. From the assumption above we have
cc

i
N —

&
=

i
N- & giving a transition matrix ele-

ment

(2.3)

At this stage it is convenient to introduce the (un-
normalized) transition-state orbital

yb(r) ~ krak(r)
k

and the corresponding annihilation operator

(2.4)

(2.5)

We also define the Fermi level eF =Ep(N)
Ep(N ——1), the shift b =Ep(N) —Ep(N), giving

the lowering of the total energy of the valence elec-
trons upon introduction of the core-hole potential,
the energy of the quasihole E,=e, + 6, i.e., the
core-electron binding energy, and the excitation en-
ergies co, =E,(N —1) Ep(N —I )—of the system of
N —1 valence electrons. The shift 6 contains a
term —&N

i
V

i
N &, which is linear in the core-hole

potential V, and which arises from the interaction
between the core-level and the ground-state valence
sea. This term is normally included in the core
eigenvalue e, . The sum of the remaining terms,
&„is equal t»+&N

i
V iN&=&N iII iN&

—&N-
i
H

i
N- & and, due to the variational

principle, this sum only contains second- and
higher-order terms in the potential. Therefore, 5„
is, usually referred to as a relaxation shift. Thus,

&=b,„—&N
i

V iN) . (2.6)

With these definitions, energy conservation, im-
posed by the 5 function in Eq. (2.1), leads to the
intuitively obvious result co=@+—E,—co„which,
as co, & 0, restricts the emission spectrum to lie
below a threshold given by eI; —E, . Defining a
shifted spectrum J(co)=I(co E, ) with the th—res-
hold at the Fermi level, co=@+, we obtain

(2.7)

So far, the discussion has been quite general but
in order to proceed we must take advantage of the
basic assumption of ND theory, namely, that the
valence electrons are scattered by the core-hole po-
tential V in the initial state but otherwise do not
interact in either initial or final state. Thus, they
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are described by the noninteracting Hamiltonians

yek~k~k+ y I kk'ukuk' ~

k k, k'
(2.g)

a11d

H =gek~kuk
k

(2.9)

in the initial state and final state, respectively. The
energies ek are the usual band energies of the per-
fect solid. In terms of the annihilation operators

a~, corresponding to the one-particle basis set

[gk(r ) I which is obtained in the presence of the
core hole and which thus diagonalizes H, these
noninteracting Hamiltonians can, of course, also be
written

H =gek~auk
k

H=Xek@~k —g I'kk amok .
k k, k'

(2.10)

(2.11)

From this basic assumption it follows that the
state

I
N- &, the ground state of H, is just a Slater

determinant made up of the N lowest orbitals

t/rk(r ) Furth. ermore, the states
I
N —l,s & are

eigenfunctions of H and can be generated from the
ground-state Slater determinant

I
N —1 & by creat-

ing all possible single and multiple particle-hole
pair excitations. Choosing latin (greek) letters to
indicate orbitals below (above) the Fermi level, we
obtain the series of determinantal states:

I
N —1&

[with energy Eo(N I)=Eke—k] ~@uk IN —1&

[with energy Eo(N —1)+e„ek];-
a„a&ukase I

N —1 & [with energy Eo(N —1)+e„
+ez —ek —ei], etc. Consequently, we find

J(~)=&N-Ib IN —1&i'g~ eF)—
+2 I

&N-
I
b'~p&k IN —1& I'

p„k

Xb(co —ep +ep —ek ) +
p, v, k, l

~ (2.12)

Obviously, the states b
I
N —l,s & are also Slater

determinants and, therefore, all matrix elements

appearing in Eq. (2.12) are simple scalar products
of determinantal wave functions. Such a product
is easily seen to yield the determinant of the over-

lap matrix of the corresponding one-particle orbi-
tals. With a finite number (N) of valence electrons
in a box, one obtains a finite levels spacing between
the one-particle energies ek, but replacing the 5
functions in Eq. (2.12) by normalized Gaussians
with a width somewhat larger than this spacing, a
continuous emission spectrum J(co) is obtained

from Eq. (2.12) by specifying the dipole matrix ele-
ments p,k and the one-particle overlap integrals

&fk I 1(k &. The evaluation of the first term in Eq.
(2.12) requires of the order of N elementary arith-
metric operations. As a by-product of this evalua-
tion one obtains the so-called minors of the deter-
minant &N-

I
b

I
N —1&, from which each term

(p, k) in the sum of the second term is obtainable

by ca. N operations. Summing over a set of orbi-
tals g„also chosen to be of order N, the computa-
tion of the contribution from the single-pair excita-
tions, i.e., the second line of Eq. (2.12), is again an
X -operation. The double-pair excitations, i.e., the
third line in Eq. (2.12), however, present a problem
of order N, and higher excitations becomes
exceedingly more time consuming. With an in-

creasing number (N) of electrons, i.e., with a de-

creasing level spacing, these higher excitations con-
tribute a larger and larger fraction of the total
emission intensity, eventually rendering the deter-
minantial approach intractable. Fortunately, it is
possible to find an N (ca. 100) such that almost all
intensity is given by single-pair excitations and
such that the shape of the resulting spectrum is
very close to the spectrum obtained in an infinite
system (N —+ co). This is a somewhat unexpected
result for which we have no simple physical expla-
nation, but which nevertheless makes the deter-
minantal approach a very convenient way to evalu-
ate the ND theory All emi. ssion results from this
approach presented in the present work were ob-
tained by including only single-pair excitations, i.e.,
by truncating the expansion on the right-hand side
of Eq. (2.12) after the second term. In Fig. 1 we

compare the result of the determinantal approach
using 80 s electrons in a box with the correspond-
ing result for the infinite system obtained from the
integral equation [Eq. (2.29)] to be derived below,
and the agreement is indeed striking.

The convergence of the determinantal approach
with respect to N towards the limit of a very large
system can also be studied from the sum rule
obeyed by the integrated emission intensity. This
quantity is easily obtained from Eq. (2.7) by using
the completeness of the states

I
N —l,s &

I J(co)dco=&N- ib b iN-) . (2.13)

By expressing the operator b in terms of the basis
set (pk) obtained in the presence of the core hole
[cf. Eq. (2.5)], the right-hand side of Eq. (2.13) be-
comes g &N-

I
aaaa'

I
N- &P~ckPck, and conse-

k, k'
quently, from the definition of the quasiground
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state
I
N- ),

OCC

J co dN= p&k (2.14}

determinantal approach, Eq. (2.7). The first step is
to convert the 5 function into an integral in time-
space giving

J (~)=X I p.k I
'@~—ek»

k

(2.15)

where "occ" indicates that the sum extends over
the N lowest orbitals pk. At this stage it is con-
venient to introduce two other concepts central to
our discussion —the static initial-state spectrum,
J;(tp), and the static final-state spectrum, Jy(tp).
These are defined as the shifted spectra obtained
within simple one-particle theory with core-valence
dipole matrix elements computed from valence or-
bitals obtained in the presence of the core hole and
in the absence of the hole, respectively. Thus

J(co)=—Re+f dt e
7r S

CO

X(N-
I

bt
I
N —l,s)

X(N l,s I—b IN-) . (2.17)

Then, from the definition of pi, [co,=E,(N —1}
Ep(N ——1 ) =Eg(N —1 ) —Ep(N) +Ep(N) —Ep(N)

+Ep(N) —Ep(N —1)=E&(N —1 ) —Ep(N)
—6+ed] and from the completeness of the eigen-

states
I
N —i,s ) of H we obtain

OCC

JJ(~)=X Ip.k I'+~ —ek} (2.16)
J(N) =—Re dt e" ~ a~(N-Ibte" be 'HIN )

1

and the sum rule [Eq. (2.14)] then shows that the
integrated intensity of the dynamical spectrum
J(co) is equal to that of the static initial-state spec-
trum (see also Ref. 13). When only single-pair ex-
citations are included in the dynamical spectrum,
its integrated intensity does not exhaust the sum
rule and the error increases not only rapidly with

N, but also with the strength of the core-hole po-
tential. %e have, however, found numerically that,
for N ca. 80, no more than 4%%uo of the total intensi-

ty is contributed by double pair and higher excita-
tions, even for very strong potentials that almost
result in a bound state.

Having discussed the determinantal approach,
we will now concentrate on the equivalent ap-
proach originally presented by Nozieres and
DeDominicis. ' This method leads to an integral
equation whose solution in turn determines the x-
ray spectrum. The solution is, however, rather dif-
ficult to obtain for ordinary local core-hole poten-
tials, a disadvantage not encountered in the deter-
minantal approach. One of the clear advantages of
the integral-equation formulation lies in the fact
that the equation can be solved asymptotically to
yield the singular behavior of the spectra close to
threshold. ' The main reason why we have chosen
to base most of our work on this approach is, how-
ever, that it can rather easily be generalized to in-
clude the interaction between the electrons, thus
eventually enabling us to go beyond ND theory.
Such a generalization is very difficult to attain in
the determinantal approach.

The starting expression is the same as for the

(2.19)

provided we know the correlation function

Fkk(t)=(N- Iake' 'ake ' 'IN-) . (2.20)

In Appendix A we show that Fkk (t) is a product
of two quantities Gkk (t, t} and g(t),

Fkk'(t} tg(t)Gkk'(t t} (2.21)

and that Gkk (r, t) can be obtained from the in-
tegral equation

Gkk'(rlt) Gk(r+kk'

+g f Gk(r r')—
XVk Gqk(r't)dr (222)

involving a free-particle Green's function

Gk(r) = ie [(1——nk)8(r) —nk8( —r)] .

(2.23)

Here, 8(r) is the usual Heaviside step function and
the Fermi factor n~ is one or zero depending on
whether the state k is occupied or not. The in-
tegral equation completely determines Gkk (r, t) in

(2.18)

Expanding b, for later convenience in the basis that
diagonalixes H, the spectrum is finally given by

J(pi) =—Regp, p, ~ f dt e"' a'F (t),
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the interval t ~ ~ &0 and in Appendix A we also
show that g(t) can be obtained from Gkk according
to

quantity

G(&, t) =+A,kGkk (r, t)P,*k

k, k'
(2.26)

0
exp y f ~k'kGkk'(0 r) d+

k, k'
(2.24) in terms of which the spectrum is given by [Eqs.

(2.19) and (2.21)]

Thus, in order to compute the emission spectrum
we must first solve the integral equation (2.22) for
a given core-hole potential, then obtain g(t) from
Eq. (2.24) and Fkk (t) from Eq. (2.21), and finally
we must evaluate the Fourier transform and per-
form the sums prescribed by Eq. (2.19). The prin-
cipal difficulty of this procedure lies in obtaining a
solution to Eq. (2.22). For real solids, the label k
is three-dimensional and we have an integral equa-
tion in four variables. Assuming a local spherical
core-hole potential the equation can in many cases
be reduced to a set of coupled integral equations in
two variables but the solution to this simpler prob-
lem still requires a considerable effect. However,
using a separable potential of the form

Vkk = ~OP ckPck (2.25)

reduces the calculation of the spectrum to a truly
one-dimensional problem in time-space. In writing
the core-hole potential as in Eq. (2.25) we have ac-
tually introduced two approximations: (i) the po-
tential is separable and (ii) the k dependence is
governed by that of the dipole matrix element. It
might appear as if the second approximation im-

poses too severe a restriction on the potential by
leaving only one free parameter, V0, in order to
model a realistic core-hole potential. It is, howev-

er, seen from Eq. (2.20) that Fkk (t) is nonzero only
if both k and k' label occupied states and, there-
fore, by virtue of Eq. (2.19), we need the dipole
matrix element p,k only below the Fermi level in
order to obtain the spectrum. Consequently, we
are free to chose p,k above the Fermi level at will

and, in the present paper, we will show that this
additional freedom sufficies to allow us to model

any local potential pertinent to a simple metal by
means of the ansatz (2.25). We will use the deter-
minantal approach, in which a local potential is no
more difficult to treat than a separable potential,
to show that, given a local potential we can find a
separable model potential [Eq. (2.25)], which is
equivalent to the former in the sense that both po-
tentials give rise to almost the same dynamical
spectrum.

e now demonstrate that, with the ansatz (2.25),
our problem becomes essentially one-dimensional
and comparatively simple. We define the auxiliary

0
J(co)=—Im f e"'" 'g(t)G(t;t) dt . (2.27)

Similarly we define the Green's function

G (r)=~,kGk(r)P*, k .
k

(2.28}

and Eq. (2.24) becomes

0
g(t)=exp Vo f G(0;r)dt (2.30)

In terms of the density of states &(e), we also de-
fine the transition density of states (TDOS) ob-
tained in the presence of the core-hole potential,
A(co), and the TDOS for the ground-state solid
with a filled core level, A (co), by

~(~)=[&(ek) IAk I'],,=. ,

~(co)=[&«k) lpek I'].„=

(2.31)

(2.32}

where p,k now is an averaged matrix element

depending only on energy. Then the static initial-
and final-state spectra defined by Eqs. (2.15) and
(2.16) are given by the occupied part of the TDOS
obtained in the presence and in the absence of the
core hole, respectively.

J;(co)=A(co)8(ep —co),

Jg(co) =&(co)8(&F co) . —
(2.33)

(2.34)

With these definitions we find that the Green's
function G (r) of Eq. (2.28) is completely specified
by the TDOS of the initial state with the core hole,

G (r)= —i8(r}f A(e)e ""de
6p

+i8( r}f A(e)e '"d—e .

With the ansatz (2.25), A(co) can, as shown in Ap-
pendix 8, be evaluated analytically to yield the re-
sult

(2.35}

If we now multiply the integral equation (2.22)
from the left by f,k and from the right by p,'k and
sum over k and k', these definitions and the ansatz
(2.25) lead to the one-dimensional integral equation

G(r;t) =G'(r)+ V, f G'(r —r')

X G(r', t) dr',
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A(e}=A(e) 1 —Vo I
'2

—1

+ Vow A (e) (2.36)

in terms of the TDOS A (co) of the final state, i.e.,
the TDOS of the perfect solid. In Appendix B we

also show that the Fermi-level phase shift 5~ of
the separable potential [Eq. (2.25)] is given by

sin5z ———Vox.[A (e~)A(e~)]' (2.37)

From Eqs. (2.36), (2.35), (2.29), (2.30), and (2.27)
we see that the dynamical emission spectrum

is completely determined by the TDOS A (co) of
the final state and the potential parameter Vo. A11

results from the integral-equation approach
presented in this work were obtained from these

equations.
We will now describe the procedure used in our

practical applications. In order to obtain the
dynamical emission spectrum for a real solid, i.e.,
the spectrum predicted by ND theory, we first
compute the static final-state spectrum for the
solid, i.e., the spectrum obtained from one-particle
theory in which the valence Bloch functions are
used to calculate the transition matrix elements.
Due to dipole selection ru1es, this spectrum has in

general two angular-momentum components. For
instance, in the case of a core hole of p character,
there is an s and a d contribution to the spectrum.
We will consider these contributions separately,
one at a time. Such a procedure is based on the
assumption that the full ND integral equation
(2.22) is to a good approximation equivalent to a
set of decoupled integral equations, one for each
angular-momentum channel. It is not difficult to
show that this really is the case in a simple metal
with cubic symmetry, assuming a spherical core-
hole potential and neglecting l=4 and higher
angular-momentum components of the Green's
function in the central cell. An ansatz of the form
given by Eq. (2.25) can then be made for each
angular-momentum channel. For each channel we

identify A (co) below the Fermi level, i.e., the static
final-state spectrum, with the transition density of
states of the real system. From self-consistent im-

purity calculations for the real system with a core
hole on one site, we next obtain the screened core-
hole potential, the corresponding Fermi-level phase
shifts, and the angular-momentum decomposed
transition density of states in the presence of the
core hole. For each channel we then determine

Vo and A (c0) aboue the Fermi level by the require-
ment that the phase shift given by Eq. (2.37) be the
same as the true Fermi-level phase shift and that
A(co) from Eq. (236) be an optimal fit to the occu-
pied part of the TDOS of the real system in the
presence of the core hole. Due to the severe re-
strictions imposed by our separable ansatz [Eq.
(2.25}],the fitted TDOS, i.e., the fitted initial-state
spectrum, may deviate considerably from the full
result. A typical example is provided in Fig. 2,
where the full result is represented by the TDOS of
a free-electron gas in the presence of a spherical
square-well potential. Owing to the sum rule given

by Eq. (2.14), the weight of the dynamical spec-
trum, i.e., the integrated intensity below the Fermi
level, is given by the weight of the static initial-
state spectrum and, therefore, it is essential to en-

sure that at any rate the weight of the fitted spec-
trum A (co) be equal to that of the static initial-
state spectrum of the real solid.

Having obtained A (co) and Vo in this way, we
compute the Green's function G (r) from Eq.
(2.35) and solve the integral equation (2.29). For
moderately large times, this equation can be solved

by straightforward iteration, but for large t and

strong potentials Vo, the iteration converges rather
slowly. Therefore, in practice, we used a technique
based on Pade approximants. A few further
parameters enter into the numerical procedures.
The density of states of a particular angular
momentum decays rather slowly for large energies.
The dipole matrix elements, however, tend to zero
rather rapidly at larger energies and, consequently,
so does A (co) [Eq. (2.32)). Since our procedure al-
lows us to choose A (co) rather freely above the
Fermi level, we have decided to make it vanish

above some high energy e~, usually chosen to be
ca. 4'. The inverse of the total energy range of
A (co) [and of A (co), Eq. (2.36)] will set the time
scale for fine structure in the Green's function
G (r}. Thus the time step ht of Simpson's rule
that we used to evaluate the integral in Eq. (2.29)
had to be chosen to be —1/(4m~). Having solved
the integral equation up to a maximal time

~
tM ~,

we have to perform a Fourier transform [Eq.
(2.27)] to obtain the spectrum. As merely cutting
this integral at tM introduces artifical oscillations,
one can choose to obtain a broadened spectrum by
including a factor exp( —a

~

r
~
) (Lorentzian) or

exp( —Pt ) (Gaussian) in the integrand, with
parameters a or P chosen such that the integrand
essentially vanishes beyond

~
ter

~

. But in order to
obtain a better resolution and an accurate descrip-
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tion of the sharp singular feature at the Fermi
edge, we apply a fitting procedure that allows us to
do the Fourier integral analytically for large times
(t~ ao—) F.or large times the two main quanti-
tites G(0, t) and G(t, t), which according to Eqs.
(2.27} and (2.30) determine the SXE spectrum, are
fitted to the analytical expressions

2

VpG(0;t)= — iD—p+Cpt ~e
t

(2.38)

(2.39)

The real fitting parameters Cp C Dp D Qp 0,
P p 5p 5&, and 5z are chosen so as to yield

the least-square's deviation between these expres-
sions and the corresponding quantities obtained
from the integral equation. The fitting is done
over time intervals of the form ( 3tM,-t~) and re-

peated for successively larger
~

tM
~

until the fit-
ting parameters remain almost unchanged. In this

way we obtain a nearly exact solution to the in-
tegral equation valid for all negative times. The
analytical expressions were certainly not chosen
ad hoc. Clearly, the constant term in Eq. (2.38)
determines the position of the x-ray threshold

[Eqs. (2.27) and (2.30)] and the fitting parmeter Dp
should converge to 6 in order to fix the threshold
at the Fermi level ez. The first term of Eq. (2.38)

{s,/~)'
contributes a factor (eF co) to t—he singular-
threshold behavior. Prbvided the fitting parameter
5p equals 5z i.e., the Fermi-level phase shift of the
core-hole potential, this is the correct suppression
of the x-ray edge due to the Anderson "orthogonal-
ity catastrophy. " Similarly, the first term of Eq.
(2.39) yields, close to threshold, a factor—2(52/m)
(e~—co), which is the correct excitonic
enhancement of the edge, provided the parameter

52 also equals 5F. Furthermore, it follows from
the asymptotic version of ND theory' that we
should also obtain 5~ ——5z. The last terms in Eqs.
(2.38) and (2.39}are meant to describe the oscilla-
tions in time produced by the nonanalytic behavior
of the TDOS at the bottom of the band. It is in-

dicative of the internal consistency of the fitting

procedure and of the overall accuracy of our nu-

merical procedure that the parameters obtained in

an unrestricted fit did, within a few percent, fulfill

the requirements discussed above. This result can
also be viewed as a numerical verification of the
asymptotic expressions derived by ND. '

As demonstrated above, the integral equation ap-
proach is made quite tractable by means of the an-

satz (2.25) but in order to show that this approach
gives accurate ND spectra we must compare the
results with those obtained from a more realistic
potential. For this purpose we have assumed that
a realistic core-hole potential can be modeled by a
local energy-independent potential. At least away
from the Fermi level this might be a questionable
approximation since the true interaction between a
quasiparticle and the core hole, i.e., the difference
in the self-energies with and without the hole, is
both nonlocal and energy dependent. However, we
do not expect this approximation to be serious
and in any case it is consistent with ND theory
which also neglects the valence-valence interac-
tions. Furthermore, we have decided to use a
spherical square-well potential as a typical example
of a local core-hole potential in a simple metal.
%'e believe this to be a reasonable choice for s and

p electrons in view of the fact that actual core-hole
potentials are small and monotonically increasing
functions of the distance to the nucleus. Thus, in

this paper we will show that the emission spectrum
resulting from switching off a square-well potential
in an otherwise free-electron gas can be accurately
modeled by replacing the square-well potential
with the separable ansatz (2.25). We note that a
square-well potential makes the determinantal
method rather trivial to carry out since the wave

functions confined to a large sphere of radius S
can be obtained analytically both with {gk I and
without {$1, I the potential at the center. The re-

quired overlap integrals k r k r d r can also
be obtained analytically but we will not give these
trivial formulas here. The dipole matrix elements

p,k can be chosen at will, e.g., for the s part of the—r/r
spectrum they can be simulated by e

peak(r

) d r with a suitable core radius r, or they
can be taken as the wave function at the origin
[g~k(0)] as is done by Swarts et al. The former
choice makes it easy to simulate a one-particle
emission spectrum of a real simple metal but the
latter is somewhat unphysical. It results in a spec-
trum with a square-root energy dependence at all
energies and the matrix elements p,k do not tend to
zero as they should. Furthermore, the choice made

by Swarts et al. overestimates the ratio between the
integrated intensities of the static initial- and
final-state spectra. In a monovalent metal this ra-
tio is approximately two, reAecting the approxi-
mate proportionality between the spectra and the
local-state densities and the fact that the core hole
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is screened by exactly one additional valence elec-
tron in the central cell.

III. THEORY OF XPS

In this section we will merely summarize those
details of the theory of x-ray photoemission that
would enable the reader to repeat the calculations
leading to the results presented in Sec. V. In the
so-called sudden approximation, which will be used
here and which leads to a description of XPS in
terms of the one-core-hole Grmn's function, this
theory is actually a simpler version of the theory
of x-ray emission presented in Sec. II. Therefore,
we can rely heavily on the results obtained there.
The starting point is the same, the golden rule

E~(N) + e~ e—i =hr co—, +e, ar —eF——E~ —eF—
—co, —co, we obtain

X5(v+E~ eF—co,——ar )

(3.4)

I(co)=&(co+FF)
I p,k I,„„+,

Xg I &N,s- IN) I'

X5(~+&F Ek) ~

Introducing the density of states &(e) to convert
the sum over the label k to an integral over ener-
gies, we have

&f I
T Ii) I'5(v+E EI)—

f X5(co+co, v E, +—eF—), (3.5)

(3.1)

(3.2)

The matrix element &f I
T

I
i ) becomes gk.p,'k

X & N, s -
I
ak a k cc

I
N ) . By definition

cc
I
N )=

I
N ), and we can safely assume that

there is a negligible content of one-particle states
with the very high energy ek in the ground state

I
N) Thus.

&f I
T li)=pck&»s- IN) (3.3)

and by rearranging the eneriges in the 5 functions
and using our definitions from Sec. II Eo(N)—

X5(~+&F—eq ),
where we have inserted an extra 5 function to ac-
count for the fact that the photoemitted electrons
are usually analyzed according to their energy rela-
tive to the Fermi level, eq —eF. The energy v of
the exciting photon is assumed to be very large, re-
sulting in a high kinetic energy ( Ek) o-f the pho-
toemitted electron which then can be treated ap-
proximately as a free electron. The initial and fi-
nal states of the XPS experiment differ from those
of SXE. The initial state

I
i ) is the ground state

of 1V valence electrons and an occupied core orbi-
tal, c

I
N ), and its energy is Eo(N)+e„ in the no-

tation of Sec. II. In the sudden approximation the
final state is written as ak

I
N, s —), representing an

outgoing bare electron in a state k that does not in-
teract with the excited state s of the N valence
electrons which are left in the presence of a core
hole. The final-state energy is E,(N)+ek. The
part of the transition operator T which couples the
initial state to the chosen final states is now the
Hermitian conjugate to Eq. (22)

T=~ kakc .
k

which shows that the threshold of the XPS spec-
trum is again determined by the core-electron bind-

ing energy relative to the Fermi energy eF —E, as
was the threshold of the SXE spectrum. At high
energies co, the TDOS factor in front of the sum
over excited states s varies slowly with energy and
can be considered as a constant over the width of
the XPS line. Since absolute intensities are not
measured, this constant can be omitted together
with other slowly varying factors that actually
should have appeared in front of the golden-rule
expression. Being primarily interested in the shape
of the XPS line and not in its position, we define
our shifted and unnormalized spectrum A, (co) to
be

A, (ai) =g I &N
I
N,s-)

I
'5(~+ai, ) .

S

Obviously, the threshold has been shifted from
co=v+ E, cF to co=0, i.e—., A, (co)=0 for co&0.
Owing to the completeness of the states

I
N, s —), the unnormalized spectrum fulfills the

convenient sum rule
0

N N=l .

(3.6)

(3.7)

Comparing the Eqs. (2.7) and (3.6) we see that
XPS from a theoretical point of view, is indeed a
simpler version of SXE. The determinantal tech-
nique for XPS is almost identical to that of SXE.
The determinants b

I
N —l,s ) in SXE are re-

placed by determinants
I
N, s —) in XPS, the

single-pair and higher-order excitations, however,
are now to be described in the core-hole basis
Iak, gk(r) I which, for absorption, again corre-
sponds to the final state of the system. The excita-
tion energies should also be obtained in the pres-
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ence of the core hole, although the distinction be-
tween core-hole (ek) and no-core-hole (ek) eigen-
values becomes irrelevant already at rather small

Thus

pleteness of the states
~

N, s —
& we have

A, (to) =—Ref dt e"' + 'g(t), (3.10)

A, (~)=
I &N IN-& I'5(~)

+X I &N l&,ak IN-& I'5(~+e„—ek)
p„k

+ X l &N ~.-„"-."-,.—,~N-&~'
p, v, k, l

X5(co+e~+ey Ek —e—t)'+ '

(3.8)

For systems, with of the order of 100 s waves in a
box we have found numerically that the contribu-
tions from double pair excitations [third line of Eq.
(3.8)] are very small and that higher-order excita-
tions can be neglected. Only if a very high accura-

cy is required in connection with strong core-hole
potentials may double excitations be of some im-

portance. This is demonstrated in Table I which,
for two spherical square-mell potentials of different

strengths, shows how well the spectrum fulfills the
sum rule (3.7) when no excitations, single excita-

tions, and also double excitations are included.

The equivalent integral-equation approach to the
XPS spectrum is obtained in a way similar to that
leading to the SXE spectrum, namely, by express-

ing the 5 function in Eq. (3.6} as an integral over

time t giving

co

A, (co)= —Ref dt e'"'

where we defined the function g (t) by

&N
~

Ht Ht—
~N& (3.11)

This function is quite analogous to the function

g(t) defined for the case of x-ray emission in Ap-
pendix A [Eq. (AS)], and g (t) has to be obtained
from an integral equation similar to that determin-

ing g(t) [Eqs. (2.22) and (2.24)]. The derivation of
this new equation differs only in minor details
from the derivation of, e.g., Eq. (2.22) and we will

here give only the final results for the case of the
separable potential defined in Eq. (2.25). We ob-
tain' the integral equation

G(r;t)=G'( )r

+Vo f G (r r')G(r—';t)dr', (3.12)

where 6 (r) is the noninteracting Green's function
in the absence of the core hole given by

6 (r)= i8(r)—f A(e)e '"de

+i8( r)f—A(e)e '"de, (3.13)

in terms of A (e), the transition density of states in
the absence of the core hole. This integral equa-
tion uniquely determines the quantity 6 (r;t) in the
interval 0 (r( t and the function g (t) is then given

by

Xye * &N ~N,.-&&Ns- ~N&.

(3.9)

g(t)=exp +itVO fA(e)de

—Vo f 6*(0;r)dr (3.14)

From the definition in Sec. II we have co, =E,(N)
Eo(N) =6 +—E,(N) —Eo(N) and using the com- Thus, in order to compute an XPS spectrum of a

0
TABLE I. The integral S= A, {m)dao over the spectral function A, (cu) from the

4~ c

finite-X approach is here shown as a function of X for two different square wells when no
excitations (So), single-pair excitations (S~), and double-pair excitations (S2) are included in
the sum over final states in Eq. (3.8).

So
5F ——0.29n

S) So
5p ——0.41m

S)

40
80

150

0.835
0.814
0.794

0.995
0.994
0.992

0.997
0.997
0.997

0.457
0.406
0.365

0.971
0.955
0.937

0.994
0.994
0.993
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real solid—or for that matter an absorption spec-
trum (see below) —we identify A (e) above the Fer-
mi level with the one-particle transition density of
states of the solid in the presence of the core hole.
We then obtain A (e) from the inverse of Eq. (2.36)
where we have chosen V0 such that the Fermi-level
phase shift from Eq. (2.37) is equal to that of the
full core-hole potential and where A(e) below the
Fermi level has been chosen to yield a good fit
above the Fermi level between A (e) and the one-

particle transition density of states of the ground-
state solid. Finally we calculate the Green's func-
tion G (r) from Eq. (3.13), solve the integral equa-
tion (3.12), and compute the function g (t) from

Eq. {3.14) and the XPS spectrum from Eq. (3.10).
If there are several important angular momentum
channels the resulting spectra of each channel must
be convoluted to form the total XPS spectrum. In
simple metals it is essential to include both the s
and the p channels, while the d channel can be
neglected. "

The XPS experiment can be thought of as an ab-
sorption experiment carried out at high energies
and it is thus not surprising that thc SXA spec-
trum JsxA(c0) can also be obtained from the pro-
cedure described above. Choosing the threshold at
~0 =ez it is given by [cf. Eq. (2.27)]

Jsxz(co) = ——Im f dt e"'" 'g*(t)G(t;t) .
m'

(3.15)

This equation has been used in Ref. 15 to demon-
strate the accuracy of the final-state rule for ab-
sorption in several model systems. In the present
paper we will, however, not present any absorption
results.

In the free-electron approximation the XPS spec-
trum is simply a 5 function and in ND theory it
becomes a rather narrow sharp peak which asymp-
totically approaches a power-law singularity at the
edge. For very strong core-hole potentials there
can be structure due to strong shake-up processes
at energies -e~ below the edge but there will be
no satellite structure due to plasmons since there is
no valcncc-valcncc interaction in thc ND model.
For simple metals, however, most of the total in-
tensity is concentrated close to the edge and conse-
quently, it is quite difficult, by just looking at
A, (co), to determine the energy range in which the
actual ND spectrum approximately follows a
power law. Therefore, we have here decided to
show our results for A, (to) in a more illustrative
way, in which the deviation from the asymptotic

line shape becomes more apparent. To this end we
define the exponent function a(t) according to

iVO, pG*(0;t)+, t &0
~ 2r 2%

a(t) = a'( t),—t&0, (3.16)

V,G(0;t) = iP+— (3.18)

where the asymmetry index a of one angular
momentum and spin channel is given by

(3.19)

in terms of the Fermi-level phase shift 5~ of that
channel. Thus, for large t we have asymptotically
a(t) =i a/(2mt). At energies close to the edge, i.e.,
for small frequencies in A, (t0), the dominant con-
tribution to the Fourier integral in Eq. (3.17)
comes from large t and by introducing a cut-off T
in the integration over r and replacing a{t) with its
asymptotic form, both integrals in Eq. (3.17) can
actually be carried out analytically, and to loga-
rithmic accuracy we obtain

A, (t0)=C
i

to
i

N (3.20)

This is the asymptotic line shape derived by
Nozieres and DCDominicis but the constant C
depends on details of the potential in a more com-
plicated way than simply via the Fermi-level phase
shifts and cannot be obtained from the asymptotic
arguments presented above. Obviously, the ex-
ponent function a(t) decays fast enough to be
Fourier transformed and we have

a(t0)= —Im f dte '"'f VoG(0;t)+ip] .

(3.21)

If we multiply Eq. (3.17) by c0, integrate by parts,
and introduce the inverse of this Fourier
transform, we obtain the relation coA, (co)
= —fdto'a(co')A, (co —co'). Since the spectral
function A, (co) vanishes above the edge, i.e.,
A, (co)=0 for co ~ 0 [Eq. (3.6)], it follows from this

where p is short for b+ Vo fA (e) de. From the

Eqs. (3.10) and (3.14) we see that the spectral func-
tion A, (co) can be written as

A, (co)= fdte'"'exp 2ni f a(r)dr . (3.17)
2m' 0

In analogy with Eq. (2.38) it can be shown' that
the function VoG (0;t), for large t, behaves asymp-
totically as
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relation that the same must be true for the ex-

ponent function a(co), i.e., a(co) =0 for co )0, and

we obtain the integral equation '

0
c—oA, (co)=f a(co c—o')A, (co') dco'

for the spectral function A, (co). With no frequen-

cy dependence in the exponent function, i.e., with

a(co) =a(0), this integral equation would be solved

by the asymptotic expression (3.20) and we have

the important relation

(3.22)

a(0)=a, (3.23)

The last equality follows from the following con-

siderations. Obviously, a(co) integrated over all

frequencies is just 2m.a(t=0), which according to
the Eqs. (3.16), (3.12), (3.13), and (2.6) is equal to

P—Vo I A(e)de=6+Vs I A(e)de

=S+&N
~

V~N)=a„.

Thus, the center of gravity of A, (co) falls at b „
below the edge. Shifting the edge back to the exci-

tation energy of the core hole, the sum rule (3.24)

is just a restatement of the well-known rule that
the center of gravity of the excitation spectrum
remains at the Hartree-Fock eigenvalue irrespective
of the strength of the satellite structure. This rule

is valid in ND theory as well as in the fully in-

teracting case.s Of course, in the latter case the
relaxation shift in a simple metal will have large

which explains the name "exponent function" for
a(co). Furthermore, the frequency-dependent devi-

ation of a(co) from its value at the edge measures

the deviation of the spectral function from the

asymptotic result. The usefulness of the exponent

function a(co} stems from the fact that the asym-

metry index a, obtained by fitting an asymptotic
line shape (Eq. 3.20) with a variable a to a full ND
spectrum, is approximately equal to the average of
a(co} over the fitting region as will be discussed in

Sec. V.
In practice, we solve the integral equation (3.12)

for G(O, t) and obtain a(co) from Eq. (3.21). The
XPS line shape is then to be obtained either from
the integral equation (3.22) or directely from Eq.
(3.10), the two methods being equally convenient.

We end this section by noting an interesting sum

rule. Owing to the sum rule (3.7} for the spectral
function A, (co) we have from Eq. (3.22)

0 0I coA, (co) dco = —I a(co) dco = —6„.
(3.24)

contributions from the plasmon satellites in A, (co).
Since ND theory does not account for these effects
the corresponding "relaxation" shift is not relevant
to real systems (cf. Ref. 44).

IV. RESULTS FOR SXE AND THE
FINAL-STATE RULE

We start this section by establishing the useful-

ness of the determinantal finite-N approach. Con-

sider for a moment the spectrum J'i '(co) obtained

from this approach using X electrons in a box and

including only single particle-hole pair excitations
in the sum over final states prescribed by Eq. (2.7).
This spectrum consists of discrete lines. However,

as the number (N) of electrons is increased,

JI '(co) first approaches a continuous spectrum
Ji(co), but eventually the spectrum collapses due
to Anderson's orthogonality catastrophe, i.e.,

lim Ji '(co)=0.

p,k = f e "Pk(r) d r . (4.1)

The spectrum J2 '(co} obtained by also including
double-pair excitations experiences a similar evolu-

tion with increasing N. It approaches a continuous
spectrum J2(co), but, in this case, the final collapse
occurs at a much larger X. Including several
particle-hole pairs, N may be even larger before the
integrated intensity of the corresponding spectrum
tends to zero and the sequence Ji(co),J2(co),. . .
converges towards the exact spectrum J(co) of the
infinite system. As a matter of fact, we have, in

the present paper, considered already Ji(co) to be

an accurate approximation to J(co) but due to the
computational difficulties associated with the in-

clusion of higher-order excitations, it is unfeasible

to properly study the convergence properties of an

asymptotic expansion as that described above.

Fortunately, we are in a position to compare the
approximate spectrum Ji(co) directly with the re-

sult for the infinite system. Whereas the integral-

equation approach in the simple version discussed
here is limited to separable core-hole potentials,
there is no restriction on the potential in the deter-

mi.nantal finite-X approach. In particular, we can
compare results of the two methods using the same

separable potential. Figure 1 shows such a com-

parison in the case of a separable core-hole poten-
tial of the form given by Eq. (2.25) with dipole
matrix elements chosen to be
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FIG. 1. Comparison between the emission spectra ob-

tained for a separable potential from the integral-
equation [Eq. (2.29)] formulation and from the deter-
minantal finite-N approach (N =80).

The final-state wave functions I l(k J are taken to be
free spherical waves. In all emission examples
presented here we have had in mind 1.2 3 emission
spectra which are determined essentially by the
TDOS of s character. The core hole then has p
symmetry but, in a picture based on orthogonalized
plane waves, the energy dependence of the transi-
tion matrix element p,k is, at small energies, main-
ly determined by the direct overlaps between plane
waves and the lower-lying core states of s symme-
try —in this case chosen to be a single ls function
with a reciprocal radius A, of 1.25 inverse Bohr ra-
dii. Thus, the choice given by Eq. (4.1) has the
correct energy dependence at smaller energies. The
potential parameter Vo is —2.24 Ry giving a
Ferini-level phase shift 5+——0.90. This phase shift
as well as the density (r, =4) of the free-electron
gas used to simulate the ground-state solid both
correspond approximately to sodium metal. " The
spix:trum from the finite-X approach is constructed
using 80 s waves in a spherical box and the possi-
ble final states are limited to those having only a
single excited particle-hole pair. The close agree-
ment between this spectrum and that obtained for
the infinite solid using the integral-equation ap-
proach is strong evidence for the rapid convergence
of the asymptotic expansion discussed above. This
comparison has also been performed in other cases
corresponding to different choices of parameters
and with the same encouraging results. Thus, Fig.
1 should be considered as a typical case and the
present investigation represents the first strict
demonstration of the usefulness of the finite-N ap-

~(Ry]

FIG. 2. - The dynamical spectra (d) obtained in the
finite-N approach for a spherical square-well potential
(sq.w. ) with radius r, and a separable potential (sep)
modeled to yield the same Fermi-level phase shift 5 and
the same integrated intensity of the static initial-state
spectrum (i). Also shown is the static final-state spec-
trum (f ).

proach.
Next, we intend to establish that the use of a

separable potential does not give rise to any spuri-
ous results. As a matter of fact, a separable poten-
tial and a local potential, i.e., a potential depending
only on position, give rise to very much the same
dynamical ND spectra provided the parameters of
the separable potential are chosen such that the
Fermi-level phase shift and the integrated intensity
of the resulting static initial-state spectrum are the
same as for the local potential. This important
fact, which is exemplified in Fig. 2, renders the
simple one-dimensional version of the integral-
equation approach quite useful for the calculation
of dynamical ND spectra of real solids. The curve
labeled f is the static final-state spectrum [Eq.
(2.16)], i.e., the usual one-particle result with dipole
matrix elements given by Eq. (4.1) in terms of free
spherical waves. The curve marked i~ „ is the
static initial-state spectrum [Eq. (2.15)] for which
the dipole matrix elements have again been ob-
tained from Eq. (4.1) but this time using free
spherical waves perturbed by a spherical square-
well potential of radius r, =1.52 Bohr radii and
depth V= —0.873 Ry. The curve labeled ise~ is the
static initial-state spectrum given by a separable
potential determined as described at length in Sec.
II [essentially from Eqs. (2.33), (2.34), (2.36), and
(2.37)]. In particular, this potential gives the same
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J(co)=CJf (co)
j

6'y —CO

(4.2)

where Jf(co) is the static final-state spectrum given

by Eq. (2.16) and C is a constant which is deter-
mined by the sum rule (2.14) stating the equality of
the integrated intensities of the dynamical and the
static initial-state spectra. An approximate deriva-
tion of Eq. (4.2) is given in Sec. VI. The impor-
tance of the final-state rule derives from the fact
that the rule a posteriori provides a justification for
the numerous previous calculations of x-ray emis-
sion spectra based on band theory. The rule also
shows how realistic x-ray emission and absorp-
tion' spectra may be obtained from simple one-
particle theory without resorting to complicated
dynamical calculations for realistic systems. Final-
ly, the rule exactly corresponds to the commonly
used procedure for obtaining threshold exponents
from experimental emission spectra. This pro-
cedure is thus justified by the high accuracy of the
final-state rule close to threshold. In Fig. 3 the
spectrum from the final-state rule is compared to
the full dynamical ND result chosen to be the
same as in Figs. 1 and 2. In order to show the

Fermi-level phase shift 5~ ——0.90 as the square-well
potential and the ar'ea under the two curves labeled

ised and i,q „ is the same. The curve labeled d is
the dynamical ND result obtained from the finite-
X approach (%=80) using either of the two poten-
tials. Therefore, this curve actually consists of two
curves separated by less than 1%, which demon-
strates the effective equivalence of the two poten-
tials. We stress again that the results presented in
the figures should be considered as typical and not
merely as a consequence of fortuitous circum-
stances. Notice that the area under the dynamical
curve is almost the same as under the two initial-
state curves, the difference being due to the neglect
of double-pair and higher-order excitations. This
is a consequence of the sum rule Eq. (2.14) and ex-

plains why the separable potential was chosen so as
to give the same integrated initial-state intensity as
the square-well potential. As seen in Fig. 2 the
difference in shape of the two initial-state spectra
has, however, no effect on the resulting dynamical
spectra which is a consequence of the final-state
rule according to which the latter spectra reflect
the spectral properties of the final state.

The accuracy of the final-state rule is the topic
of the Figs. 3 —9. According to this rule the
dynamical ND spectrum J(co) is well approximat-
ed by the formula

25F lm' —5F /m

-0.2 0.0

maximum deviation between the two spectra the
constant C has here been chosen such that they
agree at the Fermi level. Clearly the deviation at
the bottom of the band is smaller than what can
possibly be detected experimentally. It should be
noted that the emission spectrum presented in Fig.
3 is representative of an emission spectrum in a
simple metal, the Fermi energy and the corre-
sponding phase shift approximating those found in
sodium. (Notice that the Fermi edge in all emis-
sion spectra has been placed at zero energy. )

The only parameters in Eq. (4.2) which depend
on the core-hole potential are the constant C and
the Fermi-level phase shift 5~. Therefore, the
final-state rule implies that all core-hole potentials
with the same phase shift will give rise to dynami-
cal ND spectra of approximately the same shape.
This prediction is tested in Fig. 4 showing NQ
spectra produced by three different square-mell po-
tentials with a common Fermi-level phase shift
(5~——0.90). The final-state spectrum, labeled f, is
the same in all three cases and also the same as in
Figs. I —3 The static initial-state spectra indicated
by the corresponding radii of the square wells are,
however, quite different. Still, the resulting
dynamical spectra are almost identical in shape.
The weights of the initial-state spectra, i.e., their
integrated intensities, differ by —10%. The
dynamical spectra, here obtained from the finite-X
approach (%=80), were, however, scaled to the

FIG. 3. Comparison between the dynamical spectrum
obtained in the finite-X approach and the spectrum ob-
tained from the final-state rule, where C was determined

by fitting to the dynamical spectrum over the threshold
region.
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FIG. 4. Comparison between the dynamical spectra
obtained in the finite-S approach for three square-well
potentials with different radii r, and whose depths were
chosen to yield the same Fermi-level phase shift
5~——0.9. As the weights of the static initial-state spec-
tra differed, the dynamical spectra were, for easier com-
parison, scaled to have the same weights.

same weight in order to facilitate the comparison
of their shapes.

In order to demonstrate the usefulness of the
final-state rule also for very strong core-hole poten-
tials we show in Fig. 5 dynamical ND spectra
from the integral-equation approach using a sep-
arable core-hole potential which is strong enough
to pull a bound state out of the band. The position
of the bound state is indicated by the vertical ar-
row in the static initial-state spectrum (dashed-
dotted curve) which is chosen to be the same for
all three cases shown. We have instead decided to
vary the static final-state spectrum (dashed curves)

by leaving an attractive impurity potential of vari-
able strength in the final state of the emission pro-
cess. The Fermi-level phase shifts of the residual
impurity potentials in the three cases are 0.64,
0.33, and 0.00 and thus the first two cases corre-
spond to emission from an impurity site in a sim-

ple metal. As a matter of fact, the parameters of
the transition density of states are chosen such that
the first case (5+——0.64) simulates Lz 3 satellite
emission in sodium. The initial state of this pro-
cess has two core holes with a potential which
causes a bound 3s state to drop out of the band.
The final state has only one core hole but the cor-
responding potential is still strong enough to cause
a large buildup of oscillator strength of s character
towards the bottom of the band. As shown by Fig.
5 there remains no trace of the bound state in any

I

-0.2
I

-0,1 00
co(R&)

FIG. 5. The dynamical spectra (full drawn curves)
for three systems characterized by the same static
initial-state spectrum (heavily drawn, broken curve) with
a bound state below the band and three different static
final-state spectra (dashed curves).

of the dynamical spectra (full curves) which rather
closely resemble their respective final-state spectra
(dashed curves), the difference being due to the
threshold singularities and the shake-up structure
below the band in the dynamical spectra. Figure 5
also demonstrates how the strengths of the singu-
larity and the shake-up structure vary with the
strength of the core-hole potential. As shown in
Ref. 54 the Fermi-level phase shift of the core-hole
potential is given by the difference between the
phase shifts of the initial- and the final-state po-
tentials. For the initial state we here have
5~ ——1.01 which in our three cases results in core-
hole potentials having 5~——0.37, 0.68, and 1.01
with smaller phase shifts and thus weaker singular-
ities and weaker shake-up structure being associat-
ed with more attractive final-state potentials.

In a rather recent letter, Swarts, Dow, and
Flynn, on the basis of the finite-N approach,
presented numerical evaluations of the ND theory
of emission and absorption spectra and they con-
cluded that the spectra rather reflected the spectral
properties of the initial state —at least for weaker
core-hole potentials. For stronger potentials they
stated that the dynamical spectra could not be
described by either of the two static limits. These
conclusions are, of course, at odds with everything
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~( ) e 2sF A S~~le 2—
C(ro) =

Jy(co) ep
(4.3)

said so far in the present work. In order to resolve
this controversy %c have here repeated some of
their calculations of emission spectra which were
obtained by using a square-mell core-hole potential
in the free-electron gas. The results are shown in
the Figs. 6—8 where, as before, i, f, and d label

the static initial- and final-state spectra and the
dynamical ND spectrum, respectively. Following
Swarts et al. , we have here used the valence wave
function at the origin as a measure of the core-
valencc dipole matrix element. This is the reason
for the unphysically large ratio between the
weights of the static initial- and final-state spectra,
as discussed at the end of Sec. II. Above the
spectra these figures also show an energy-
dependent function C(co), which is defined as

Thus, an energy independent C(co) leads directly to
Eq. (4.2) and the deviation of C(co) from a hor-
izontal line measures the deviation from the final-
state rule. The very vveak energy dependence that
we find for C(ro) is strong evidence for the numer-
ical accuracy of this rule. Only the strongest po-
tential in Fig. 8 gave a minor deviation of the or-
der of 10%, and this potential is more attractive
than those found in real simple metals. Note that
C(ro) rapidly tends to infinity very close to the
bottom of the band. This does not signal a devia-
tion from the final-state rule but is merely a man-
ifestation of the simple fact that the final-state
spectrum vanishes at the band bottom whereas the
dynamical spectrum, duc to shake-up proccsscs, 1s

very small but finite. Thus, the results of Swarts,
Dow, and Flynn accurately obey the final-state
rule. The spectra in the Figs. 6—8 are quite dom-
inated by the strong singularity at the Fermi edge.
This unphysical result is due to the fact that only

cf~)
3.0—

2.0—

SXE

h =0.1e

r =4.0

SXE

-0.2 -0.1 0.0
~(Ry)

FIG. 6. The dynamical (d) emission spectrum ob-

tained in the finite-X approach (%=SO) for a square-
we11 potential is compared to the corresponding initial (i)
and final (f ) state spectra. The deviation from a hor-

izontal line of the function C(m) defined in Eq. (4.3)
measures the deviation from the final-state rule.

012 -0.& 0.0
~(Ry)

FIG. 7. The dynamical {d) emission spectrum ob-
tained in the finite-S approach (%=80) for a square-
vrell potential is compared to the corresponding initial (i)
and final (f ) state spectra. The deviation from a hor-
izontal line of the function C(ro) defined in Eq. (4.3)
measures the deviation from the final-state rule.
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tween that used by Citrin (ao ——0.38) to fit the ab-

sorption data of Kunz and that used by Callcott
et al. ' (a0=0.1S) to fit their emission data. This
ambiguity in ihe experimentally determined thresh-
old exponents indicates that the physics of the x-

ray edges is not yet fully understood. In particu-
lar, there is a need for further investigations of ex-
change effects and of the effects of valence-valence
interactions not accounted for in the ND theory.
Due to dipole selection rules only s electrons con-
tribute to the static initial (i) and final (f ) state
spectra when d electrons aIC neglected. As seen in

Fig. 9 the final-state spectrum (f ) has a very
smooth structureless appearance reflecting the al-

most parabolic s band of sodium, whereas the
initial-state spectrum (i) shows a strong s resonance
towards the bottom of the band due to the pres-
ence of the core hole. There is, however, no trace
of this marked structure in the resulting dynamical
ND spectrum whose shape rather resembles that of
the final-state spectrum only multiplied by a
threshold singularity. This is demonstrated in de-

tail by the insert showing the energy variation
needed in the "constant" C in order to make Eq.
(4.2) an exact relation. Thus, the deviation from
the final-state rule is only 10% over half the band-

width, again demonstrating the numerical accuracy
of the final-state rule. Note that a slightly slanting
C(co) will not affect the interpretation of experi-
mental spectra in terms of the final-state rule since
such an effect will probably be washed out by the
background subtraction from the raw data. The
curves labeled di and dz in Fig. 9 explain why it is
necessary to calculate also the p contrIbution to the
transition density of states (TDOS). Whereas the
Initial- Rlld filial-state spec'trR Rnd Rlso tllc so-called

transient Green's function G(I;I) [cf. Eqs. (2.22)

and (2.26)] are entirely determined by the TDOS of
s character, the dynamical spectrum has contribu-
tions from all angular momentum and spin chan-
nels via the "overlap" function g(I) [Eq. (2.24)].
This is due to the fact that the sum in Eq. (2.24)

must be caned out over all quantum labels includ-

ing Inagnetic and spin quantum numbers. The ad-

ditional channels cause a reduction of the threshold

exponent and of the threshold singularity. For in-

stance, 2(5F/Ir) (5F/n)in —Eq. (4.2.) becomes

2(5o/n) —2+1(21+ 1)(51/Ir) in terms of the

Fermi-level phase shifts 5I of the Ith angular
momentum channel. ' This effect is demonstrated
in Fig. 9. The curve dI (Ref. 58) is the dynamical
spectrum obtained without any orthogonality
suppl'cssloll of tllc thl'cshold, I.c., llslng g(I)= 1 ill

Eq. (2.27). The threshold exponent of this spec-
trum ls 250/77 Tllc CUrvc di ls tllc dyllRIIllcR1

spectrum obtained by including both spin channels
of s symmetry giving a threshold cxponcnt
2(50/m. )—2(50/n. ) . The curve d finally is the full

dynaIMcal spectrum obtalncd by also 1ncludlng Rll

thc p channels RQd the corresponding threshold ex-

ponent is 250/n2(. 5—0/Ir) 6(5—I /m)(5. 1-0, I )2).
Figure 9 demonstrates that it is essential to include
the higher angular-momentum channels in order to
reduce the threshold singularity before a quanita-
tive con1parison with experiment is made.

V. RjESUI.TS FOR XP3

The examination of the energy range over which

the asymptotic power-law line shape of XPS is a
close approximation to the full result of ND theory

is, as noted in Sec. III, done best by inspecting the
exponent function a(co) [Eq. (3.21)]. In this way

one avoids the difficult task of directly comparing
two singular functions. ' lt also becomes redun-

dant to accurately determine the normalization
constant of the asymptotic theory [Eq. (3.20)]
which depends on the potential in a more compli-
cated way than simply through thc Fermi-level

phase shift 5z and whose uncertainty has been a
problcnl 1n pI evious Investigations. As described
in Sec. III, the determinantal approach leads im-

mediately to the XPS spectrum [Eq. (3.8)], but in
this approach a(~) can only be obtained indirectly
from a somewhat inaccurate fitting procedure
based on Eq. (3.22). In Fig. 10 we show a(co) for
the case of %=100 free s electrons in a box with a
density corresponding to sodium (r, =4) and a
core-hole potential simulated by a square-well po-
tential yielding a Fermi-level phase shift 5~ —1.3.
Notice that the exponent at the edge is determined

by a(m) at co =0 [Eq. (3.23)], i.e., at the left in Fig.
10. It is obvious from Eq. (3.22) that an a(co)

which is constant over a certain range of energies

away from the edge will yield a spectral function

A, (co) which follows an exact power law within

this range. However, any structure in a(co) will

yield a corresponding structure in A, (co). In Fig.
10 we see that a(I0) indeed remains rather constant
over an appreciable fraction of the occupied band-

width. A fit to the corresponding spectral function
over this range wi11 disclose a very accurate
power-law behavior. The obtained exponent will

be some weighted mean of a(co) over this range and

the variation of u(~) will set the error bar for the
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FIG. 10. The exponent function u(co) obtained from
the determinantal approach for N= 100 free s electrons
with a density corresponding to that of sodium.

extracted exponent. For energies of the order of
the Fermi energy (ez ——0.23 Ry) away from the

edge, one notes a broad peak which is a conse-
quence of the high probability for particle-hole ex-

citations with an energy -ez due to the strong
resonance at the bottom of the band (cf., e.g., Fig.
2), when it is calculated in the presence of the core
hole. This structure has, however, only a minor ef-
fect on the spectral function, as the latter has be-

come rather small this far from the edge. The
spectral function is actually quite insensitive to
variations in a(co) away from the edge. It should

be noted that the phase shift of this system is
larger than any value experimentally predicted or
theoretically calculated for simple metals and
would by itself almost exhaust Friedel's sum rule.
In Fig. 11 we show exponent functions obtained
fom the intergral-equation approach for a model
system and five different separable core-hole poten-
tials. The density of states was chosen to be a
semielliptic band with eF at half the bandwidth.
The structure in a(co) at energies -eF away from
the edge is here slightly sharper, reflecting the
sharper peak in the density of states obtained in
the presence of a separable core-hole potential (cf.,
e.g., Fig. 2). The overall trend, however, agrees
with the result of Fig. 10, a(co) again being closely
constant over about half the bandwidth. Both a
square-well and a separable potential thus yield a
similar behavior of a(co). Thus, in these systems,
we find an asymptotic power-law behavior over a
substantial fraction of the bandwidth away from

l

0

FIG. 11. The exponent function u(co) obtained from
the integral-equation approach for a model system with
five separable potentials of different strengths. The Fer-
mi level is placed at the middle of a semie11iptic DOS.
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FIG. 12. The exponent function a(co) for a system
chosen to model sodium. Also shown is the decomposi-
tion into individual angular momentum channels.

the edge and we conclude that singularity indices
may be rather accurately determined by fitting to
experiment (see also the discussion below). These
findings are at odds with what has been claimed by
Dow et al. Of course, cases may be constructed,
either by distorting the density of states far from
the free-electron behavior it has in simple metals
or by applying excessively strong potentials, where
the deviation of a(co) from a constant may be
strong already at small energies. Such cases are,
however, not relevant for the present discussion of
simple metals.

In Fig. 12 we show the exponent function a(co)
for the system which we discussed at length in Sec.
IV in connection with Fig. 9 and which was
chosen to closely model sodium. Also shown is
the angular-momentum decomposition into the
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dominant s and p channels. While a(a)) for bot"
individual channels varies by almost 20lo over half
the bandwidth, the sum remains much more close-

ly constant. In order to determine the effect of a
varying a(co) on the commonly used procedure to
determine the assymmetry index from the mea-

sured XPS line shape, we decided to consider the
individual angular momentum and spin corn-

ponents of a(ai) in sodium as examples of possible
energy-dependent exponent functions in I' simple
metals. The exact ND spectral function obtained

by solving the integral equation (3.22) with a(co)

given by one of these components, was broadened

by a Gaussian and a Lorentzian with full width at
half-maximum values of 0.023 and 0.003 Ry,
respectively. The Lorentzian width, reflecting the
lifetime of the core hole and the Gaussian width,
refiecting phonon broadening, were chosen to
values typical for XPS spectra of shallower core
holes in simple metals. In an attempt to retrieve
the input parameters, the resulting spectrum was
then fitted by a broadened version of the asymptot-
ic form [Eq. (3.20)] by taking the two broadenings,
the exponent, the threshold position, and the nor-

malization as variational parameters. This defines
the commonly used procedure for obtaining asym-

metry indices from experimental spectra. The best
fit was determined by minimizing the sum of the
squared differences between the two spectra taken
at equidistant points, 0.01 Ry apart, over varying
fitting ranges. The result is given in Table II and
shows the remarkable accuracy with which both
the Lorentzian and the Gaussian broadenings could
be determined. The accuracy of the extracted
threshold exponent is actually somewhat better
than the accuracy claimed from experiment. We
thus conclude that even variations in the exponent
function a(co), which are stronger than those likely
to be found in simple metals, do not significantly
affect the accuracy by which the asymmetry in-

dices can be obtained from experiment. It should
be remembered that this conclusion is based entire-

ly on the ND theory which does not account for
the interaction between the valence electrons.
There is, however, yet no evidence indicating that
the interaction effects might modify our conclu-
cion. On the contrary, an investigation by
Minnhagen based on the theory of XPS derived

by Langreth indicates that the electron-electron
interactions serve to make the XPS line shape
more asympotic.

VI. APPROXIMATE DERIVATION
OF THE FINAL-STATE RULE

In this section we will present an approximate
though rather accurate description of emission
spectra from which the final-state rule becomes
rather evident. The discussion is based on the
determinantal approach. In Sec. IV we demon-
strated that, in simple metals, this approach gives
the correct answer to within -5%%uo already with
rather small determinants (N-100) and including

only single-pair excitations which are given by the
first two lines of Eq. (2.12). In order to obtain an

expression for the emission spectrum which can be
evaluated analytically, we introduce the further ap-
proximation of restricting the electron of the excit-
ed electron-hole pair to be at the Fermi level. We
then obtain

J(co)=g
/
(N-

f
b ak

f
N)

/
5(co —ek) . (6.1)

k

Thus, this approximation simply corresponds to
restricting the final states to be of the form
c ak

~

N ), i.e., Slater determinants consisting of
one-particle orbitals evaluated in the final-state po-
tential and having a single hole below the Fermi
level. All shake-up processes are thus neglected.

In the case of a free-electron gas with a core-

TABLE II. Threshold exponents and broadenings determined by assuming different
ranges of validity of the asymptotic line shape.

Fitting range'
s channel

I Lo.

p channel
I z.or

0.00—0.04
—0.04—0.04
—0.12—0.04
—0.20—0.04
Exact values

0.0336
0.0334
0.0338
0.0345
0.0338

0.00299
0.00300
0.00301
0.00297
0.00300

0.0233
0.0233
0.0233
0.0233
0.0233

0.0113
0.0112
0.0107
0.0102
0.0111

0.00300
0.00300
0.00299
0.00300
0.00300

0.0233
0.0233
0.0233
0.0233
0.0233

The end points of the fitting region are given in Rydbergs relative to the threshold position.
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~(~ )=g I PPck +XPc

@Peak

I
'5( lo 'ek )—

k p,

in terms of the coefficients

(6.2)

hole potential approximated by a square-well po-
tential with a Fermi-level phase shift 5F equal to
1.1, we have found numerically that this simple
approximation gives an emission spectrum which is
accurate to within 15% when N=80. This chosen
potential is probably stronger than the actual core-
hole potential of any simple metal and the approxi-
mation quickly improves as the Fermi-level phase
shift is reduced. When 5F——0.2m, the error is only
6%%uo. Since there are no shake-up processes, the ap-
proximation (6.1) cannot account for the ortho-
gonality suppression of the emission threshold,
and we thus expect Eq. (6.1) to give a spectrum
with an exaggerated threshold singularity and too
little intensity towards the bottom of the band.
The main effect of the shake-up terms is, however,
similar to a convolution with a power-law singular-
ity. They are only important at threshold and Eq.
(6.1) gives a sufficiently accurate description of the
general shape of the emission band to allow us to
demonstrate the final-state rule in a qualitative
way.

Insertin the expression (2.5) for the creation
operator b of the transition orbital into Eq. (6.1),
we obtain

(84)]

skk' &k
I
k —

& ek ~k &el" . (6.6)

The coefficient p&k, on the other hand, is the
determinant obtained from S' ' by replacing the
kth row by the numbers (}u I

k'- ), ek &ez. Thus,
expanding this determinant along the kth row we
obtain

P„=d tS' 'g(p Ik'-)S' ' (6 7)

in terms of the inverse S' ' ' of the overlap ma-
trix S' '. At this stage we find it convenient to in-

troduce a continuum approximation and convert
discrete sums to integrals. For this purpose we
rewrite Eq. (6.7) as

gpqk Sk k =PS~k
k'

(6.8)

and use the expression for Skk derived in Appen-
dix 8 [Eq. (815)]

1
5

Pck ~ pk Pck'

1T A (Ek} kc e'k~ Ek—
=p —tan5 . (6.9)

1 Pck Pc@

1T A (Ek) ep 'Ek—
Defining the auxiliary quantity yk as

p=(N IN-) (6.3)
) k ~(ek }Pck~cpPpk (6.10)

and

p„k=(N Iaka„IN-) . (6.4)

and converting sums over k and p to integrals over
the corresponding energy intervals, we obtain the
following integral equation for y(e):

Notice that greek and latin letters denote states
above and below the Fermi level, respectively. Due
to the completeness of the set of Slater deter-
minants constructed from a complete set of one-

particle states, the ground state
I
N- ) obtained in

the presence of the core hole can be expanded ac-
cording to

IN- & =p IN&+XPpkapak IN&

+ g yp, klalcaHkal IN&+ ' . . (6.5)
ppv, k, l

Thus, the approximation (6.1) can alternatively be
viewed as a truncation of this expansion after the
term corresponding to single-pair excitations which
should be an adequate procedure when the core-
hole potential is not too strong. The overlap p is
obviously equal to detS' ', where 5' ' is the over-
lap matrix involving only occupied states [cf. Eq.

y(e)+ —tan5(e}f, de'1 '~ y(k')

=+ tan5(e') f, —de' . (6.11)
~ A(e'}

7T ~F E' —6

Notice that the overlap p tends to zero in the con-
tinuum limit N —+ oo. The decay is however
governed by the formula33

—(5F /c')2
p =p

It is thus rather slow (the columns markman So in
Table I show the dependence of p on N) and p is
still appreciable when the solution to the continu-
ous integral equation (6.11) represents an accurate
approximation to the discrete problem given by Eq.
(6.7). As noted above, Eq. (6.2) yields a rather ac-
curate spectrum with as many as 80 s waves in a
box and in this case the level spacing is small
enough for the continuum approximation to be re-
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liable. It should be remembered that this approxi-
mation is merely a convenient tool which permits
us to penetrate the mechanisms leading to the re-

sults of the determinantal approach.
As demonstrated in Appendix C, the seemingly

complicated integral equation for y(e) can actually
be solved analytically using a method due to
Muskhelishvili and the result is

approach with a separable potential having a phase
shift 5~ ——0.90. The similar shapes of the two
spectra suggest that our approximate treatment is
sufficiently accurate to allow us to use it for a
qualitative derivation of the final-state rule. In
order to study the behavior of the function i)(e) we
introduce an energy cutoff eo in the integral in Eq.
(6.13) and obtain

g A (e) " i)(e') sin5(e')
de

i)(e) 'r e' —e
(6.12)

i)(e)=
5p/e6'—6'F

Ep
' —

~

~0. (6.15)

in terms of the function

i)(s)=exp —I,de'1 " 5(e')
(6.13)

In Fig. 13 we compare the spectrum obtained from
a direct numerical evaluation of this formula and
the spectrum obtained from the integral-equation

Remembering that the final-state spectrum Jf(m) is
just the occupied part of the TDOS A (co) obtained
in the absence of the core hole [Eq. (2.34)], we can
combine the Eqs. (6.2), (6.10), (2.32), and (6.12) in
order to express the approximate dynamical ND
spectrum J(co) in terms of the static final-state
spectrum Jf(co),

T

) zJ ( ) 1
1 Y/(e) sln5(e)

n q(co) 'z e—a)

Thus, towards the Fermi level, the function rI(e)
tends to zero, whereas the inverse which appears in
Eq. (6.14) has a power-law singularity with ex-
ponent 5F/n Dir.ectly from the defining equation
we see that i)t(e) is everywhere positive and that it
tends to unity at large energies. Towards the bot-
tom of the band it tends to a constant of order
exp( —25+/ir) (1. From these properties and from
the fact that the phase shift above e~ is usually a
slowly varying function which tends to zero as
e '~, it follows that the integral in Eq. (6.14)
gives rise to a monotonically increasing function
which actually is small, typically of the order of
0.1, at the bottom of the band and which reaches a
value of the order of unity at the Fermi level.
Consequently, the entire enhancement factor de-
fined as the ratio of the dynamical spectrum and
the final-state spectrum, i.e., p times the square in
Eq. (6.14), has a smooth behavior, tending to a
constant of order unity towards the bottom of the
band and exhibiting a power-law singularity at the
Fermi energy with a threshold exponent equal to
25F/~. As a ~atte~ offact, the enhancement fac-
tor is quite well represented by the simple expres-
sion

6'p
C(a) )

where the function C(co) is almost constant over
the entire occupied band. %e thus have the ap-
proximate result

J(a))=CJf(m)
, 6p —N

(6.16)

-0.1"0.2 00
co IRy)

FIG. 13. Comparison betvreen the emission spectra
obtained for a separable potential from the integral-
equation approach and from the approximate expres-
sion, Eq. (6.14).

in terms of a known but irrelevant constant C.
This is the final-state rule for emission disregard-
ing shake-up effects. As mentioned previously,
such effects are not included in the simple approxi-
mation given by Eq. (6.1) which, however, correct-
ly describes the excitonic enhancement' of the
threshold as is evident from Eq. (6.16). In the



25 DYNAMICAL EFFECTS IN X-RAY SPECTRA AND THE FINAL. . . 5173

time representation the shake-up effects enter [cf.
Eq. (2.21)] the ND theory via the multiplicative
factor g(t) given by Eq. (2.24). Therefore, these ef-
fects should really be accounted for via a convolu-
tion in frequency space. However, close to thres-
hold the Fourier transform off (t) behaves as

J(co)=CJ/(co) (4 2)

VII. CONCLUSIONS

The final-state rule was established by the au-

thors in 1977. The rule states that, disregarding
the singular Fermi edges, accurate x-ray emission
and absorption spectra of simple metals may be ob-
tained from ordinary one-electron theory provided
the relevant dipole matrix elements are calculated
from valence wave functions obtained in the poten-
tial of the final state of the x-ray process, i.e., a
potential reflecting the fully screened core hole in
absorption but not in emission. The final-state rule
was also modified' to include even the singular
threshold behavior [Eq. (4.2)] which can be accu-
rately accounted for via power-law factors with

properly chosen exponents, one for each angular-
momentum component of the spectrum. The im-
portance of the finaL-state rule stems from the fact
that this rule a posteriori provides a justification
for the numerous earlier calculations of x-ray emis-
sion spectra based on band theory. The rule also
shows how to obtain realistic x-ray emission and

leading to the suppression of the edge due to the
Anderson orthogonality catastrophe. Thus, close
to threshold the distinction between convoluting
with this expression or multiplying by

(SF/~)'
(&p —~)

becomes irrelevant and we have found numerically
that over most of the occupied band the shake-up
effects are well accounted for by merely changing
the exponent in Eq. (6.16) to 2(5~/n) —(elm� ).
Of course, at the very bottom of the band the
final-state spectrum vanishes, whereas the dynami-
cal spectrum is finite if shake-up effects are in-

cluded. Therefore, the exact enhancement factor
blows up close to the band bottom, a tendency
which is apparent from Figs. 6—9. Disregarding
this minor effect the final-state rule reads

25F In —5F2/8

absorption spectra without resorting to complicated
many-body calculations for real solids. Finally, the
rule corresponds exactly to the commonly used
procedure for obtaining threshold exponents from
measured x-ray emission spectra. Thus, the accu-
racy of the final-state rule provides strong support
for this procedure.

In the present paper we have made an extensive
investigation of the validity of the final-state rule.
This investigation is based entirely on the theory of
x-ray spectra due to Nozieres and DeDominicis. '

For numerous realistic model systems including
cases where the core-hole potential is strong
enough to pull a bound state out of the band, we

evaluate the ND theory numerically and show that
the resulting dynamical ND emission spectra accu-
rately obey the final-state rule. In fact, to date, no
case is known for which the ND spectrum does
not follow the final-state rule rather closely. In
Sec. VI we present an approximate version of the
ND theory for emission spectra which can be
evaluated analytically and which leads naturally to
the final-state rule. This approximate theory also
gives some insight into the mechanisms behind the
rule. For the numerical evaluations of the ND
theory we have used two different methods, name-

ly, the integral-equation approach originally sug-

gested by Nozieres and DeDominicis' and the
determinantal finite-X approach first discussed by
Friedel. The integral-equation approach pertains
to an infinite system, while the finite-E approach
is based on a finite number (N) of electrons en-

closed in a finite volume. In the limit of large N
we show here both formally and numerically that
the two methods are equivalent. In fact, by direct-

ly comparing the two methods we are able to prove
that the finite-1V approach gives rather accurate re-
sults already with an unexpectedly small number of
particles (E-100), thus rendering this approach
quite useful for the calculation of x-ray and x-ray
photoemission spectra. The approach based on the
integral equation is greatly facilitated by the use of
a separable core-hole potential and in our applica-
tions we have always taken advantage of this possi-
bility. By directly comparing to the finite-E ap-
proach, which can treat all potentials with equal
ease, we show here that a separable potential does
not give rise to any spurious results. In fact, we
show that any square-well potential and probably
also any reasonable local potential can be effective-
ly simulated by a separable potential. If the
parameters of the separable potential are chosen
such that this potential and the square well yield
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the same Fermi-level phase shift and the same in-

tegrated intensity of the static spectrum obtained
in the presence of the core hole, then the two po-
tentials give rise to almost the same dynamical ND
emission spectra. Thus, the approach based on the
integral equation in connection with a separable
core-hole potential is also a very useful tool for ob-
taining x-ray spectra in realistic systems.

In the present work we also discuss at length the
application of the ND theory to XPS. According
to the asymptotic version of this theory the XPS
line shape close to the edge follows a power law.
This fact forms the basis for the fitting procedure
commonly used for extracting exponents from the
measured XPS line shapes. The validity of this
procedure thus rches on the vahdlty of the asymp-
totic theory over the fitting range. We analyze
here the full ND result for the XPS line shape in
terms of the exponent function a(to), whose devia-
tion from a constant measures the deviation of the
asymptotic ND theory from the full ND theory.
This procedure avoids the difficulties associated
with a direct comparison of two singular spectra as
well as the ambiguous choice of normalization con-
stant which has sometimes been a problem in other
treatments. %C present here results for the ex-
ponent function a(co) for several model systems
which are chosen to correspond closely to real sim-
ple metals and we find that a(co) is indeed rather
constant over about half the bandwidth away from
the edge. We also study the effect of a varying
u(to) by applying the fitting procedure to
broadened versions of XPS spectra obtained from
exponent functions with a rather strong variation
with energy. The extracted asymmetry indices and
broadenings were found to be very close to their
correct values demonstrating the insensitivity of
the extracted parameters to deviations from the
asymptotic theory. These findings provide strong
support for the accuracy of the commonly used fit-
ting procedure.

Whereas the x-ray emission spectra of simple
metals are dominated by electrons of a particular
angular-momentum symmetry, the asymmetries of
the XPS lines are strongly affected by particle-hole
excitations of both s and p character. This is
demonstrated here in the case of sodium by analyz-
ing the exponent function a(to) into its angular-
momcnt components. S1Qcc thcsc particle-hole cx-
citations act to reduce the threshold singularities of
x-ray spectra, we show here that it is essential to
include this effect before a detailed comparison is
made between dynamical ND spectra and experi-
ment.

In several papers ' ' ' ' Dow and co-workers
have reached conclusions which are contradictory
to the main results of the present paper. %C find
that this investigation strongly supports the con-
clusions presented here and in previous
work 6,9, 14, 15
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APPENDIX A

Fkk (r't) = (N-
~
ak e' 'ake' " "e '~'

~
~- ),

in such a way that Fkt, (t) =Fkk (t;t), and take the
derivative with respective to ~,

iB+kk~(r,'t)

=tE- ~ake' 'fak, H]e' " 'e ' '~E-) .

The commutator is obtained from the expression
for the no-hole Hamiltonian H in terms of the
core-hole basis [Eq. (2.11)]

[ak»] =ekak —Q I kqa

which leads to a closed equation for Fkk (r;t)

(A3)

(A4)

It is not difficult to see that the free-particle
Green's function defined in Eq. (2.23) is an ordi-
nary Green's functions for this first-order differen-
tial equation and we have

(iB, e) kG(rk)=5—( )r. (A5)

Following work by Langreth, we will here give
an elementary derivation of the basic integral equa-
tion of the original ND thtxiry. ' We wish to com-
pute the correlation function Fkk (t) for negative
times (t &0). To this end we introduce a dummy
varlablc T into Ekk"
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After multiplying Eq. (A4) by Gk(r' r—), integrat-

ing by parts and interchanging dummy variables ~
and ~', we obtain

Fkk (rt t) = iGk (r t)F—kk (t t t)

iGk—(r)Fkk (0&t)

+g I dr'Gk(r r')—
q

core-hole potential has the separable form given by
Eq. (2.25). From the definitions of the TDOS's,
Eqs. (2.31) and (2.32), we obviously need the dipole
matrix elements p,k and p,k with and without the
core-hole and the corresponding one-particle states

~

k —) and
~

k ). These are eigenstates of the
one-particle Hamiltonians H and H defined by the
Eqs. (2.8) and (2.9). Thus,

)& V Fqk(r';t) . (A6) (Bl)

Now, clearly from the definition, Eq. (2.20), the
state k in Fkk (t) =Fkk (t;t) must be occupied. We
are, however, only interested in times t &r &0 [Eq.
(A6)]. Therefore, from Eq. (2.23), Gk(r t)=0-,
and the first term of this equation vanishes. Since
r &0, the definition of Gk(r) requires k to label an
occupied state also in the second term of this equa-
tion, which leads to

nkFkk(0;t)=nk(N- ~akake' 'e ' '~N-)

H ~k&=ek ~k-&, (82)

Pck ~ck'Sk'k
k'

in terms of the overlap matrix S defined by

(83)

where the eigenvalues are assumed to be in the
continuum. Since the perturbing potential
V=H —H has a finite range, the eigenvalues can
also be assumed to be equal, ek ——ek. The eigen-
states of H form a complete set and we have

=nk5kk(N- ~e' 'e ' '~N-) . (A7) S „=(k ik'-) . (84)

Consequently, the quantity g(t) defined by

) (N
~

tHt —Ht~N ) (A8)

must be a factor in Fkk (r, t) and by defining the
auxiliary quantity

Gkk (r;t)=iFkk (r, t)lg(t) (A9)

we obtain the integral equation (2.22). This equa-
tion evidently determines Gkk (r, t) in the entire in-

terval t & r &0, but we still need g(t) in order to
find Fkk (t). From Eqs. (Al), (2.10), and (2.11) we
obtain

Vk kFk(k0; )t= ( N-
~

Ve' 'e ' '
~

N- )
k, k'

=it), (N- ~e' 'e ' '~N-),
(A10)

where we have used the fact that
~

N- ) is an
eigenstate of H to obtan the second equality.
Thus,

g(t)g Vk kGkk (0;t)= Btg(t)—
k, k'

(Al 1)

and since g(0) = 1 [Eq. (AS)], this differential equa-
tion has the solution given by Eq. (2.24).

APPENDIX 8

%e will show here how the transition density of
states (TDOS) in the presence of a core hole is ob-
tained from that of the ground state when the

The overlap matrix is easily obtained directly from
the eigenvalue expressions (81) and (82)

(k i
Vik'-)

Skkt = +dkskk' ~

~k —~k
(85)

where the continuous nature of the eigenvalue
spectrum has made it necessary to add a delta
function with an unknown normalization constant
dk. Again using the completeness of the states

~

k ), we can express the matrix element

(k
~

V
~

k'- ) in terms of the overlap matrix, and

by means of the separable ansatz (2.25) and Eq.
(83) we obtain (k

~

V
~

k'- )= Vpp, kp, k

Icky�'
Skk' VO +dk ~kk' .

~k —~k
(86)

Inserting this expression back into Eq. (83) and us-

ing the density of states &(e) to convert the sum
over k to an energy integral, we obtain

A (e)
p,k = Vpp k de+dkpck

k

We have here also used the definition, Eq. (2.32),
of the TDOS in the absence of the core hole, A (e).
Thus, it only remains to determine the normaliza-
tion dk, which we obtain from the orthonormality
of the states

~

k —), i.e.,

(87)

(Bg)5kk ——(k-
~

k'-) =QSkSk .
I

Inserting the expression (86) for the overlap matrix
into this normalization condition leads to
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A(e)de
kk' OP ck

( )( )
Pck'

~k' ~k +k ~k'

(89)

The integral on the first line of this expression ob-

viously becomes singular when ek equals ek and
we can here use the well-known mathematical
identity

A(e)de ~ 5
1 A(e)de A(e)de

=TT A Ek 5 Ek —5'k +
(kk 5)('Ek' 5) kk' sk ~k k ~k'

(810)

The last two terms of this identity give rise to two
terms which cancel the second and the third terms
on the right-hand side of Eq. (89), and by means
of the density of states factor &(e), the energy-
delta function can be converted to a delta function
in k and k'; 5(ek ek )=—6'(ek)5kk Finall. y, intro-
ducing also the definition (2.31) of the TDOS in
the presence of the core hole, A(e), Eq. (89) be-
comes

1=VoTT'A(Fk)A(ek)+
~
dk i

', (811)

((812)

which determines the normalization dk to within a
phase factor of no relevance to the final result for
A(e) The pha. se factor can, e.g., be chosen as

exp(i5k) where 5k is the phase shift. This choice
can be seen to correspond to ordinary scattering
theory or T-matrix theory, whereas a choice of
unity corresponds to scattering theory based on the
reaction matrix. ' Preferring real quantities, we
made the latter choice. Inserting the result given

by Eq. (811) into Eq. (87), we obtain p,k and thus

A(e} from the definition (2.31}. This leads to Eq.
(2.36) of the main text.

Equation (811) allows us to write

cos5k =dk,

1 PkS'k»»k
Skk' +cos5k'5kk

TT Fk —EkA (Ek')''
(815)

APPENDIX C

We will here use a method due to Muskhelishvi-
li to solve the integral equation (6.11). The Cau-

chy integrals

dk' y(e') "de' A(e')
—~ 21Tl C Zc—F 2171 EZ' —

define two analytic functions, one in the upper half
of the complex z plane and one in the lower half.
Denoting the limiting values of these functions on
the real axis by + and —and concentrating on
the part of the axis to the left of eF, we obtain

+ 'F de' y(e') "dk' A(e') 1+ r(~——~ 2lrl 6 G—cF 2'irl 6 E2—
@&kF . (C2)

The integral equation (6.11) can then be written as

I'+(q) —I' (e) +i tan5(e}[I +(e)+I (e)]=0

sin5k —— nVo[A (e—k )A.(5k )]'T, (813)

in terms of an angle 5k, which obviously is positive
for attractive potentials (Vo &0) and tends linearly
to zero with the potential. It is not difficult to see
that 5k defined in this way corresponds to the usu-

al definition of a scattering phase shift. ' The Eq.
(2.36) then also gives the convenient relation

A (e}de
tan5k = TTVoA (ek ) 1 ——Vo

(814)

Finally, from the Eqs. (86), (87), (812), and (814)
we arrive at the following expression for the over-

lap matrix S

of

I +(&}eis(c) I —
(&)e

—is(c)

This relation immediately suggests the introduction
of the function

(C5)

@+(~)
~ 2i5(e)

(k)
(C6)

which obviously is analytic everywhere except for a
branchcut along the real axis to the left of eF.
This implies
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and, therefore, the function I (z)i'(z) is continuous
across the real axis to the left of ep. To the right
of e„, however, it has a discontinuity across the
axis of magnitude —pA (e)4(e). Thus, defining
also the function

" d e' A (e')C&(et )IIz = —p er 2tri e' —z

which obviously is analytic everwhere except at the
discontinuity across the real axis to the right of eJ;,
we see that the function r(z)4(z) —II(z) is analytic
everywhere. Since this function by virtue of Eqs.
(Cl), (C5), and (C7) tends to zero at infinity, it
must vanish everywhere and we have

the factor sin5(e) from Eq. (C9), we rewrite Eq.
(814}of Appendix 8,

A(e)+ —tan5(e) f1 A (e') de'
tan5(e) .

OS

(C10)

Clearly this can be viewed as an integral equation

that determines A (e) if the phase shift 5(e) is
known for all energies. This equation is exactly of
the same type as Eq. (6.11) and we leave it to the
interested reader to solve Eq. (C10) using the pro-
cedure demonstrated above in the case of Eq.
(6.11). The result is

r(z) = II(z)
tp z

(CS)

Below the Fermi level (e & @~) we can now obtain
the solution y(e) to the integral equation (6.11)
from Eqs. (C2), (CS), and (C5}. We have

r

y(e)=r+(e) —I' (e)=II(e) 1 I

@+(e) C' (e)

1 1 5(e') de'
A (e)= — sin5(e) exp

Vox E' —6'

Thc cxprcsslon

ri(e) =exp —f, d»'1 " 5(e')

(Cl 1)

(6.13)

~('s)
(e is(e) —eis(e))

@(e)

=—2l slii5( 6),. II(e)
4(e)

where the unsuperscripted functions on the real
axis are obtained by replacing z by e in the corre-
sponding functions of a complex argument. Notice
that the function II(z) is continuous across the real
axis below ez. The function II(e} turns out to
vary rather slowly over the occupied band, whereas
both 4(e) and sin5(e) can have appreciable struc-
ture For ins.tance, for strong core-hole potentials,
thc phase sh1ft cxhib1ts a resonant bchavlor to-
wards the bottom of the band as does the TDOS in
the presence of a core hole. In an attempt to make
the structure of y(e) more apparent by eliminating

defining the function ri(e), has a denominator
which varies slowly for energies sufficiently below
the Fermi level eF and we expect a slow variation
over most of the occupied band also for ri(e). Us-
ing Eq. (Cl 1) the function y(e) can now be ex-
pressed in terms of ri(e),

y(e) =2tri Voll(e)
A(e)

(C12
ri(e)

Also the function II(e) can be expressed in terms
of ri(e) to give

1 y " ri(e'} sin5(e')IIs= e
2miVo n. .'r e' —e

(C13)

The last two equations give Eq. (6.12) of the main
text.
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