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An addition theorem is derived which describes how the Bloch wave vectors, for a
given energy, of two pure one-dimensional lattices are to be combined to obtain the Bloch
wave vector for a composite lattice formed of the two pure lattices. Applications are dis-

cussed. The theorem is valid for an ordered or a disordered lattice, but the detailed na-

ture of the energy bands of a disordered lattice is determined by the details of the struc-
ture of the disordered array.

INTRODUCTION

In 1949 Saxon and Hutner stated a proposition
relating forbidden energy-band gaps in the energy
bands of two periodic one-dimensional potentials to
the gaps in the energy bands of a one-dimensional
lattice potential constructed by following, at ran-

dom, the potential in one cell by a cell with the
same potential, or the other potential. ' Their prop-
osition was that, for energies for which both pure
periodic lattices have imaginary Bloch wave vec-
tors, that is, for "forbidden" energies, the compos-
ite lattice would also have a gap in the allowed en-

ergy. Luttinger proved the theorem under the spe-
cial condition that the potentials be representable

by symmetric delta functions of different ampli-
tude. Others have discussed the proposition and
arrived at similar or contrary conclusions.

%hat is needed is something more general than
the Saxon-Hutner-Luttinger (SHL) proposition; one
needs an addition theorem which describes how the
Bloch wave vectors, for given energy, for two ine-
quivalent lattices are to be combined to derive the
Bloch wave vector for the lattice formed by taking
each component lattice in sequence.

Transfer matrix: The complex representation

The transfer-matrix formalism is used here.
This is, possibly, an unfamiliar but long-established
and mathematically understood techniqu. It is
also known as the "matrizant" method or the
reciprocal-matrix method. ' ' It was first applied
to the present problem by Kramers in 1935, and
it was also used by Saxon and Hutner' and t.ut-
tinger. Saxon and Hutner used a complex repre-

sentaiion for which the basis vectors are
exp{+ikx). Luttinger used the real representation
for which the basis vectors are an amplitude and a
slope of a function. The complex representation is
used here. The basis-vector wave vector k can be
related to the energy, as Saxon and Hutner do, but
it need not be since the energy scale is arbitrary,
being determined by the zero chosen for the poten-
tial. Thus the energy transformation,

V'(x ) = V(x) E+k— (1)

may be used to allow any energy, including zero, to
be considered with the complex representation.

The properties of the transfer matrix R are
readily established from scattering theory. ' R has
elements R]~ =R22, RI2=R2), and R $}R22—R&2R2& ——1. It is a two-dimensional three-
parameter representation with unit determinant.
The eigenvalues thus have a product of 1, and may
be written as exp(ipd), and exp{ ipd), whe—re p
the characteristic, or Bloch, wave vector, is either
real or imaginary, and d is the unit-cell length.
The trace of R is 2cos(pd ). For real p the wave
function propagates on the lattice with bounded
amplitude. For imaginary p the wave-function
amplitude increases without bound, and the energy
associated with it is said to be "forbidden. " One
exceptional state exists for @=0 or n.. In this case
only one bounded solution exists and it has eigen-
values of + 1; the second unbounded solution can-
not be obtained by any linear transformation on
the original basis vectors.

Addition theorem

Consider two periodic lattice potentials, V~ and
V~, and a lattice with m cells of the M potential
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followed by n cells of the X potential. The trans-
fer matrix relating the wave function at the begin-
ning of the section to the wave function at the end
of the section will be R~R~. Except for the single
state at the interface of the real and imaginary
wave vectors, that is, except for the trace equal to
+2 representation, a similarity transformation U
ex][sts which mll dhagonahze the pure-lattice repre-
sentations,

As to the Saxon-Hutner-Luttinger theorem, we
note that the energy gaps are characterized by real
eigenvalues. If A, is an eigenvalue of R it follows
that the elements of the diagonalizing transforma-
tion U are related by

0
URU '=A=

For the complex representation U will be a repre-
seIltatloll 1I1 SU(2),

a b a =COSP exp(ia)
b* a~ —b=sinPexp(iy) .

A similarity transformation which will refer AM to
the same basis vectors as A& will be Uz U~', with
elements a~& and bM&,

(UIv~Iv Uw ')(UIv UM'~MUM UN )

=U„Z„Z U-'. (4)

So one finds that the trace of the product matrix
will be

tr[UIv RIv, RM UIv-']

=4 [(«*)MIv~M+(bb*)Mlv~M ]

+~N "[(bb')Mlv~M+«&*)MIv~M ]

The trace determines the wave vector of the
composite lattice to be

cos[(mdM+nA )PM@ ]

=cos(&dMpM )cos(«Ivplv )

—cos(2pM~ )sin( IIldM pM )sin(lldN p~ ),
(6)

cos(2PMIv ) = (aa * bb*)M~ . —
This is the desired addition theorem.

For a lattice of several potentials with random

sequence, the theorem can be applied successively

to reduce one pair of wave vectors to their effec-
tive value. Then this effective wave vector can be
combined with a third wave vector for the three

segIDents, and so on.

and soq

g+ A, —E.))
b* R2)

(A, —R 11 )(A, —XII ) —1
bb* R)gR21

Hence for k real, p=lri'4. In this case U~ UM'

w111 have Qg = j. and b& =0. Hence~

cos[(IIIdM +«Iv )pMIv]

=cosll[1PIdM [ PM ) +IldN ) PN [ ]
(10)

fof p~ and p@ IIDagmary.
It is clear that p~~ must also be imaginary, and

that the composite has a forbidden energy gap
where the two pure lattices both have gaps. This
proves the Saxon-Hutner conjecture, vindicates
Luttinger's proof, and contradicts other findings.

%e can extend the proposition for the case with

both pure lattices having complex eigenvalues. In
this case one sees immediately from Eq. (6) that
fol' pMIv = +IT/4 01' 0, |LIM~ 1S Certainly 1'eal also.
Intermediate cases can be examined by rewriting

Eq. (6) as,

cos[(mdM+ndIv )pMIv]

= '" Ar~ cos(IIIdMPM «Iv plv )—2

+cos pMIvcos(mdMpM +«IvpIv ) .,

It is evident that an extremum exists when both
the p-dependent terms have the same extremum,
and then the magnitude of the sum is I, Hence
the overlapping allowed bands are also allowed in

the composite random lattice.
If one wave vector, p~, for example, is ima-

ginary and the other, p&, is real, some energies al-

lowed in the pure X lattice but forbidden in the M
lattice become allowed or forbidden in the compo-

site, depending upon whether the magnitude of the
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right-hand side of Eq. (6) or (11) is greater than or
less than 1. If V~ and VN are equivalent poten-
tials, then the equations reduce properly since in
thts case PM~ =0.

Since the addition theorem uses only quantities
derived from a single unit cell of the pure lattice, it
is vahd for an ordered or a disordered lattice. The
detailed nature of the energy bands of a disordered
lattice is determined by the precise structure of the
disordered lattice. %hat is needed in this case is a
third parameter in addition to energy and wave

vector, a morphology, or complexion parameter.
Since allowed and forbidden states can be com-
bined to obtain allowed or forbidden states in the
composite, it will be seen that localized forbidden
states can exist at energies allowed for the total
composite lattice; and localized allowed states can
exist at energies forbidden for the total composite
lattice.

It also follows that a pure-lattice potential can
be considered as a composite by breaking the unit
cell, arbitrarily, into two or more characteristic
features or parts. In this way the predictions of
the addition theorem can be intuitively understood.
For a sinusoidal potential, for example one can
divide the unit cell into regions in which the ener-

gy is greater than or less than the potential. For
the region with energy everywhere less than the po-

tential, the eigenvalue will certainly be real. The
region with energy greater than the potential may
have an eigenvalue that is complex. The composite
of these two regions can have both forbidden and
allowed energies as one knows from experience.
This result is compatible with the result one ob-
tains from the addition theorem as applied to the
composite of the portions of one unit cell. This
procedure of breaking the unit cell up into several
parts is also of use when one, for example,
discusses the quantum defect, that is, the effect of
changing the potential in a localized region of the
unit cell.

It does not seem necessary to point out that to
demonstrate these results by using wave functions
and matching them in slope and magnitude at the
cell boundaries is certainly much more difficult, to
carry out, to report on as an author, and to follow
as a reader. These results are applicable to other
one-dimensional systems such as transmission lines
with varying physical parameters, or cascades of
inequivalent two-port filter networks.

This device, the transfer matrix, can be applied
to study lattices of higher dimension. Some results
obtained will be published elsewhere. Many elec-
tron effects and correlation effects have not been
considered here, as is the convention in the discus-
sion of this theorem.
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