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Critical exponents of the Ashkin-Teller model
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We show that the time-continuous Hamiltonian of the two-dimensional Ashkin-Teller model
is that of a massive Thirring model. This implies the existence of an infinite number of conser-
vation laws in the critical region and enables us to determine the critical exponents of the ener-

gy, crossover, and polarization operators.

Up to now the exact solution of the two-dimen-
sional Ashkin-Teller' (AT) model has not been
found, although a duality transformation exhibits it
as a staggered version of the symmetric eight-vertex
model, which has been solved by Baxter. This simi-
larity has generated a lot of results, exact and conjec-
tured, regarding the properties of the phase diagram
and critical exponents of the AT model. ' In this
Communication we determine the critical exponents

for the crossover, energy, and polarization operators.
The fundamental assumption we make is that the
time-continuous Hamiltonian introduced by Fradkin
and Susskind lies in the same universality class, i.e.,
has the same long-distance physics in the critical re-
gion, as the original lattice model.

The AT model on a square lattice can be viewed as
a system where two Ising spins o ( r ) and p, ( r ) are
placed on each site interacting with the action

2 = —X f[Efa( r )o( r +x) +Kfp( r )p( r +x) +K~'o( r )o( r +r) +K2'p( r )p( r +r")]/2

+Kf o( r )o ( r +x)p( r ) p( r +x) +E4 o ( r )a( r +r) p( r )p( r +i)I

where r = (j,k) labels the lattice sites and x =(1,0)
and r" = (0, 1) are unit vectors in the x and r direc-
tions.

In the sequel we will only study the case
K2= K~ =K, since this is sufficient to obtain all the
information about criticality of the isotropic model
K,"=K,',a =1,2, 4. Although we will be interested
in the critical behavior of the isotropic model the v-

continuous limit forces us to consider different cou-
plings in the x and v directions. Since this limit has
been discussed in Ref. 10, we only mention that in

order to remain within a particular model, deter-
mined by certain values of the coupling constants, in
the limit when the v lattice spacing becomes continu-
ous (r ~0) we have to take simultaneously

temperature for the doubled Ising model K4= 0 and
the Potts model" K~ =2K4) survives the limit.

In this paper we only study the region of phase
space where x~ )x2, with x~ =exp( —E 2K4), —
x2=exp( —2K), since it contains the Baxter line of
continuously varying critical exponents. The case
x2 ~ x~ will be dealt with in a forthcoming publica-
tion.

In the region x~ & x2 we obtain the following Ham-
iltonian describing the critical region of the sym-

metric AT model'

K'~ oo, K"~0
with the ratios

(2a)

—x4 Xo*(j)o*(j +1)p, '(j) p, '(j +1), (3)
J

K4 K4
K' K" (2b)

fixed. " In this limit one loses the general self-duality
of the AT model, since it mixes models with dif-

ferent K 's. Only self-duality in the sense of
Kramers-Wannier" (implementable by a change in

where X and & =K4 /K'=K4/K" are constants and
a "(j),o'(j) and p"(j), y,*(j) are, two sets of Pauli
matrices. For K4=0 Eq. (3) represents two identical
independent Ising systems. Notice that our Hamil-
tonian does not describe the Potts model" because of
our restriction x~ & x2, which excludes K =2K4.
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Going over to fermion variables we now transform
the Hamiltonian to the one of a massive Thirring
model' on a spatial lattice. To this end we first ef-
fect a Jordan-signer' transformation on the o- and

p, variables independently:

ql(j) = ]g lr"(k)o*(j), gt(j) = ff p, '(k) p,*(j),
k&J k&J

where a, b =1,2, { ) is the anticommutator and

1,
8IJ 0

ifi =j
ifi Aj

In order to obtain a Dirac spinor we need two an-
ticommuting Majorana spinors q, an. d (,. (, can be
obtained from t, by a Klein transformation

q (j) =' g "(k) '(j), ( (j) = g Jll"(k)p, *(j)
k&J k&J

These spinors satisfy the commutation relations

(4)
N

(.(j)= ff "(0(.(j)
I~1

for a lattice of N sites. The spinor

1 ~i(J+1)—ill(j +1)
'q (j)+( (j)

(6)

{n.(J).nb(k) ) -&~.b~ia,

«t' (J) L0(k)) =&~.0~is,

[~.(j), t'0(k)] =0,

satisfies now the desired commutation relations

(l)l (J) lllb(k)) o (l)l (J) lrlb(k)) g bgjk

The Hamiltonian, ~hose expression in terms of g
and (is

l ['ril(j +1)'62(j) + (l(j +1)4(j) ] +—(['rll(j +1)—'ril(j) ]'ri~(j) + [Cl(j +1)—fl(j) ]4(j))(it —1). . . . . i

J

+ &&[pl(j+1)q~(j)(l(j+1)(~(j)]

can now be expressed in terms of l{l as

H = X (( & —1)y( j)y( j) l j(j)y'B—l y(j)
J

—g0[ j(j)y(j)']),

where we introduced the 2 x 2 matrices

0 1 i 0
p ],

I 0 ' ~ 0 —i

satisfying

ga ] gay 00 g l 1 g0 g 0
O (lg)

and the coupling constants gp given by

gp = 2A. A

~ ( )
ill

2m

l)ll(X) = m

2'

:exp(i[a@(u) +by(u)]):

1/2

:exp(—i[5@(u) +ay(v)]):,

(15)

region (xl )xq).
At this stage we may take the spatial lattice spacing

to zero in order to obtain critical exponents from the
continuum theory. Since these exponents are mass-
independent for a suitable renormalization, we may
compute them from the massless model.

Probably the fastest way to get the exponents is
provided by bosonization, ' which expresses the re-
normalized field lrl(x) in terms of a free canonical
massless fiels P(x):

r ~ I/2

The spatial derivative is defined as

(14)

where m is an auxiliary mass; the double dots indi-
cate the usual Nick ordering with respect to the field
$(x), which satisfies

and we notice that Bll)l(j ) cannot be written as a
difference of l[l's at neighboring points. "

Equation (10) exhibits Has a lattice version of the
massive Thirring model with mass (A. —1) and cou-
pling gp. An immediate consequence of this
representation is the existence of an infinite number
of conserved charges of the AT model in the critical

[lt (r,x),j (r,x') ] = i g(x —x'),
6~@=0
y(r, x) =y(x+r) +lt (x —7) =g(u) +@(u)

(16)

and of and 8 are constants depending on the renor-
malized coupling constant.

Let us now identify our composite operators. The
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energy density is given by

e"'= o*(j)~'(j +1) +I '(j) p,*(j +1)
= (4t 02+ 4241) (j) = ee(J) . (17)

We get

P = a*(j)p'(j) =
2 (exp[ [i [(a+8)/2]$(r j)j+H c)

(27)

In the continuum limit this operator is given by
:cos(a+8)$:, with dimension"

d&&=2 dim/+ (18)

which has the following continuum limit:

P(x) =:cos Q(x):(a+ 8)
2

(28)

Since p 's dimension is

++5d&=dimp=
Sm

we gei

(~+8)'
4~

The crossover operator is given by

Oper = o'(j) o*(j +1) p, '(j) p,*(j—+1)
= pf(j )&2(j) —p&(j) p2( j)

(19)

(20)

(21)

Whereas Eqs. (20) and (22) could have been ob-
tained independently of bosonization, Eq. (28) obvi-
ously depends on this procedure and its limitations. '

The anomalous dimension of P is

„Ar (o+~)'
16m 4

(29)

which is a second conjectured relation.
The relations (24) and (29) are renormalization in-

dependent. To obtain their (XAT, X~car, XPAr) depen-
dence on E4 we go back to our isotropic model on
the square lattice. There we know how XGR of the
AT model is related to X, of the equivalent SV
model, ' ' namely,

with dimension XAr(Kg) = xsv(K ) (30)

XCR =
4m

(22)

We notice that only for the symmetric AT model
(KI =K2=K) has our Hamiltonian (10) a U(1) sym-

metry

tanh(2K4)
tanh(2K4) =

tanh 2K4 —1
(31)

where E4 is the marginal coupling of the 8V model
given by'

Q(j) e"f(j), a = const. (23)
Then, we have

The crossover operator drives the system away

from this point and can therefore not be U(1) invari-

ant.
The constants 0, and 8 are not independent for a

"spin" ——, field, but satisfy

Xkr(K4) =

or

= 4XA'(K, )= „1 AT 1

Xg (K4) XCR K4
(32)

a —5 1S~=
Sm 2

This equation immediately yields

(24) 2 . , tanh(2K4)
n tanh(2K4) —1

(33)

XAT 1
XAT

CR
(25)

[@(rj),$(r, k) 1 = I &Jk (26)

a relation which has been conjectured to be true by
several authors. '

The polarization operator P = o.*(j)p, '(j) can be
expressed in terms of a lattice field $(rj ) satisfying

which completes the determination of these three ex-
ponents.

A detailed discussion of our results and their ex-
tension to x2 ~xi are planned to be presented in a
forthcoming publication. "
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