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Reliability of partial structure factors determined by anomalous dispersion of x-rays
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The reliability of the partial structure factors determined by either of two x-ray scatter-

ing techniques using the effects of anomalous dispersion is considered. A comparison of
the two experimental techniques is given for both binary and ternary systems. The re-

cently proposed x-ray frequency-modulation technique is found to be about an order of
magnitude better than the direct x-ray anomalous scattering method, and it is also found
to be suitable for ternary systems. Experimental error is simulated by a pseudo-random-

number generator which produces normally distributed numbers with a specified mean

and standard deviation. Conditions corresponding to about 1% experimental error from
data acquisition and processing are assumed.

I. INTRODUCTION

In the study of amorphous materials, whether
liquid or solid, there is much interest in maximiz-
ing the amount of information that can be deter-
mined about such systems. The absence of long-
I'aIlgc ordcl' nlakcs t11Is considerably II101c dlffltcult
than for crystalline materials. Consequently, when
a new development in experimental capability oc-
curs or is proposed, it becomes of interest to know
what advantage or disadvantage could result from
the new or modified technique. In particular, pre-
cisely this circumstance occurs in the study of
amorphous systems by x-ray diffraction. The
development of tunable high-intensity x-ray sources
permits photon energies to be selected so that x
rays can interact resonantly with bound electrons.
The result is anomalous dispersion in the scattered
beam which is distinct from the normal diffraction
of x rays. In principle, each absorption edge of the
atomic constituents of the sample could yield a dis-
tinct experimental result and, therefore, more in-
formation would be available for deducing struc-
tural details. This is especially important, for ex-

ample, in the study of materials at high pressure
since the possible alternatives, using neutron
scattering to produce distinct experiments, are not
currently performed with an apparatus such as the
diamond anvil pressure cell. The advantages,
though, are not limited to high-pressure studies.
Given that the incident beam can be tuned, several
distinct experiments become possible without a ma-

jor change in the experimental apparatus, thereby
yielding a considerable savings in both temporal
and monetary costs. Furthermore, the feature of
tunability opens the possibility of using frequency-

modulation techniques to enhance the quality of
the experimental results. The gain in the quantita-
tive reliability of the deduced structural informa-
tion is not so obvious, and it is this aspect of the
use of anomalous dispersion that is investigated
here.

The structure of a liquid or an amorphous ma-
terial is often usefully expressed in terms' of a
radial dlstrtbutlon funct10n (RDF) 01, morc dIrcct, -

ly, in terms of a structure factor

(g, g~ ftfj ~ exp(i s R,t ) ), where i, j are summed

over all atoms, Rtt is the position vector from
atom i to atom j, and s is the x-ray wave vector.
When more than one type of atomic scattering
species is present in the sample, the material is
described by a set of partial RDF or a set of par-
tial structure factors (PSF). For N distinct scatter-
ing species, there are N(N + 1)/2 distinct PSF,
and, correspondingly, that same number of experi-
ments or pieces of information must be obtained to
determine the set of PSF.

For x-ray. ScatteAng expeAments, the
methods which can be used to generate the re-
quired number of different observations utilize the
effects of anomalous dispersion. At the present
time, the changes produced in the atomic scatter-
ing factors by means of the anomalous dispersion
of x rays are not more than about 10% when
standard x-ray tubes are used. This occurs because
of the necessity of tuning to the particular energy
of an absorption edge. For x-ray tubes, this tuning
is limited to a selection among the available target
electrodes. However, with a tunable x-ray source,
such as the radiation from a synchrotron, there
arises the possibility of achieving larger changes in
the scattering factors, perhaps in the range of



for m =1,2,3, where $ =4n sin8/A, , 28 is the
scattering angle, A, is the x-ray wavelength, co is the
x-ray frequency, Ij is a PSF, I is the mth net ob-

served interference function, and

W;.($,c0) =Re (2)

where c; is the relative atomic concentration of
species i, and f;($,c0} is the atomic scattering factor
for species i which can be written as

f ($,c0)=f()($)+hf'($,

co)+iaaf�"($,

co), (3)

where i in Eq. (3) is the imaginary number

( —1)'/ . The compositional average value of f is

(f($,a) ) &
=g c f; ($,co) .

The set of Eq. (1) will have a solution if the
determinant of the coefficients does not vanish.
To see the nature of the difficulty for the experi-

20—50%.
A question of some interest for the x-ray

anomalous dispersion techniques is, how weH can
the PSF be determined in multicomponent sys-
tems~ This question has been cons1defed previous-

ly for particular experiments ' on binary systems,
subject to the usual uncontrolled conditions of er-

ror that occur in experimental processing. In this

paper, the question is considered generally under
controlled conditions of errors and for two alterna-
tive experimental techniques. To maintain con-
trolled errors, a method of simulation is used in

which the experimental errors are represented by
means of a pseudo-random-number generator. The
analysis is performed for binary and ternary sys-
tems in the context of two experimental tech-
niques: (1) fixed-frequency (direct) x-ray scatter-
ing with anomalous dispersion, and (2)
frequency-modulated (derivative} x-ray scattering '

with anomalous dispersion.
Consider a binary system for which there are

three distinct PSF. In the case of direct x-ray
scattering, the three required experiments ' are
produced by choosing three distinct frequencies for
the incident x rays, one of which is removed from
any absorption edge and two of which must be
near the absorption edges. The three resulting
equations can be written as

W11($qc0~ )I11($)+2 W12($~&m )I12($)

+ W22($ co~)I22($) =I~($ co~ } (1)

mental conditions, suppose that each atom has an
accessible absorption edge that is well separated
from the other. Then, the determinant of the coef-
ftcleIlts ca11 be wrIt:te11 as

det = 2 W)1($)W(2($) W22($)

5W)](c01) 5W)2(coI) 5W12(c01) 5W22(co)2
X +

W')) 8'(2 8')2

5WII(a)I) 5W22(c02)

8')) 8'22
(5)

For a ternary system, this is —10 . In all cases,
the elements of the coefficient matrix are of the
same order of magnitude as given above. Conse-
quently, the reliability of the solution set is expect-
ed to decrease rapidly as the number of scattering
species increases.

The magnitude of the error in the determined
partial structure factors can be expressed directly
in terms of the error of the net observed interfer-
ence functions. I.et M =X(%+1)/2 and let the
M-component column vector I o be the required
coHection of M ideal error-free interference func-
tions. The corresponding measured quantity I„
contains an element of error which can be ex-
pressed in terms of Io by the relation

I =(1+@)I(),

where e is the relative error matrix with M rows
and M columns mth elements E~„=E'~5~„.
(5~„=1if m =n and =0 otherwise. } For indepen-

where W(J($,co) has been written as Wz($)
+5WJ($, c0) when co is near an absorption edge.
The s dependence has been suppressed within the
large parenthesis of Eq. (5). From Eq. (5), it is
seen that. det is second order in the variation of the

1

W factors. From Eq. (2), W- —, while

~

5W/W
~

——„,so
~

det
~

-10 . The important
point to note here is that

~

det
~

&& W. This cir-
cumstance is one indication that the set of equa-
tions is ill conditioned. The meaning of this state-
ment can be seen as follows. The elements of the
inverse coefficient matrix are of the order W/det
which, in the above example, is about 10 . Conse-
quently, errors in the data can be greatly magnified
in the process of forming a numerical solution. It
should be emphasized that this is a spurious error
that is a property of the numerical process and is
not so much a matter of careful experimentation.

In general, for an E-species system,

N(N+ ) )/2 X 1()1 N(N+ I)/2—



dent experiments, each e~ is an independent ran-
dom variable.

Likewise, the M distinct PSF can be represented

by the ideal vector Po and the experimentally deter-
mined vector P„. These vectors have the relation

P„=(1+a)PO,

where a is the relative-error matrix for the PSF.
If the equation for the ideal vectors is written as

ar
ado

+r Im =g}'iJIi, (10)

where I~ is the appropriate component of I 0, and

} =Jr'
J

2' cj M.f;rj=
( )', ~„(fjo+ fj }

then it follows directly that

a=C-'eC .

The matrix a contains all of the information re-

garding the net error. The input error is contained
in e and the spurious error due to possible ill con-
ditioning is acquired through C

A recently proposed alternative to the foregoing
procedure is the use of the derivative of the inten-

sity function obtained by a technique of frequency-
modulated x-ray diffraction. The significant fea-
ture of this method is that a time-dependent
coherently scattered intensity can be Fourier
analyzed. By examining the first harmonic of the
modulation frequency, the derivative of the in-

terference function with respect to the x-ray fre-
quency enters the analysis. It is this species-
selective derivative that is the important aspect of
the anomalous dispersion method. (For this
reason, this method is called, herein, the derivative
method. )

The first experimental work based on this
anomalous dispersion technique was recently re-
ported in a paper that should become an important
reference in this field. While the partial RDF's
were not determined, the Fourier transform of the
energy derivatives of the scattering intensity did
produce differential distribution functions (DDF}
similar to RDF's. On the basis of the DDF's for
amorphous GeSe and for GeSeq, it proved possible
to distinguish between two competing models for
the structures of each of the two materials. This is
a dramatic illustration of the potential and the im-
portance of the anomalous dispersion methods.
The present work considers how the derivative
technique can contribute to the direct experimental
resolution of the partial RDF and PSF com-
ponents.

In particular, consider the first derivative of Eq.
(8}. Near the absorption edge co of species i, this
can be written in the form

(12)

The error relations can be obtained, as before, by
writing

(I )„=(1+a"')I

aI
aN

=( I+&'m')
aN

where the subscript x again denotes an experimen-
tal value. Then,

~Im
& ~)

&m
Bco

+Ntgn I~ =g }(Ja~)Ily . (13)

Equations (9) and (13) form the basis of the discus-
sion in the following sections.

II. SIMULATION

Equations (9) and (13) provide a means of exa-
mining quantitatively the reliability of the experi-
mentally determined PSF. Recall that the matrix e
represents the experimental error, and each of the
diagonal elexnents of e is an independent random
variable. As a consequence, e can be simulated by
means of a pseudo-random-number generator.
Then, given the coefficient matrix, the response er-
ror a can be computed.

This method of simulation has the advantage
that rather ideal conditions can be assumed in the
construction of the coefficient matrix. One result
of this advantage is that by repeating the pro-
cedure for many sets of random errors, it is possi-
ble to obtain a statistical estimate of the reliability
of experimentally determined PSF. Another is that
the response error can be considered as a continu-
ous function of the magnitude of the anomalous
dispersion effect. Thus, the question, by how
much must the atomic scattering factors be
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changed to obtain a desired accuracy, can be
answered.

For the purpose of simulation, the form of Eq.
(13) is less convenient than Eq. (9) since it requires
a knowledge of the ideal structure factors. Howev-

er, if it is assumed that e'"=e' ', then it is possible
to solve for a in the same form as in Eq. (9). (See
Appendix. ) This is not a serious approximation
since the derivative term dominates the left-hand
side of Eq. (13). Also, this approximation corre-
lates the errors in such a way that the error is ac-
tually inflated in the simulated computations and,
as can be seen in the following sections, this in no
way detracts from the conclusions. Hence,
e"'=e' ' is assumed in the following.

The construction of the coefficient matrix re-

quires some discussion. It is assumed that each
atom has an accessible absorption edge and that
these edges are sufficiently well separated that, at
most, only one edge is involved in the scattering of
x rays of a given energy. Away from an edge, b

f'
=Af"=0 is used, and near an edge, the quantity
x = hf'(s)/fo—(s) is used as an independent
error-free variable. For binary systems, bf"=0
below an edge. For ternary systems, two of the
three edges are used twice. It is then assumed that
one experiment uses an x-ray energy below the
edge and the second is above the edge. Below the

edge, bf"=0 and above the edge, hf" /Af' is
chosen to be a nonzero constant. The value of the
constant is chosen by examining values of hf' and
Af" in the literature. " ' The derivatives
c)hf'/c)co and db f"/Bco are taken to be indepen-
dent of x. For x-ray energies below an edge,
deaf" /des =0. Nonzero values of the derivatives
are estimated either by literature values or by
means of the approximation of James. '

The values of the relative error matrix e are con-
strained such that, over many sets of values, each
independent random variable is normally distribut-
ed with (e) =0 and with a specified standard devi-

ation o(e). It is assumed that each of the M re-
quired experiments are performed with the same
accuracy. A result of this assumption is that

var(~xL, )=0'(~) g(cx;. )'(Cu, )'.

is

III. ERROR ESTIMATION

From Eq. (9), the relative error of the Eth PSF

(Px,x Prc)/Pk =cess—c+ g &xL,PI. /Pic
I.QIc:

Equation (15) expresses the intuitively clear re-
sult that two very similar ideal partial structure
factors are more difficult to resolve accurately than
are two dissimilar PSF. Notice also that a strong
scatterer (large P value) affects a weak scatterer
(small P value) more significantly than vice versa,

Since cr(Ae) =, Acr(e, ) for a positive scale factor A, ,
it follows from Eq. (14) that it is sufficient to con-
sider only one value of o(e). Other cases are sim-

ply scaled by the factor A, .
The analysis has been formulated in terms of re-

lative errors and fractional changes in atomic
scattering factors so that the results are essentially
independent of the particular atoms that comprise
the system. The relative scattering strengths are
the important quantities for the determination of
the response error, rather than the absolute
strengths which are important for determining the
input error (experimental error). This was verified
by using several systems with different relative
scattering strengths, as indicated in Table I.

%hen the response error is viewed as a function
of x = —b f'(s)/fo(s), the results are essentially in-
dependent of the value of s. This was verified by
computations for values of s in the range 0 &s & 15
A '. Throughout this range, there were negligible
differences.

TABLE I. Binary and ternary systems used to determine the relative-error matrix for the
partial structure factors. The ratios of the atomic scattering factors at s =0 (rounded to the
nearest whole numbers) are used as an indication of the relative scattering strengths of the
atoms.

f~ /fa
Binary

f~ /fc fa/fc
Ternary

A-8-C

Cu-Ni, I-Sn, Gd-I
Sn-Mn, Sn-Cu
W-Ni, Au-Ni

Ni-pe-Cr, Gd-I-Sn
Gd-I-Ni, Sn-Ag-Mn
W-Sn-Mn, Au-Ag-Ni
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as should be expected.
According to Eq. (15), the best accuracy that

should be expected for the Kth PSF is the average

~
aux ~. This component of the a matrix must un-

derestimate the error since it ignores the coupling
to other PSF. The detailed computations of the
elements of a show that, in fact, the off-diagonal
elements are quite significant. Consequently, a
more realistic estimate of the accuracy is given by
the sum g~ ~

azL ~,„„and it is this quantity that

is used in the following discussion. In effect, this
approximation yields results such that, for the best
case, the error is worse than it should be, while for
the worst case, the error is not yet as bad as it
could be. Hence, the conclusions reached here are,
again, understatements of the situation. This is en-

tirely appropriate for the comparisons being made.
It should be recalled that the anomalous disper-

sion effect is represented by a continuous variable
x. The experimentally accessible range of values is
0 &x & 0.3, and for comparison the value x =0.2
can be used as a typical value. The computer cal-
culations were carried out to x =0.5. In each case,
the absolute values of the elements of the matrix a
were averaged over 45 replications of the simulated
experiments. (Doubling the number of replications
had a negligible effect on the results. ) The stand-
ard deviation of the normally distributed input er-

ror was chosen to be 0.01 which corresponds to a
net experimental measurement error of about 1%.

A. Binary systems

The results for the estimated relative errors for
the partial structure factors of binary systems (AB)
are illustrated-in Fig. l. In each case, atom A is
assumed to have the larger atomic number, and
with that convention, there are several observations
that can be made.

(1) The error is smaller for the stronger scatterer.
(2} As the difference in the atomic numbers in-

creases, the error curves become more widely
spaced while retaining an approximately fixed cen-
troid. In effect, the component for the stronger
scatterer is determined more accurately at the ex-
pense of the weaker scatterer.

(3) The derivative results are about an order of
magnitude better than the direct results.

(4) The error increases rapidly with decreasing x
for the direct method and less so for the derivative
technique.

(5) At x =0.2, the magnitude of the error is
larger than might be anticipated a orio. For the
direct method, the centroid indicates an error of

100

Binary AB

Int f~ ~
=1

V

LL.I
V

lO

CO
~~
C
CO

IL

Q

LilI
~~
COI
K

10—

0.1—

0.01

88
AB
AA
88
AB
AA

I I I I I

0.1 0.2 0.3 0.4 0.S
I I

0.1 Q.2

88
AB--
88
AA

AB,
AA

I I I

O.3 O.4 0.5
I I

0.1 0.2

BB

88
AB-

AA

AB

AA

I I I

0.3 O.4 0.5

Relative Change Of Atomic Scattering Factor {}(=-leaf'lf)

FIG. 1. Relative error of the component, partial structure factors for typical binary systems A8 as determined by
computer simulation for input data having about 1% error, normally distributed. The system is composed of neutral
atoms of equal concentrations. Three cases of relative scattering strengths are shown and are indicated by the ratios of
the atomic scattering factors at s =0 rounded to the nearest integer. The experimentally accessible range is 0 &x ~0.3.
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about 80%, while for the derivative technique, it is
about 8%.

9. Ternarjj systems

For the amorphous systems ABC, the results are
illustrated in Fig. 2. The comments labeled
(l)—(4) under binary systems apply here also. The
principal difference is the larger magnitude of er-
ror. For example,

(5') At x =0.2, the centroid for the three cases
occurs at about 500% error for the direct method
and at about 50% for the derivative technique.

IV. CONCLUSION

The structure of a multicomponent amorphous
substance can be given in terms of the component
radial distribution functions which are expressed as
Fourier transforms of the corresponding partial
structure factors. The linear sequence of opera-
tions which relate the scattering experiment to the
RDF involves scvcral steps: data accumUlatlon,
data processing, determination of PSF, and.
transformation of PSF to RDF. Each step in-
volves the generation and propagation of error.
The present paper is concerned with the error re-
sulting from the third step, and, hence, the errors
from the first two steps are regarded here as input

1000
Ternary ABC

100—

btt fA fate
=1

I I I I I I I I

0
Q
CO

LL

4.0—
I/MI

Q

40

0.1
100

Q

10—
O

~~
55

Cf

CC

AA

I

I

CC

88

AA

I

CC

0.1—

0.01

88
AA

88

AA

I I I I I

0.5 0.2 0.3 0.4 0.5

88

I I I I

Q.g 0.2 0.3 0.4 0.5

Relative Change Of Atomic Scattering Factor (x = -4f'lf)

FIG. 2. Relative error of the component partial structure factors for typical ternary systems ABC using input data
with a normally distributed random error of about 1%. Three cases of relative scattering strengths are shown. These
are indicated by the ratios of the atomic scattering factors at s =0 rounded to the nearest integer. Only the components
AA, 88, and CC are shown for clarity. The components AB, AC, and 8C occur somewhat unpredictably between the
curves for AA and CC. The system is composed of neutral atoms having equal concentrations. The experimentally ac-
cessible range is 0+x +0.3.
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error. Incorporated into the input error are effects
due to the primary beam characterization, absorp-
tion and polarization corrections, detector efficien-

cy and counting statistics, background subtraction,
matching of spectra taken over different s ranges,
and normalization of the resultant interference
functions to physical units. An optimistic value of
1% has been used as the net result of these contri-
buting factors. %hat is not measured by the input
error is the effect of the imposition of a priori con-
straints which are not readily expressed analytical-
ly. These constrairits can involve qualitative
characteristics of the final RDF, features of struc-
tural models, or specific quantitative information
derived from other experiments. It is generally ar-
gued that the imposition of such constraints re-
duces the error in the results. A comparison with
published RDF works in which such constraints
have been used suggests that as much as a factor-
of-2 reduction in the response error can result from
their use, and possibly more than a factor of 2
with a derivative technique.

For a simulated input error of about 1%, the re-
sults given in Figs. 1 and 2 indicate that a very
large amplification of the error can occur in the
determination of the component PSF. Most ap-
parent in the figures is the improvement that can
be obtained by the derivative technique that has re-
cently been proposed. This method appears to
be more accurate, does not require very large
changes in the atomic scattering factors, and
achieves for ternary systems an accuracy compar-
able to that of the direct method when it is used
for binary systems.

The numbers seen in Figs. 1 and 2 are rather
large and need to be put into their proper perspec-
tive. The response error refers to the amplitudes
of the partial structure factors, and this, in turn,
determines the uncertainty in the RDF amphtudes.
In the simplest case, the two uncertainties would
be the same. Large errors in amplitude, as is well
known, destroy the possibility of determining coor-
dination numbers. The important question that
needs to be considered here is how the uncertain-
ties in the nearest-neighbor distances are affected
by the uncertainties in amplitudes. This relation-
ship can be estimated rather easily.

Consider a curve, as in Fig. 3, with a peak at
point P. If the y coordinate is uncertain by an
amount 5y, P could actually be as low as P'. Like-
wise, points another 5y below P' could be as high
as P'. Consequently, the uncertainty 5x in the x
coordinate is not worse than (xs —xz }/2 and not

FIG. 3. Diagram to estimate the uncertainty in x
given the uncertainty 5y in y.

better than (xD —xc)/2. Using (xi' —x„)/2 as the
worst case, it is easy to see that

5x =(4yi /id y/dx i„„)'ra'i, (16)

~ 166

m
Cg

CO

H
CC

CCI

16a

~C

I I 1 I IlllI i I 1 1 I ilia I I I I iII-'

I I l i l 1 Ill I I I I 1 I I II
10 169

UNCERTAINTY IN ROF ANII'LITUOE (%)

FIG. 4. Estimated relation bet&veen the uncertainty
|,'in %) of neighbor distance and the uncertainty in am-
plitude, based on Flg. 3 and published RDF culves of
monatomic materials.

where 5y =gyp has been used.
The coefficient of a'~ in relation (16) can be es-

timated by examining pubhshed RDF's of mona-
tomic materials for which there are not partial
components to decouple. The coefficient is found
to vary by only a small amount from one material
to another. For example, for Hg at 25'C the coef-
ficient is about 0.52, while for Pb at 600'C it is
about 0.66. Hence, for a rough estimation an aver-
age value of 0.6 has been used for Fig. 4.

As an example, consider the 80% response error
for a fixed-frequency experiment on a binary sys-
tem. From Fig. 4, this would yield about 17% un-
certainty in the nearest-neighbor distance. If a fac-
tor of 2 is allowed for nonanalytic constraints, the
uncertainty in distance is reduced to about 12%.
These numbers are to be compared to the corre-
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of the measured quantities. Prior to the derivative
technique, such direct unbiased determinations
could not be found to be of much value. While
subjective interpretations will always be important,
the exciting aspect of the derivative technique is
that it becomes possible to resolve ambiguities in
structural models directly and even to determine
the PSF directly with useful accuracy.

Ch

40—
Cg

X
I
CiO
LLI

P0 I I I I I I I I I

0 2 4 6 8 $0

NO. OF EXPERIINENTS PER ABSORPTION EDGE

FIG. 5. Example of the fixed-frequency response er-
ror for a binary system as a function of the number of
experiments performed at each absorption edge.

APPENDIX

The relative-error matrix for the derivative
method can be put into the form of Eq. (9) as in
the following example for a binary system. With
reference to Eqs. (6)—(13), we can write

BI
BM

+ V1I1 F11~1+712~2 ~ (Al)

ACKNO% I.EDGMENT

The author thanks Dr. G. G. Cohen for stimu-
lating discussion and interest in this problem, and
Dr. C. R. Hubbard for useful remarks.

sponding results for the 8% response error of the
derivative technique. In the latter case, the uncer-

tainty in distance is about 4% —5/o.
If the nearest-neighbor distance is desired as a

function of temperature or pressure, then it is
desirable to have an uncertainty that is smaller
than the variation that is to be measured. Clearly,
the results of the derivative technique become very
attractive for this purpose. With an uncertainty as
large as 5%, it would still be feasible to perform
meaningful experiments at high pressure.

Another question that couM be asked is what
improvement in the fixed-frequency technique
would result if more than one set of experiments
could be used. This can be simulated as before,
and the case of 80% response error is shown in

Fig. 5 as an example. The plot of response error
versus number of experiments (N) at each absorp-
tion edge shows an error decreasing by approxi-
mately a factor X '~ . Consequently, four sets of
experiments at each edge could reduce the error by

1 1

about —,. Adding to this another factor —, for non-

analytic constraints would reduce the 80% error to
20%, and from Fig. 4, the uncertainty in the
nearest-neighbor distance would be reduced to
about 9%. This is still twice the error of the
derivative technique.

Perhaps as a final remark it should be em-

phasized again that the present work relates to the
determination of partial RDF and PSF com-
ponents without a priori subjective interpretations

BI
+X2I2 =F2~~2+ X22~3

BN
(A2)

I3 C31~1+C32~2 +C33~3 ~

With the following definitions, we have

BI
BN

=—0, y3—=1,

(A3)

(A4)

BI
Qk=

86)
(A5)

V11 F12

Q= o )'2i r22

C3i C32 C33

I'i

I'2 =CP.
I'3

(A6)

We can also write

(A7)

BI

x

(1+&(1)) BI
BN

(AS)

(yl)„=(i+~"')(yl). ,

P„=(1+n)PO . (A10)

Upon setting e'"=e' '=e there follows from sub-

stitution

a=C-'e C,
which is the same form as Eq. (9).
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