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The core-hole Green’s function in the x-ray edge problem is calculated exactly for some
model electron-hole interactions: these include contact and separable potentials. Using
the theory of determinants, it is shown that the Green’s function may be expressed exact-
ly as a series of terms, where the nth term has n electron-hole pairs excited. Exact ex-
pressions are given for the nth term in the series. The series is then resummed using a
cumulant expansion. The results show that the electron-hole interaction is renormalized

by dispersion integrals.

I. INTRODUCTION

In a metal, the electrons in the core levels of the
ion can be removed by excitation to the continuum
states using synchrotron radiation or electron
scattering. The vacant core orbital is called a core
hole. Here we wish to derive some exact results
for the core hole Green’s function. These exact re-
sults are obtained using a simple model of the in-
teraction between the core hole and the conduction
electrons: We use contact or separable potentials.
These potentials are very approximate when com-
pared to the realistic interactions in actual metals.
However, we use them in the present case because
we are able to obtain some exact results.

The core-hole Green’s function, and its spectral
function, play an important role in MND (Mahan,
Noziéres, and de Dominicis?) theory of the x-ray
edge singularity. The spectral function can also be
inferred from an x-ray photoelectron spectroscopy
XPS measurement.>~> There have been many
theoretical treatments of the core-hole Green’s
function by both analytical®~!' and computational
techniques.!>~ !> The computer studies have usually
employed the contact model, so that our exact re-
sults are directly comparable to them.

A full study of the core-hole Green’s function
would include the interaction between the hole and
phonons, and other excitations.!® Our present
model omits most of these, and includes the hole
interactions with the electron-hole pair spectra of
the conduction electrons. These excitations are re-
sponsible for an infrared divergence in the spectral
function,'® which is well documented experimental-
ly.*=> In any analytical approach, such as ours, the
usual method of handling the infrared divergence
is to use a cumulant or linked cluster expansion as
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a resummation of the divergent terms.!” Thus the
statement of the many-body problem is that we
have an initial state Hamiltonian H; before the
core hole is created. The final state Hamiltonian
Hj describes the additional interaction between the
conduction electrons and the core hole,’
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The core-hole Green’s function at zero temperature
can be written exactly in the form'

G(t)=Gy(t)e 90 —iat
Go(t)=—iO(t) exp(—itey) ,

(1) = fo”d7“p<u)(1_e~""') ,

2 pEr
== [, dedle) .

The exponential function ¢(z) is obtained by the
resummation of the cumulant expansion. The
theoretical problem is to determine how its kernal
p(u) depends functionally upon the electron-hole
interaction V.. Several previous theoretical re-
sults will be described below. The self-energy A is
given exactly according to Fumi’s theorem.'?

Table I shows some previously derived results
for the kernel p(u) in the exponential function ¢(z).
Langreth’ obtained a result which is only valid to
second order in the electron-hole interaction, but
includes all electron-electron interactions to this or-
der. This formula has been evaluated by Minn-
hagen, who has shown that the frequency depen-
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TABLE 1. Kernel of linked cluster expansion.

plu) Asymptotic Authors
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u F Noziéres®
1 d3k1 d3k1 sin28p
- —_— — | T; 25 - —_— Mahan®
u f"1<"1-‘ 2m)? f"2>"F ) | Ty, | 0l +e1—) m

2Reference 7.
bReference 8.
‘Reference 9.

dence of the screening is very important.!®~1! Most
other theories have ignored electron-electron in-
teractions in solving simplified model Hamil-
tonians—we shall also ignore it here. Next in
Table I is the suggestion of Combescot and
Noziéres® that the kernel is related to a function of
the phase shift. Their phase-shift result was ob-
tained by summing sets of diagrams in the linked
cluster expansion, and thus goes well beyond the
second Born approximation of Langreth. Howev-
er, the Combescot-Noziéres (CN) result is not the
exact kernel. They point out that their asymptotic
form (t— o) for

$(t)—(sin?8p /m)In(z)

whereas Noziéres and de Dominicis? showed that
the exact asymptotic expression should be

&(6)—(8% /7)In(2).

The CN results were based upon a separable poten-
tial model. The CN result for p(u) was recently
derived for nonseparable potentials by Hansch and
Ekardt.”® Last in Table I is the formula of
Mahan,” who showed that sin?8(e) is better approx-
imated by an off-diagonal T matrix. He also
presented the next term in the series for p(u),
which is proportional to the cube of the T matrix.

The goal of the present work is to add another
item to the list in Table I. More importantly, we
shall give results whose physical meaning can be
precisely stated. Our term represents the exact am-
plitude for making an electron-hole pair. The pre-
vious items do not represent the exact one-pair in-
tensity.

We assert that the Langreth result does not
represent the exact one-pair amplitude. This state-

ment is perhaps surprising, since we have long re-
garded it as the exact pair result. However, the
Langreth result is the exact one-pair intensity for a
different problem. It is exact for a system of elec-
trons whose Hamiltonian remains H; for all time,
i.e., the core hole can only scatter the electrons
without changing their eigenvalues. However, in
the x-ray edge problem, the Hamiltonian is chang-
ing from H; to Hy. Significant recent work?*—2}
has shown that the matrix element, and hence in-
tensity, for the creation of pairs undergoes changes
when the central potential changes. We present
here a new result for the exact intensity for one
and two pairs.

In the present approach, we will give an exact
cumulant expansion, which is the linked cluster ex-
pansion of Brout and Carruthers.!” First, we show
that the core-hole Green’s function for the model
Hamiltonian (1) is given by a series which repre-
sents the excitation of multiple electron-hole pairs:
The nth term in the series is the exact term for n
pairs. We provide an exact expression for the nth
term, and thus, formally, an exact expression for
the Green’s function. This series is then resummed
into a cumulant expression. This resummation
produces a kernel which is itself a series of terms

plu)=p"(u) . 3
j

There is a well-defined meaning to each term
pu) in this series'”: p'"(u) is found from the ex-
act probability of a single electron-hole pair. It is
constructed by summing all solutions which have a
single electron above the Fermi sea, and a single
empty level below. The use of p'"’(u) alone in the
cumulant expansion means that one-pair probabili-
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ties are given exactly, while multipair probabilities
are given approximately: p'®(u) is derived from
the one- and two-pair intensities. The inclusion of
this term in the cumulant expansion means that
one- and two-pair probabilities are given exactly.
Also, in multipair terms, p'?(u) introduces correla-
tl((l)? between emission of pairs, whereas using

(
v1des the exact three-pair intensity, while providing
further correlations for multipair events.

The expansion of the core-hole Green’s function
allows the procedure introduced earlier for the ex-
citon singularity.?* We formulate the problem in a
system of finite size, with a finite set of eigen-
states. Some theorems in the theory of deter-
minants are used to find the exact multipair proba-
bilities.”> Then we carefully take the limit of an
infinite system to obtain the final results.

II. SEPARABLE POTENTIAL

The present calculation employs a separable po-
tential out of necessity. The theoretical approach
employs the theory of determinants. As we shall
see, it only works for a separable potential. Here
we quickly review the properties of such potentials.
These properties are well known, and have, for ex-
ample, been given by CN.

We take the Friedel model for the system. The
core hole is at the center of a large sphere of ra-
dius R. Later we take the limit R— «. The
conduction-electron wave functions vanish on the
surface of the sphere.

Let V(r) be the interaction potential between the
immovable core hole and the conduction electron.
The potential can scatter the electron from k to k’.
For the separable potential, this matrix element
factors into the product of a function of k and k'

n_1
(k|V|k )—nggk .

The factor of R ~! in front is from wave-function
normalization in the sphere of radius R. The wave
function |k ) is the eigenstate of H;. The eigen-
states of H; are denoted by an overbar | k). The
T mat{ix can also be shown to be separable:

- 1 _
(k|VIA)= R S8 >
&r=8a/[1-2(e)],

2

1 8k

3(e)=— .
(€) R%ﬂ;—f

u) alone has all pairs uncorrelated: p'*'(u) pro-

The phase shift §; results from the scattering of
the electron by the core hole, and is defined as

Im=3(¢)
1—Re3(e) *

The diagonal T matrix is

tand(e)=

k8= vkeis"sinﬁk ) 4)

In the finite system of radius R the eigenvalues of
H; are

2
1 ., 1

Ep=7—"Ky=7—

2m 2m

nimwT

R

and the eigenvalues of Hy are:
8y
R
In the limit that R — «, the scattering amplitude

8 can also be represented by a dispersion in-
tegral®*

€, =€y —

f_ S(m)dw 5)

lim g =
Rl_{nwgk 8kCXp - 0—ep—in

All of the above results we shall use in our theory.

III. MULTIPAIR EXPANSION

The core-hole Green’s function at zero tempera-
ture is formally defined in terms of the creation
@d") and destruction (d) operators of the core
hole.'6:

G(t)=—iO(1)(g |e'd e—HIgT | g) .

The ground state of the conductlon electron system
|g) has no core holes, while d* |g) has one core
hole. Thus one can exactly represent the Green’s
function by the equivalent formula®?
G()=—i0(t)(g | e g}, (6)
where H; and Hy are defined in Eq. (1). Our sys-
tem is a sphere of radius R, in which a finite num-
ber of states N are occupied in the ground state.
As shown by CN, (6) is equivalent to evaluating
the determinant of a single-particle matrix ele-
ments

—int

S;j={pi|e |p;)

where |p) are the occupied states in the ground
state—i.e., those beneath the Fermi surface p <F.
We have
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. S S Si
G(t)= —iO(e" s W get S, Sy
Sn1

(7

The individual matrix elements in this determinant are difficult to evaluate, since |p) are eigenstates of H;
and not of Hy. In each matrix element we insert a complete set of states ,, |A){A | which are eigenstates

OfoZ

Sij=2<Pi|7—b><mpj)e
n .

—&t

This insertion is done for each matrix element in the determinant in Eq. (7). The next step is to notice that
this determinant can be expressed as the determinant of the product of two matrices,

det{ S,'j } =det{ AMB)»j } N

(pr1A) (pi|A) (pi|A3) (p1 | Ap)
A= [{P2| 1) (p2|%y) (P2l Aae) |
(px | A1) (pn | Aa)
(A ]py >€-iglt (A1 1p2 >e—i?11 (A1 lpwy )e~i?1x
Byj= <7_M2IP1>9_E2t (A2 p2 ye ' :
<XM [Py >e—i?Mt <XM | Py >9_EMI
"

This step suggests that we evaluate the determinant
by using the identity det (C)= det(4B)
=det(4)det(B). This identity is incorrect in the
present case because neither 4 nor B are square
matrices. If there are M states in the band, and N
are occupied in the ground state, then 4 is N XM
while B is M X N. We have that N <M.

We may use a theorem, independently found by
Cauchy and Binet, for evaluating det(4B) when A
and B are rectangular matrices. First, one takes
the M different values of A, and forms all different
subsets of dimension N. Denote these subsets as
{A}. The theorem of Cauchy and Binet? is

det( S;; } = 3 det(d,; ) det(By;) .
™

One makes 4 and B square matrices by selecting a
subset of values { A }. Then one can use the equal-
ity det(4B)=det(A4)det(B). The exact evaluation is
the summation over all subsets.

In det(B), the factor exp( —it€)) is the same for
each row, and can be pulled outside of the deter-
minant:

det(By;) =det(4;,)* exp

——l‘tzgk , .

The remaining part of det(B) is just the complex
conjugate of det(4). Thus we arrive at the exact
expression '

G(t)=—iO(t)e " HeitEg

X X, exp| —it 3 & | | det(4;) | . )
A

()

The summation is over the different ways of ar-
ranging the M values of A over sets of size N.

The set of states |p;) are the initial states of the
conduction-electron system. The creation of the
core hole changes the electron states, and the new
basis set is |A;). The N electrons in the initial
state may be arranged among the M different pos-
sible final states. Each arrangement has the proba-
bility given by Eq. (8).

The expansion in Eq. (8) lends itself naturally to
a series over multiple excitations of electron-hole
pairs in the final conduction-electron system. The
first term is taken to be the case where all of the
final electrons are in their ground state A <F. The
second term is where all but one electron is
beneath the Fermi surface—i.e., there is one
electron-hole pair. The third term has two elec-
trons above the Fermi surface, and so has two
electron-hole pairs. In this series, the n 41 term



25 CORE-HOLE GREEN’S FUNCTION: DISPERSION THEORY 5025

gives the exact probability of making n pairs. We matrix are
define P, as the probability of making » pairs, ~ @IV 1 oF;
. (i | Ay)=—— =Rz
P,(0=3 |det(4;)|? exp|—itSe e, €i—€i €j—€i
(41 * In det(4;;), the factor g; is the same for each row
. it(e, +A) and can be taken outside. Similarly, the factor g;
G(t)=—iB(t)e > AL ©) is the same for each column and can also be taken
_ " outside. There remains only the determinants of
A=E,—E; . energy denominators, which may be obtained exact-
]y’26

The summation on the right is taken over all sets

of A values which have n electrons above the Fer-

mi energy and n empty states below. det [
The next step is to evaluate the determinants.

An exact evaluation is possible for the case of a

separable potential. The individual elements in the so that

H (ei—ei') H (Em —En)

_F2i>1' m>n

- b

H(Gi ""—ém)

im

1
Ej —€;

H(G[—G[') H (gm —?n)
(g_m) i>i m>n ) (10)
I,;I H(Gi —-?m)

Thus, we have found analytical expression for each term in the series (9). These terms simplify in the limit
that R — oo.

The general result (10) is how evaluated for the first few terms in the multipair expansion. First, we
evaluate the term with no electron-hole pairs:

H (6,'-—6,") H (Em_?m’)

F>i>i' F>m>m'

F>im

8i

R

det(4;,)= H

i<F

8i8;
R

Pé/2 — I‘I

i<F

(11

Next, we evaluate the term with one pair: a state 3 below the Fermi level (B <F) is empty, while a state A
above it (A > F) is occupied:
2

[Mtei—€) I &n—€m) I1 En—21)

i>i m;;;n’ ms£p
—it(e, —%p)
Pi=3e P |5 | I1 (Bn)En -
ﬂ<F i<F m<F " H (6,—6,”)1-[ '_EA)
A>F m#£p i,m=pB

This expression is simplified by removing all factors which are Py:
2
€;—€g € —€

S a7 &1 (eg—%p)
&%

P] —_—Po
B<F 8 (€g—&) i8
A>F i<F

i<F | €—€,

The next step is to take the limit of R— 0. This step is a delicate mathematical operation, which is
described in the Appendix. There it is shown that

€ —F€ sindg € —F€
lim [ j'*TB = exp[A(eg)], hm II - ]:exp[——A(q)] )
R—»oo,:;éB e,--—eB B —->00;<F 6,—6A
(12)
A(e:—l— f Er do 8(w) .
T —® w—€
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The two limiting expressions have a different prefactor, with sin(8g)/8g only in one case, because eg< Er
while €, > Ep. Also, recall that eg—€g=vg8g/R so we obtain for P; in the limit R — oo,

dkg visin®s w dk
Pof kg dakpg Vg B ,2A(ep) ary

Py(2) )

gs ke o (63*61)2

—it(e, —eg) —2A(€)
e AP A

This expression is the exact probability, as a function of time, for creating a single electron-hole pair while

creating the core hole.

This expression can be simplified by using some of the results of Sec. II for the one-particle T matrix.

For example, from Eq. (4)

vgsindg/ | Zp| =8p >

r dk wdky |8|?
Py(1)= Pof ”g2 wep) [ =2 &%

k

This result is the same as CN, or Mahan, since ggg) =

_2M(e,) —it(e;—€g)
> A.e AT B .
Fom (63-—61)

(13)

T'gy, except for the dispersion integrals

exp[2A(eg) —2A(€y)]. Our exact expression for the probability of creating a single electron-hole pair does
contain these dispersion integrals. The earlier results, shown in Table I, do not have such factors, and are

not the exact single-pair probabilities.

Another way to manipulate this expression is to use (5) and to replace the integrand of (13) the right-hand

side of

|8 | expl —2A(e)] =gZexp[2p(€1)], ple

© do8(w)

Ww—€

In Ref. 24 the exact multipair expression for the Mahan singularity at the absorption edge was derived.
There it was found that one could take the Born approximation results and modify them with the factors of
exp[2A(ep)] for holes and exp[2p(e;)] for electron lines. The same result is found here for the core-hole

Green’s function.

Similar steps can be taken to derive the two-pair, three-pair, and n-pair probabilities. These are

&a 0

dea g2 28, dkp o 20ep)
Py(t)= (2'2f [ g

P,(t)= n ‘)ZH

The subscripts @ and B denote hole states, while A
and ¢ denote electron states. The prefactor of
(n!)~? accounts for the equivalent ways of count-
ing the same configuration of electrons or holes.

An exact expression has been found for the
core-hole Green’s function. In Eq. (9) it is ex-
pressed as a summation over the probabilities P, ()
of making n pairs. We have derived an exact ex-
pression for the terms in this series, and therefore
have an exact mathematical expression for the
Green’s function.

wdkx 2,716 dky , RN
otk e s,

kg

expl —it(€)+€5—€,—€p)1(€,—€g) (€1 —€4)

?

(€a—€1) (€ —€4) (€g— €2 (€g—€4)
(14)

H (ea—e€p)* [ (ex—¢4)

kpdkg , (e, iteg wdky , 2pie) —ite, | a<p A>é
[, =gk [, —gle” e

n
[I(ea—e€r)?
a,A

IV. LINKED CLUSTER EXPANSION

Although we have found an exact expression for
G(t), it is in a form which is inconvenient to use.
When taking the Fourier transform of G (t), each
term in the series diverges in the limit of low fre-
quency. This divergence is the well known in-
frared divergence, which is caused by the emission
of many low-energy electron-hole pairs. The cus-
tomary method of eliminating this divergence is by
resumming the series in a linked cluster expan-
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sion.!” We shall now do this, and derive the first The above form for p(”(u) is correct only when no
two terms for the kernel in (3). bound states are present. Whenever bound states

The general procedure is to solve the equation are present in the final state, they must be included
in the summations. For example, when there is a

S P, (1) =exp[—¢(1)], single bound state below the band, then the hole in

the electron-hole pairs can originate from this
state. One has the additional term in p"(u):

w dk),

[P iy )
¢(,)_f0 » (1—e )jglp (u) . 80 V(u fb fk —17-8(u+eb—ek)

Thus we must find the kernel functions p"(u) XZie —2Algy) ,

which will reproduce the original series over P,(z). () .

Using the fact that ¢(r =0)=0, one can establish fo=Fs exp[=2p(&,)],

that the first term in the series is where €;, is the binding energy, and £, is the os-

cillator strength for hole transitions to the empty

Po=exp | — f 0°° iu’i p(u) band, defined by
=2 £(0)
The quantities on both sides of the equal sign are Negp—f5 8(eg—es)
zero in the limit of R— . The divergence is where Ng=(mvp)~! is the density of states. A nu-
caused by the infinite number of electron-hole merical example for this expression will be given
pairs made in the infinite system. below.
The next term in the linked cluster expansion is The second term in the series (3) is
P, (1) which determines the first term p'"(u): " - B0 1 [Py
“) dtemt P1 t) P (u)=uf_wdte T ——2—{ P
(u)=u f —w 27 ’ 0 0
ke dk (15) There will be two electl;ons (kaskg4) and two holes
p V()= 1 f F —38% eZA“B) (kq,kp). In the term P} there are two choices for
u<o mw : pairing the electron-hole variables: either (ky,k;)
wdky 5 2p(e) (kg,ky), or (kq,kg), (kgky). We take both possibil-
X f kp g SA° ities and divide by two. From (13) and (14) we ob-

X 8(u+eg—ep) . tain
|

k k
(2) __u F 2 2A(e,) F 2 2A(eg) £ 2 2p(e) £ 2 2p(ey)
pu)=— fo dkogze fo dkggpe ﬁkodkAgle "kodk,,gq,e ¢

(e,—€p)(€r—€4)?

X8(u+e,+€g—€)—¢€4)
aTETEATR (€x—€1) (€, —€4) (eg—€2) (€5—€4)?

1 1
(€a—€1)(€g—€4)*  (e4—€y)(€g—€y)?

By only algebraic manipulations the polynomial in the integrand can be simplified, and so we find

k
2) 2 2M(e,) [OF 2 2M(eg) [ 2 () @ 2 2p(ey)
pu)= 2 4f dk,g f dkﬂgﬁe Bkodk).gAG lkodk¢g¢e (4
8(u +e,+€g—€r—€y)
(6,,-—6;,)(6,,—E¢)(€g—q)(€ﬁ—€¢) ’

(16)
I
We also tried to derive the next term p®(u) but we interest is the exponent of the power-law singulari-
were overwhelmed by the several hundred terms in ty associated with the infrared divergence.” The
the polynomial in its integrand. singularity comes from the long time behavior of

One feature of both experimental and theoretical the function ¢(¢), which generally has a‘depen-
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dence that is logarithmic?:

lim ¢(t)=g In(2) ,
t— o
g=31_r>r:)p(u) .

The coefficient g becomes the exponent of the
power-law singularity for the spectral function.
Noziéres and de Dominicis? showed that the exact
exponent should be g =8%/7%. The approximate
theories summarized in Table I do not have the ex-
act limiting value. In two cases they give
g =sin’8p/m.

In order to obtain the exact result g =82%/#2, one
apparently has to obtain the limiting behavior of
every term in the kernel,

g=1lim ¥ p(u) .
u—>0j=1

So far we have been able to obtain an analytical ex-
pression for p'"(u =0), and not for p'*/(0). The
problem, of course, is that the dispersion factors
exp(2A) and exp(2p) do affect the result, and render
the integrals difficult. For the first term we ob-
tain.

SptanSF
,n,2

For most potentials of physical interest, the phase
shifts have the range of values 0 <8 <7/2. In this
range, we have that sin?8 <8 <8tand. Thus, our
values tend to be an approximation to the exact g,
which is too large. One expects the next term in
the kernel to be negative, which is the case, as
shown in (16).

p(l)(0)=

V. DISCUSSION

An exact solution is presented for the core-hole
Green’s function for a class of model Hamiltoni-
ans. The Green’s function was represented as a
series of terms, which represent multiple excita-
tions of electrons and holes. An analytical expres-
sion is given for each term in this series, so a for-
mally exact solution is obtained. Furthermore, this
series was resummed as a linked cluster expansion
and recast as an exponential series. The first two
terms were presented for this resummation. Our
series is an expansion in the exact probabilities of
making electron-hole pairs.

The various approximations are compared by a
numerical example shown in Fig. 1. For this illus-

0.05- \ (a) 1

od
o
Of

FIG. 1. Different theories for the first cumulant
term in the core-hole Green’s function. The numerical
example is for a conduction band of unit width, half
full, constant density of states, and U=n"'tan(7/5). In
part (a) the dashed line is the second Born approxima-
tion, and the solid line is the T-matrix approximation.
(b) is the present theory which has the T-matrix plus
dispersion integrals. The solid line is the present theory
but without the core hole in the bound state. The
dashed line shows the transitions §p which leaves the
hole in the bound state. The final p' in (b) should be
the sum of the two curves.

tration we use a contact model U=0.281 with a
constant density of states in a band of unit width
which is 50% occupied. This model, which has
been well studied,?s’24 has a phase shift at the Fer-
mi surface of 8 =m/5, and therefore an exact
value of p(0)==8%/7*=0.040. In Fig. 1(a), the
dashed curve is the second Born approximation of
Langreth. Here the kernel of the integrand of
p'®(u) is the constant U*>=0.0535, and the varia-
tions with u occur from the joint density of states
for electron and hole. The solid line is the CN re-
sult, which has the kernel equal to sin?8(e). The
present result calculated from Eq. (15) is given in
Fig. 1(b). Here the kernel is also sin?8(€) plus the
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additional dispersion factors. They have an impor-
tant effect, since the solid line in part (b) is much
different than the solid line in part (a).

The model we are solving has a single bound
state beneath the bottom of the occupied conduc-
tion band. The bound state affects p'''(u) in two
ways. The first is to permit the hole to be in the
bound state, so electron-hole transitions are allowed
from the bound states. These have an oscillator
strength f;, =0.0108 in the present case, and cause
the big jump at u =0.51= —¢,. The second effect
of the bound states also has an important influence
upon the shape of p'"(u): It affects the dispersion
integral. The phase shift is considered to have a
constant value of 7 between the bound state energy
€, and the bottom of the band energy €, Thus,
the integral in (12) may be written as

Me=ln|©=€ |, L frdodo)

mYv€% w—e

€p—€

The first term on the right of this equation is
caused by the bound state, and it has a big influ-
ence upon the result. In our numerical example
€, =—0.513 42 while ;= —0.50.

No exact results for p(u) are available in the
literature, so we are unable to compare with the ex-
act solution. Those authors presenting computer
solutions'*~3 are capable of obtaining p(u) but
have not presented the result. Only von Barth and
Grossmann'? present results for p(u), which they
call a(w). Our results are quite similar to theirs,
although the results cannot be compared directly
since the two calculations assumed a different
single-particle density of states.

The present results show how dispersion in-
tegrals affect the core-hole Green‘s function. The
first use of dispersion theory in the x-ray edge
problem was by Lloyd,?” who tried to solve the
problem by using canonical transformation. He
was unable to solve the canonical transformation
for the general case, but did for the trival example
of a constant phase shift and found dispersion re-
sults similar to those here. Pardee and Mahan?®
showed that dispersion theory was a simple and
elegant way of solving the Mahan singularity. Re-
cently, Penn, Girvin, and Mahan?* solved the exci-
ton singularity exactly for the contact and separ-
able potentials. They showed that the results could
be presented in a simple way and did contain
dispersion integrals as suggested by Pardee and
Mahan. The present theory is an extension of this
work to the case of the core-hole Green’s function.
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Finally, in Refs. 20—23 there is another approach
to the time-dependent pair spectra, whose relation-
ship to the present work is still unclear.
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APPENDIX

The mathematical approach in the present
theory has been to confine the system of electrons
to a large sphere of radius R. After evaluating the
determinants, we then take the limit R — oo.

There are several situations, particularly in the case
of resonant energy denominators, where this limit
has to be taken with great care.

The first case we will derive is

H(ky)=lim Sh|2Z [(n|m),
R-—»oo”>F
nw || mm
&R R
(n|m)=-"1 ,
R. é'n_‘?m

where 4 (k) is any function of k. In the limit

R — «, the particle wave vectors nr/R=k, go to
the continuum values k,, and the summation be-
comes an integral over this continuum. We ignore
bound states in this analysis since they are easily
included in the results as a sum over their discrete
states: it is the continuum states which must be
treated carefully. In the continuum limit, one
might be tempted to set

gk ®
Hik, )L & m>fk LI
T F € —€py

This formula is correct when k,, <kp. However, it
is incorrect when k,, > kr because an additional
term arises from the resonance region k ~k,,.

Thus we set k,, >k and reexamine the reso-
nance region more closely. The summation is di-
vided into four separate pieces:
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m~—L m+L )

2+ 2+

H(k,,,)=R11 R l

—> 00

The last term, where the energy denominators are
not resonant, can be evaluated by taking the
straightforward continuum limit,

i g(k)2 (ky)g(ky) /v,
g(k )fwdkh
FUk k+k

In the limit that R — o, the integers n, m, and F
also go to infinity, so that the ratios 7F /R —kp,
mn/R —k,, etc. remain finite. The integer L we
assume does not increase as fast as R, so that the
ratio e=mL /R goes to zero as R— . Thus the
first and third terms in (A1) become

hg /v,
R——»w R g n §+L k,,——k,,,+8m/R
g(k
UkF dk+fk +edk]
(k)g( )
X olk—ky,)

This integral is recognized as the definition of the
principal part of the integral over the integrand
with a vanishing denominator.

There remains the interesting term, which is the
second one on the right in Eq. (A1). Here we set
l=n—m and examine

h(k,)g(ky) /v,

(ky)g(ky) /v,

n=F n=m-L n=m+L kn—km +8m /R

= h
2k+k —8,, /R (AD

|

In the limit of R — o, this series converges to a
value independent of L, as long as L is large. The
factors in the numerator can be evaluated at the
value k, =k,,, and the remaining summation is an
expression for the cotangent

g_(km)h(vk )g(k,,) i 117_'_8
m I=—w

gk h(kp g (K )cot(S,,)

Um
Thus we can collect our various terms and obtain
the final result:

h(k, gk, Joots,,
Hik, ) =gk, ) | Km 8 Km)c0

Um

dk h(kg(k)
S [

(A2)
The first term on the right comes from the
resonant denominator, and this term only occurs
when k,, > k. This result was employed in Ref.
24 but without a proof.

The second case we will derive is Eq. (12).
Gottfried®”® has discussed the method of evaluating
this limit. However, when m < F there is a
resonant term, similar to the one above, which

h |k, + al g |km+ al /, Gottfried overlooked. In order to find it, we fol-
L "R ™R g low his steps by expressing the product an an ex-
Igifflmg (K )1=2-L In+5, . ponential series:
. €n—E€m
J(ky)=lim [] = lim exp(Z), (A3)
R—>w, r|€,—€, R—w
n*m
F ky—(kp —8, /R)?
E=3YIn T ) 5
a1 | (ky—8,/R) —(k,,—6,,/R)
n#m
m—L m+L F ky—kp +5m/R F k,+k,—8,/R
E= + + In + >, In (A4)
n§1 n=§—L n=§+L kn—km—(8, m)/R n§1 ky+kpy —(8,+8m,)/R

Again the summation has been broken into four terms. In the limit R— o, the argument of the logarithm
approaches unity. A finite result is obtained by expanding this argument. For example, the last term in the

above equation becomes
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k,+k,, —8, /R

= lim

R—>ow

F
m Y In

li
R'—’°°n=l

R~ ky+kpy—8n/R
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S, 1

ke dk  8(k)
R? =l

+0 o 7 k+k,

In the first and third terms in (A4), we again get the definition of principal parts:

lim

m—L F k
Jm |3+ 3 m[]=2[

n=1 n=m+L

F_g_ik Ok
T k—k,

Again the interesting term is the second one in (A4). Here it is important to recall that the term n =m is
omitted from the series, according to the original expression (A3). Again letting / =n —m, we have to

evaluate the series
L wl+3,,

Tl +8m —8pm 11

00

——>21n

I=—w

wl+86,,

1
n wl

I=—L
150

By collecting all of these terms, we obtain the final result:

sind,,,
Bm

J(k, )= exp[A(k,)] .

sin(,, )
S, '

The prefactor of sin(8)/8 only occurs whenever k,, < kg, since it comes from the resonant denominator in
the summation. This prefactor was not obtained in Ref. 29.
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