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Second-order pseudopotential theory is combined with the Fermi-Thomas dielectric
response to derive an analytic form for a purely repulsive screened Coulomb interaction
between ions balanced by a volume-dependent energy which has no direct inAuence on the
detailed structural properties. The interaction is evaluated for the empty-core pseudopo-
tential and used to give direct predictions of the bulk modulus, the Cauchy ratio c~2/e~,
the Poisson ratio, and the Griineisen constant for the simple metals, which are compared
%1th cxpcrlIncntal values. Thc lntcractlon ls also used to obtain phonon spcctla and den-

sities of modes for aluminum, and these are compared to experiment. Finally a simple
expression for the principal volume-dependent energy is obtained.

I. INTRODUCTION

Simple metals were the first system for which it
was possible to calculate the entire range of bond-
ing and structural properties from first principles.
This was accomplished using pseudopotential per-
turbation theory, ' treating the weak infiuence of
the ionic potentials in perturbation theory. The
leading term in the energy which depended upon
the detailed arrangement of the ions came in
second order. It could be combined with the
Coulomb interaction between ions to obtain a two-
body central-force interaction between ions, plus a
volume-dependent term; use of these was
mathematically equivalent to the direct perturba-
tion theory in wave-number space. In fact the cal-
culation in wave-number space turned out ordinari-
ly to be more practical, and the effective interac-
tion between ions, with its Friedel oscillations and
structure which proved very sensitive to the details
of the treatment of the electron-electron interac-
tion, was of little use.

This structure in the effective interaction is inti-
mately associated with the logarithmic singularity
at q =2k+ in wave-number space and the calcula-
tions in wave-number space have indicated that
th1s singularity has very 11mited impact on the 1n-

teresting properties; while it does give Kohn
anomalies in the vibration spectrum, the general
form and scale of the spectrum does not depend on
the singularity. This explains why the effective in-
teraction between ions can be so sensitive and un-

certain while the mathematically equivalent calcu-
lations in wave-number space can be quite stable
and insensitive. This also suggests that we might
simplify the screening to obtain a stable and simple
interionic interaction which still could give a good
account of most properties of the metal.

The replacement of the Hartree dielectric func-
tion, with its logarithmic singularity, by the
Fermi-Thomas dielectric function is the natural
choice. The Fermi-Thomas function properly
diverges as I/ti at small q and its use in calcula-
tions in wave-number space has proven quite suc-
cessful, which would seem to guarantee a degree
of success.

A second reason to believe that this could be
successful comes from the recent study of cohesion
in simple metals by Chelikowsky. He finds that
the metal itself is a "Fermi-Thomas system" but
that the atom is not. Combining this with Teller' s
finding4 that the cohesion of the metal in the
Fermi- Thomas approx1matlon 1s n'egative and near
zero, Chelikowsky is able to calculate the metallic
cohesion in terms of the kinetic energy of the atom
alone. This is, of course, interesting in its own
right but, for our purposes, it is important in sug-
gesting the use of the Fermi-Thomas method for
the interatomic interaction even though it does not
describe the cohesion itself.

In Sec. II we give a simple argument which
leads to the form of the effective interaction be-
tween ions in the Fermi-Thomas approximation. .

We see that it is a simple screened Coulomb form
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e "'/r for spacings great enough so that the cores
do not overlap. The derivation is carried out in
detail for local pseudopotentials in the Appendix
and the leading constant coefficient is evaluated
for the empty-core pseudopotential.

The view of the metal to which this leads is nov-

el. The metal consists of ions interacting with

purely repulsive interactions, but held to a finite
volume by a volume-dependent energy which has
no direct influence on most detailed properties.
The exact form of this volume-dependent energy
has been the center of recent discussion and we
shall obtain the principal contribution explicitly,
but it does not affect the calculations performed
here since they are carried out at constant volume.
The exponentially decaying interaction leads to
rapidly converging calculations. Meaningful, but
not very accurate, results can even be obtained in

many cases including only nearest neighbors; here
we carry each calculation to convergence. Care
must be taken in treating the volume dependence
since most properties are measured at constant
volume, but we see that even properties such as
compressibility, Poisson s ratio, and thermal expan-
sian can be suitably treated entirely in terms of the
simple repulsions.

In Sec. III we report in detail the results of cal-
culations of a wide variety of properties in terms
of the simple interionic interaction. Note that all

of these properties are determined by only two in-

dependent parameters for each metal: (1) the
strength of the interaction, which depends upon
the empty-core radius r„ the valence Z, and the
screening length 1/a, and (2) the ratio of the
screening length 1/a, to the interatomic distance
characterized by ro where the volume per atom is
written as 4nro/3. The stren. gth of the repulsive

interaction sets the scale of all interaction energies,
and is tested for the empty-core pseudopotential by
treating the bulk modulus. Most of the other
properties we consider are ratios for which the
strength of the repulsion cancels out. In this case,
far a given structure, all variations from material-
to-material are trends in pro, a parameter that in-
creases with valence (to the right in the Periodic
Table, with the alkalis and the alkaline earths hav-

ing pro greater than the trivalent metals) and with
increasing atomic number.

II. THE EFFECTIVE INTERACTION
BETWEEN IONS

The simple metal consists, to zero order in the
pseudopotential, of metallic ions imbedded in a un-
iform free-electron gas"', these ions interact with
each other through their Coulomb replusion
Z e /r for iona of valence Z. The ions interact
with the electron gas through a weak pseudopoten-
tial, w(r —r;) for an ion at the position r;. The
pseudopotential is taken to be independent of the
relative positions of the iona so that to first order
the shift in energy of each electronic state is a sum
of terms & k

I
w

I
k &, each independent of the rela-

tive positions of the iona. It is found2 that the
terms through first order, independent of ion posi-
tion, give a fair description of the equilibrium en-

ergy and lattice spacing of the simple metals.
The leading position-dependent term in the ener-

gy of an electronic state is of second order. We

display the equation& necessary to show that this
second-order term is equivalent to a two-body in-

teraction, and we complete the derivation in the
Appendix. The second-order term in the energy of
the state

I
k & may be written as follows:

(&
I
x~(» —«»)

I &+q)(&+q I
X~~F—«;)

I &)
E(2) r

J' i

(A' /2m )(k —
I
k+ q I

)

—i q (~,.—~&) &k
I
w(r)

I k+q&&k+q I
w(r)

I k&

(iri /2m)(k —
I
k+ q I )

(2)

The second form was obtained by changing the variable of integration in each matrix element from r to r
—r; or r —rj and then reordering the summations. The only dependence upon the ionic positions is in the

—iq l r.—r )
factor e ' . In evaluating the total energy we must sum over occupied states and since' this contri-
bution is already of second order in the pseudopotential we may perform the sum over states within the un-

perturbed Fermi surface k & kz to obtain a second-order result. Again interchanging sums, we obtain
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The Anal sum over k gives a simple function of
the magnitude of q which we write as I" (q) (equal,
cxccpt for sc1ccQlng corrections, to thc cncrgy-
wave-number characteristic). Then the sum over

q, which is g'e ' F(q), is simply a
Fourier transform giving a form which can be
described as an effective interaction between iona

V(
~
r; —r

~
) depending only upon internuclear

distance. This point was apparently first made by
Cohen. Self-energy corrections do not modify this
conclusion so that all of the terms, up to second
order in the pseudopotential, depending upon the
detail& positions of the ions, can be combined as a
two-body centraI-force interaction and a volume-

dependent term.
%C may now seek a solution for this interaction

using the FCImi-Thomas approximation; to obtain
thc energy to second-order in the. pseudopotential
we may in fact use the linearized Fermi-Thomas
approximation. In this approximation the electron
density (or the perturbing potential) arising from,
and outside of, a spherically symmetric perturba-
tion can be obtained from a second-order linear
differential equation7 and has the general form
(/Ie ""+Be"")/rand only the first term is allowed
at large distance. v is the Fermi-Thomas screening
parameter

«=(4e kFm Immi )'~

Clearly, thea, a second perturbation interacting
with this field will, to lowest order, contribute a
shift in energy also varying as Ae ""/r as a func-
tion of the separation.

A special case of this interaction is the well-

known screened Coulomb interaction between
point charges Ze (or spherically-symmetric charges)
given by Z e e ""/r We see h.ere that all any lo-
calized pseudopotcntial operator can do in the
Fcrm1-ThoIDRS approximation 18 to chRQgc the
leading coefficient.

In the. Appendix we derive this result explicitly
for local pseudopotentials and evaluate the result
for the empty-core pseudopotential in which the
unscreened pseudopotential is Ze /r for r great—er
than the core radius r, and zero for r less than r, .
%C obta1Q

V(r)=Z eicoshi(«r, )e ""/r,

for r greater than 2r, . Note that it properly gives
the usual screened Coulomb interaction as r, ap-
proRchcs zero.

III. THE STRUCTURAL PROPERTIES

The picture of the metal which Eq. (4) provides
is peculiar. This is a purely repulsive interaction,
balanced by thc volume-dependent cncrgy which
stabilizes the IDetal at the observed volume. Pseu-

dopotential theory has always had this volume-
dependent term but as long as the effective interac-
tion between ions had an attractive part near the
observed spacing we could, to some extent, put the
volume-dependent term out of our minds; that is
no longer possible. After the initial reaction we

may see that this is a very fruitful view of the met-
al.

If indeed there were no volume-dependent term,
so that the ions were in equilibrium under two-

body central forces alone, the Cauchy relations
among the elastic constants would obtain cia ——c44

~ 8.

for cubic metals. We shall soon see that experi-
mentally these are ge.nerally violated for simple
metals by a factor of about 2 so that the tradition-
al view of'two-body interactions is not even ap-
proximately vahd; this. is rectified quantitatively by
the new view. - We shall see how the.new view
makes other phcnoIDcna 1Q metals 1IDmcd1Rtcly ap-
parent, as well as providing a method for very ele-

mentary estimates of any of the atomic properties
of the simple metals.

Of course, there cannot be a truly volume-
dependent term in the energy. It would, for exam-
ple, nlodify tile bulk iilodulus associated witll uili-
form dilatations but would not modify the bulk
modulus entering the speed of.:longitudinal sound
(waves propagating in the system at constant total
volume). This violates the well-known validity of
the method of long waves. The resolution of this
contradiction comes in recognizing that the
volume-dependent energy is really a multi-ion in-
teraction of sufficiently long range and sufficiently
weak structure, so that it does not have an impor-
tant influence on detailed atomic properties. We
shall see in the Appendix that the principal contri-
bution to the volume-dependent energy is the self
term i =j in Eq. (2), but there are others.

It might at first seem unreasonable that a prop-
erty such as the bulk modulus could be calculated
either at constant volume, on the basis of the
second-order terms, or independently from the
volume dependence, neglecting the second-order
terms. The reason is that the sum of all second-
order terms, including the i =j term in Eq. (2), is
rather insensitive to volume. In fact, to the extent
that k. is negligible in comparison to the q (+0)
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TABLE I. Pseudopotential core radii fit to the observed bulk modulus. Also given are
the radius p'0 of the atomic volume and the ratio Kpo of po to the screening length.

ro (A}' r, t,'A) ro (A}'

Cu 0.80
Ag 0.99
Au 1.15
Mg OA9

Zn 0.30
Cd 0.53
Hg 0.55
Al 0.23
Ga 031
In 0.46
Tl 0.48
' See Ref. 19.

1.41
1.59
1.59
1.76
1.52
1.71
1.78
1.58
1.67
1.84
1.89

2.55
2.71
2.71
3.20
2.97
3.16
3.22
3.24
333
3.50
3.55

Sn
Pb
Ca
Sr
Li
Na
K
Rb
Cs
Ba

0.68
0.45
0.75
0.90
0.38
0.76
1.12
1.33
1A2
0.96

1.87
1.93
2.17
2.37
1.73
2.11
2.62
2.80
3.03
2.46

3.70
3.76
3.56
3.72
2.83
3.12
3.48
3.59
3.74
3.78

A. The bulk modulus and the values of r,

Given the pseudopotential core radii, obtained
from the pseudopotential or from the atomic term

2.0

I.S—

1.0—

0.5—
~~ p ~

r

I

1.5
0 I . I

0 0.5 1.0

&c~e

FIG. 1. Empty-core pseudopotential core radii r, (m)
obtained by fitting to known pseudopotentials m plotted
against radii r, (8) fitted to the observed bulk modulus.

entering Eq. (2} the sum is completely independent
of volume.

The method by which we predict properties
then, ls by calclllatlng vlbl'atloilal freqlleilcles,
holding the volume of the system fixed. This is, of
course, done by imposing displacements propor-
tional to exp(i k rj ), calculating the forces on an
individual ion using the interatomic interactions of
Eq. (4), and solving the Newton's-law equations for
the three components of the force and acceleration.
From these we can extract the elastic constants and
from the changes in the elastic constants with
volume we can obtain the Gruneissen constant.

values, we thus can directly predict the elastic
constants by standard lattice-dynamic techniques. s

It is more convenient for our purposes to turn this
process around and estimate the core radius from
the observed bulk modulus and then compare it
with the previously given core radius. %e did this
for the observed structure, but assuming face-
centered-cubic structures for both hexagonal and
cubic close-packed metals. The values obtained
from a fit to the observed bulk modulus at the ob-
served spacing are listed in Table I and plotted in
Fig. 1 against the core radii listed in Ref. 2. The
agreement with respect to both trends and general
magnitudes gives strong support to the use of the
simple Fermi-Thomas approximation to the dielec-
tric constant for this elastic property. One of the
evaluations came from the bulk modulus and the
other from electronic structure considerations
which are unrelated to the elastic properties.

This agreement does not, of course, mean that
other interpretations of the elastic properties are
incorrect; as we have indicated, simple predictions
of the bulk modulus based upon the volume-

dependent energy by itself but with the same pseu-
dopotential gave comparable agrennent with exper-
iment. However, the treatment in terms of in-
terionic interactions is of more interest since it al-

lows a treatment of a much wider range of proper-
ties.

For the prediction of atomic properties of metals
the fitted values of the core radius r, given in
Table I are preferable to the values obtained ear-
lier. However, we wish to avoid the use of adjust-
ed parameters here since our goal is to learn about
the validity of this approach. This can be accom-
plished by evaluating ratios of observables for
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TABLE II. The Cauchy ratio c~2/c44 predicted for
the cubic metals and compared with observed values.

Kfp Predicted
C12/C44

Observed'

~ 4—
Ct

CV

O

LENNARD-JONES

Cu

Ag
Au
Al
Pb
K
Na
Li
' See Ref.

2.55
2.71
2.71
3.24
3.76
3.48
3.12
2.83

20.

4.07
3.78
3.78
3.10
2.68
2.72
3.05
3.43

1.61
2.03
3.88
2.15
2.84
1.67
1.48
1.30

p
2

K f0

FIG. 2. Cauchy ratio c~2/c~ plotted as a function of
the ratio Kro of the radius of the atomic volume to the
screening length. The solid curve is for the face-
centered-cubic structure, the broken curve for the body-
centered-cubic structure. Experimental points are from
Table II, with triangles for the face-centered-cubic struc-
ture and solid dots for the body-centered-cubic structure.
The solid line c»/c~ ——1 is for a Lennard-Jones type
potential for which the structure is stable under the in-
terionic interactions alone.

which the value of the core radius cancels out.
The calculated results obtained in Secs. II B—II E
did not entail any adjustment of the core radii;
they are from first principles. (The Gruneissen
constant actually has a weak dependence upon r„
but it is unimportant on the scale of the compar-
ison with experiment. )

B. Deviations from the Cauchy relations

The lattice-dynamics calculations which give the
bulk modulus as described above also give the
three independent elastic constants for the cubic
structures. Of particular interest are the deviations
from the Cauchy relation, c~2 —c44. Every term in
the elastic energy is seen from Eq. (4) to be propor-
tional to cosh ar, and to have no other dependence
upon r, . Thus, the "Cauchy ratio", defined by
c~2/c44, is directly predictable and is a function
only of ad (with d the nearest-neighbor distance)
for any structure. It is predicted and compared
with experiment for some of the cubic metals in
Table II and plotted against ~ro in Fig. 2. Again

there is reasonable accord with experiment, partic-
ularly in comparison to a model of two-body
central-force interactions alone which yields a
universal value of unity. Although we tend to
overestimate the magnitude of the deviation, we
note that both the direction and structural depen-
dence of the deviation from unity are correctly
given.

C. Poisson's ratio

Poission's ratio is a second independent elastic
parameter which can be predicted and compared
with experiment. It is the decrease in the cross-
section diameter for a specimen with free lateral
surfaces under a uniaxial stress. It is remarkable
that this can even be evaluated in our framework,
which requires volume-dependent energy and thus,
in some sense, surface stresses. However, elasticity
theory gives the Poisson ratio in terms of the elas-
tic constants of cubic crystals as

0'=c&z~(c»+ct2)

Again the dependence of the energy upon r, can-
cels out. The predicted ratios are compared with
experiment in Table III. The Poisson ratio is ob-
served to be relatively constant for a given struc-
ture, in agreement with our calculation. Agree-
ment with observed values is typically within 30%,
as in the Cauchy ratio, we tend to overestimate the
relative magnitude of c~q.

The prediction of the bulk modulus, the Cauchy
ratio, and the Poisson ratio provides three indepen-
dent tests of the approximate theory. Further in-
dependent tests can be obtained from prediction of
the volume dependence of the elastic constants.
We consider only the volume-dependence of the
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TABLE III. The Poisson ratio defined as the ratio of lateral contraction to longitudinal
expansion for uniaxial stress. Experimental values are given for comparison.

Predicted Observed' Predicted Observed'

Cu
Ag
Au

Mg
Zn

' See Ref. 21.

0.48
0.48
0.48
0.47
0.47

0.36
0.37
0.36
0.35
0.25

Al
Tl
Sn
Pb
Na
K

0.47
0.47
0.46
0.46
0.49
0.49

0.33
0.35
0.33

0.40—0.45
0.43
0.44

bulk modulus, which can be related approximately
to the thermal expansion.

D. The Coefficient of Thermal Expansion

Q d cog Blncok

cox d0 BlnQ
(6)

co+ is proportional to the square root of the elastic
ridigity against the mode E. The Gruneisen con-
stant does depend upon which mode is considered
but we take a value determined in terms of the
bulk modulus B as representative,

0 dB
2B dQ

The coefficient of linear thermal expansion is re-
lated to the Griineisen constant by the formula'

A Griineisen constant can be defined in terms of
the vibrational frequency cox for any vibrational
mode of a solid by'

A to obtain values for y; the values obtained with
this fitted core radius are listed in Table IV. Us-
ing core radii obtained from known pseudopoten-
tials as in Sec. III A results in values from 2% to
9% larger than these. We also list for comparison,
experimental values derived from the coefficient of
linear expansion as in Eq. (8). Slater" derived an
expression for y based on the compressibility and
its pressure derivative and subsequently Dugdale
and MacDonald' have given a necessary correc-
tion to that expression. The values in Table IV are
obtained from the corrected expression.

E. The vibration spectrum

The entire spectrum of lattice vibrations and
density of phonon modes in the simple metals can

TABLE IV. The Griineisen constant y, defined by
Eq. (7). The observed values are deduced from the
linear expansion coefficient at room temperature.

a=yCi l3BQ,

where Cz is the heat capacity at constant volume.
We may thus estimate the Gruneisen constant
from the thermal expansion coefficient measured
at high temperatures where the heat capacity is
3kT per mode.

We calculate the Griineisen constant by varying
the total volume, as opposed to the local variations
from which we derived the bulk modulus, and
hence the value depends on the core radius through
the volume dependence of the screening length in
the coefficient cosh ar, . The Griineisen constant
and the bulk modulus are the two properties we
treat that depend on the core radius. For this ap-
plication, it is appropriate to use core radii ob-
tained from fitting the bulk modulus as in Sec. III

Predicted

1.19
1.26
1.31
1.16
1.08
1.17
1.10
1.20
1.23
1.19
1.31
1.27
1.31

Cu

Ag
Au

Mg
Zn
Cd
Al
Tl
Pb
Na
K
Ca
Sn
' See Ref. 19.

See Refs. 10, 11, and 12.

Observed'

1.96
2.40
2.94
1.48
2.19
2.18
2.17
2.21
2.70
1.25
1.34
1.07
4.34

Slaterb

1.63
2.2

0.94

1.50
2.32
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«=6.80 (Pb). We find that in this simple model
D(co) is relatively insensitive to material.

are not only quantitatively significant, but are
necessary for stability.

F. Other properties

A number of other applications come immedi-
ately to mind, some of which we have explored.
First is a comparison of the energies of different
crystal structures. Again for the ratios of the ener-

gies, the dependence upon r, cancels out if the
comparisons are made at equal density. Then sta-
bility depends only upon «ro and we found the
face-centered-cubic structure stable over most of
the range of ~ro which occurs in the simple metals.
This lack of success is not surprising since it seems
unlikely that the structure is really determined
even by the most accurate second-order pseudopo-
tential theory. ' Corrections were also made for
comparison at constant pressure using the bulk
modulus discussed earlier and a change in pressure
at constant volume, computed using the interaction
given in Eq. (4) but this had only small effects on
the results.

The study of defects might be a particularly in-

teresting application. One could, for example,
compute the formation energy for a vacancy. The
first such analysis in terms of pseudopotential
theory was carried out by Harrison' for zinc. It
was carried out at constant volume by first remov-

ing a single ion from the crystal and then decreas-

ing the lattice distance to make room for an addi-
tional site for that ion at the surface, conserving
the number of ions and the volume. One could
then make a correction to obtain the value at con-
stant pressure as suggested above for structure
determination. The result, however, is not directly
comparable to experiment since in the real crystal
there will be local deformations of the lattice.
These also could be calculated using our interionic
interactions, and that should be done before allow-

ing the volume to relax. This calculation would

give the atomic positions, the energy of formation,
and the activation volume. It has not yet been un-

dertaken.
We initially thought that simple formulas for

the elastic constants derived using only nearest-
neighbor interactions could be useful. This turned
out not to be the case. Under nearest-neighbor in-
teractions alone, even the face-centered-cubic struc-
ture turned out to be unstable under some distor-
tions for small values of ~ro, though the three elas-
tic constants themselves were positive. In the con-

text of our calculation the more distant neighbors

IV. SUMMARY

Use of the Fermi-Thomas approximation has
eliminated the complexity and slow convergence of
the two-body interaction obtained using the Har-
tree dielectric function. Little in the way of essen-
tial physics is lost, though as a first-principles
method for calculating bonding properties it is of
limited accuracy; it also cannot produce the same
accuracy as empirical models with sufficient num-

bers of adjustable parameters. Its principal virtue
is its simplicity, universality, and ease of applica-
tion. In addition it is a considerable improvement
over other two-body interactions such as the
Lennard-Jones potential which led to elastic can-
stants satisfying the Cauchy relations. The purely
repulsive interaction also gives immediate intuitive
conclusions, such as the direction of relaxations of
the neighbors to a vacancy, which are not easy to
obtain from the more complete theory. With use
of the core radii listed in Table I, this approach
immediately provides an interaction in terms of
which the entire range of elastic properties of sim-

ple metals and their alloys may be treated.
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APPENDIX: DETAILED DERIVATION
OF INTERACTION

In the pseudopotential theory of metals, the en-

ergy of each electronic state is calculated to second
order in the pseudopotential, '

, &k( W(k+q&&k+q ) W( k&

(fi /2m)(k —ik+q i )

(Al)

where the pseudopotenetial enters in matrix ele-
ments between plane waves. The prime indicates
the omission of the term q =0. This theory can be
carried out for a full nonlocal pseudopotential, ' but
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the notation is simpler if the pseudopotential is
taken as local. We summarize that analysis here.
From the argument given in Sec. II it is clear that
the form of the result is the same. We write W as
a sum of local pseudopotentials w(F—

F& }centered
on the ion positions rj. Then the matrix elements
become

(k+q
~

W
( k) =S(q)wq, (A2)

with the structure factor a sum over the N, ions

S(q) = ge
0 j

and the form factor

(A3)

(A4)

e(q}=1- 8me

q0

Qp is the atomic volume Q/N, .
In particular ( k

~

W
~

k ) becomes wp, indepen-
dent of the ion positions as long as the total
volume Q and the number of ions N, remain fixed.
Thus, at fixed volume the first two terms of Eq.
(Al) are independent of the ion positions. When
we sum over occupied states in the evaluation of
the total energy, these two terms are incorporated
in the volume-dependent "free-electron energy. " It
can readily be shown' that to second order in the
pseudopotential this sum over states may be taken
as a sum over k & kF rather than within the true
nonspherical Fermi surface. Thus, the leading
term from Eq. (Al}, which depends upon the ion
positions, is

g=g'S'(q )S(q)ws
q

X g (2m/i)i )(k —
~
k+q

~
) '. (A5)

k &kp

We have substituted the form for the matrix ele-

ments, Eq. (A2), and interchanged the sums over q
and k. The sum on k implies a sum over spin as
well as over wave number.

The pseudopotential which enters is a screened
pseudopotential; that is, for a local pseudopoten-
tial, wq can be written as an unscreened pseudopo-
tential wq divided by a dielectric constant,

Note that the sum performed in Eq. (A6) is exactly
that appearing in Eq. (A5) so that the sum in Eq.
(A5) may be written

g=g'S~(q)S(q) q Q(we ) 1 —e(q)

Snee(.q)
(A7)

S~(q)S(q) =N, g e (A9)

We interchange the sum over q with those over i
and j to obtain

N, Eb, ———,g' Vi„d(F;—r, )
l,j

, Qpq (wq} 1—e(q}
Sire' &(q)

(A10)

The first sum contains only the terms with i+j.
In that sum

Qpq'(we )'[ I —e(q)]e
V;„d(F)=

(Al 1)

The second sum in Eq. (A10} comes from the
terms with i =j and does not depend upon the de-
tailed structure. We treat the i' sum first.

The sum over q in Eq. (All) may be replaced by
an integral (Q/Sir )fd q and performed if we is
known. The result may be added to Eq. (AS) to
give the effective interaction between ions. If all
ions are of the same element,

Obtaining the total energy to this order requires
two more steps. First we must substract electron-
electron interactions which are counted twice in
the one-electron approximation used here. One ef-
fect of this is to replace the e(q)~ in the denomina-

tor of Eq. (A7) by e(q); then g becomes the
"band-structure energy" Eb,. Second, we must add
the interactions between ions. For atoms with Z;
valence electrons per atom, this energy is

i X ZiZJ'e /g —r
~

~ (AS}
l,j

It was first noted by Cohen that the sum of elec-

tronic energies, Eq. (A7), can also be written as a
similar sum over indirect interionic iriteractions.
We write out the structure factors in Eq. (A7),

V(r)=V;„d(r)+Z e /r . (A12)

If it is an alloy, Z is replaced by Z;ZJ and (wp)2

is replaced by the product of the form factors for
the two ions in question.
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q (wq) sinqr
dip

0 q+g
{A13)

We have used the spherical symmetry of the prob-
lem to write e ' q ' ' as (qr) 'sinqr. The integrand
is even in q so ~e may extend the integration from
—oo to oo and divide by 2; then sinqr may be re-

placed by e'q"/i Such a. form is useful since it al-

lows us to evaluate the integral by closing the con-
tour in the upper half plane. The contribution
from the pole at tl =itc gives an interaction propor-
tional to e "'/r and to (wq), evaluated in the
plane of complex q. To obtain an explicit value
for the leading coefficient, it is necessary to have
an analytic form for wq. A very convement one is
the Ashcroft empty-core pseudopotential, ' used
extensively in Ref. 2, though similar results can be
obtained with the point-ion model. ' The un-

screened empty-core pseudopotential is Ze /r f—or
r greater than the core radius r, and zero for r less
than r, . The corresponding form factor,

wqo= 4nZe costir, /(q —Oo), (A14)

This result is quite fainiliar. The dielectric con-
stant is ordinarily taken as the Hartree dielectric
function" and the asymptotic form of Eq. (A12)
for large distances varies as r cos2k~r, with the
familiar Friedel oscillations arising from the loga-
rithmic slliglllarlty in t(g) at tl =2kF. Tllese os-
cillations are intimately related to the Kohn
anomalies in the vibration spectrum, but they are
best treated directly in terms of the wave-number
sum of Eq. (A7). Surprisingly, few other proper-
ties have turned out to be sensitive to the oscilla-
tions. It becomes interesting to consider the very
much simpler theory obtained by using the Fermi-
Thomas dielectric function, e(q) =I+a /q, with
the Fermi-Thomas screening parameter given in

Eq. (3). Then the indirect interaction of Eq.
(All) becomes

a' Q0
&;„a(r)=-

Seer

may be substituted in Eq. (A13). The integration
over the closing contour only goes to zero if r & 2r,
but in that cas8 the integration is simple. The con-
tribution from a pole at q =0 just cancels the
Z e /r of Eq. (Al 1) and that at q =itc gives

Z 8
V(r) = cosh xr, e (A15)

If the two iona in question are different,
Z coshittr, becomes, of course, Z;Zjcoshtcr,

)&cosh~r, . with ~ evaluated for the alloy. This

simple result is very plausible. It is also plausible
that it only obtains for r y 2r, such that the cores
do not overlap.

A similar treatment of the second term on the
right-hand side of Eq. (A10) gives the second-order
volume-dependent term in the Fermi-Thomas ap-
proximation. For the empty-core pseudopotcntial,
we obtain

0 3 IIotI {wq) 1 —. e(q)d q
(2m)' gee' ~(q)

, N, Z e tccos—h(—ter,)e '. (A16)

In Sec. II of this paper just above Eq. (1) it was
noted that terms in the total energy through first
order give a fair description of the equihbrium lat-
tice spac1ng in thc simple metals. This could bc
calculated from the energy as a sum over indepen-
dent atomic spheres. This implies that the sum of
electrostatic and second-order terms in the total en-

ergy [Eqs. (AS) and {A10)]should also achieve
their minimum near the equilibrium lattice spac-
ing. Minimization of the sum of the contributions
in Eqs. (A15) and (A16) shows this to indeed be
the case. This minimization contains contributions
from the volume-dependence of tc in Eq. (A15).
Note that this consistency condition is independent
of the consistency condition on the second-order
terms alone, discussed at the beginning of Sec. III.
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