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In recent papers Armand and Manson have dealt with atom-surface scattering from a
soft exponential corrugated potential. In this work we present a normalized distorted-
wave Born approximation whose results compare well with exact calculations by Armand.
This approximation may reproduce the intensities of the main beams for He scattering
from dense metallic surfaces where the corrugations are not too large.

In two recent papers, Armand and Manson'-?
have used the so-called CCGM (Cabrera, Celli,
Goodman, Manson) theory® and have solved
without approximation the problem of atom-
surface scattering from a soft exponential corrugat-
ed potential

V(ﬁ’z)zce-dt[z——b(ﬁ)] , (1

where the position vector is i"=(ﬁ,z), R and z be-
ing the parallel and perpendicular coordinates to
the surface, C is an energy constant irrelevant for
the intensities, D(R) is the corrugation function,
and X gives information on the softness of the po-
tential: for X— o, the hard corrugated-surface
(HCS) model with corrugation D(R) is obtained.

The CCGM theory? starts by solving the Hamil-
tonian

2 g2
Ho(z)=——2h—§~2—+V( z) (2)

with m mass of the particle; then perturbation
theory is applied to the eigenfunctions ¢p(z)e‘ KR
Here (K,p) is a wave vector with parallel and per-
pendicular components K and p, respectively [for

the incident particle k; =(K,k3,)]. The total
scattered wave function is

= =

llﬁ?):ng_d(z)ei(l(-f-G)"ﬁ , (3)
G

G being the two-dimensional reciprocal vectors,
and

bg@= [ bg(p,2)dp , @)

an expansion in terms of the ¢,(z). The outline of
the theory can be followed in Refs. 1—3. Armand
and Manson' and Armand? (we concentrate on
Ref. 2) took

Volz)=Ce s | (5)

for which solutions are the modified Bessel func-
tions, K, (z). For the case of potential (1), the
dlstorted-wave Born approximation (DWBA) gives
the scattering amplitude of the beam G as

F
713
Ag=-T_° 6
g 4 Pg (6)
[see Ref. 2, Eq. (28)], where
Fg=Vg g—-08g g)\f(Pg,Pg), (7
2 4 .,
P—G>=Fkgz, (8)
I +iG-K XD(K)
VG,O'_SO fsoe l € dR , 9

S being the surface of the unit cell, and the ma-
trix elements of e ~** are*

(PL—P3)

f(Pg ,Pg)=[Pgsinh(mP g Pysinh(7P7)]'/?

The expressions for a corrugated Morse potential
for Va g are the same, but the matrix elements
are different as shown in Ref. 3. Finally, the dif-
fraction intensities I g are given by
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cosh(mP g )—cosh(mPg)

2
(1—83,3)4—;1’%83’3 . (10)

|idg g—24g |*. (11)

It is well known that the specular beam is not
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well described by the DWBA and that unitarity is
not fulfilled. For example, looking at the specular
intensity in (11) for A 5 real, this being the case at
hand [see Eqgs. (9) and (10)], we observe that it is
always larger than one.

Thus, to obtain results from the DWBA, a way
has to be chosen to normalize the intensity. Usual-
ly this is done® by redefining the specular 1 % as

I%=1- 3 Ig, (12)
Gs#£0

where G runs for any channel such that k% . >0.
Here, we propose a normalized solution / % read-
ing

Ig
213
G

We call this result normalized distorted-wave Born
approximation (NDWBA), and its validity has to
be checked numerically against exact calculations.
We have done this for the examples given by Ar-
mand? for a square unit cell of size a=2.55 A, and
the corrugation

(13)

N,
Iz =

D(R)=ha |cos %Tvx +cos -%”—y (14)

with £=0.02, an azimuthal angle $ =45°, and

| K; | =8.6 A~L. Tables I and II show the Ar-
mand results? in comparison to those obtained with
NDWBA for two different incident angles, 0; =
31° and 60.5°. The value U in the first line indi-
cates the unitarity obtained with DWBA (i.e., the
specular peak in NDWBA is approximately 1/U).
The number in parentheses gives the percentage er-

ror for the specular beam as compared with the ex-
act results?; when not indicated, the deviation is
smaller than 1%. This approximation works better
than (12). From the calculations we notice: (i) as
expected, the approximation is better the smaller U
is (i.e.,, U—1), (ii) for a given corrugation, the ap-
proximation is better the smaller X is (i.e., the po-
tential is softer), (iii) the approximation is better
when the angle of incident ; increases, or when
the value of k i, becomes smaller—but we should
stress that these cases are more interesting because
then the softness parameter X plays an important
role with respect to the corrugation strength h,>°
(iv) although all the beams are not described with
the same accuracy, the more intense beams are well
described, and these are the interesting ones. from
the experimental point of view, (v) also, the limits
of validity of the NDWBA are within the range of
the dense metallic surfaces as, for example, a re-
cent analysis of Rieder’s experimental data>® for
He/Ni(110) has shown, (vi) it is clear that when X
increases, the approximation fails but this also
happens with the exact calculations. In these
cases, the approach that works better is to expand
around the HCS as a zero-order solution. This
gives the correct limit for X — 0, and is good for
X large for any corrugation in which the HCS can
be solved.®

In conclusion, we have proposed a simple com-
putational method to calculate atom-surface
scattering intensities from soft corrugated poten-
tials which is based on a normalized distorted-wave
Born approximation. We have shown that it
works well by comparing with the results of exact
calculations for a soft exponential corrugated po-
tential performed by Armand.> The method can
be generalized to any potential by solving numeri-
cally the Hamiltonian Hy(z), and calculating the

TABLE 1. Comparison for the intensity in different beams between exact solutions (Ref. 2) and NDWBA in this pa-

per. k;=8.6 A1 h=0.02, 8,=31°, (—n) denotes 10~".

U 1.103 1.370 (5%) 1.489 (7%) 1.541 (8%)
X (A 1 3 5 6
Exact NDWBA Exact NDWBA Exact NDWBA Exact NDWBA
Ioo 0.9037 0.9066 0.6958 0.7320 0.6294 0.6770 0.6145 0.6623
I,,Xx100 0.16(—6) <1.(=5) 0.03816 0.0010 0.1878 0.014 0.2536 0.0330
I,oXx10 0.37(—2) 0.36(—2) 0.3671 0.3369 0.6188 0.5600 0.6785 0.6163
I,7X10 0.41(—3) <1.(=5) 0.0492 0.0041 0.0883 0.0128 0.0980 0.0187
Iy; 0.0432 0.0462 0.0967 0.0996 0.0987 0.1030 0.0987 0.1030
I;7X10 0.0276 0.003 0.1630 0.0005 0.1859 0.015 0.1897 0.0230
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TABLE II. The same as in Table I for 6;=60.5°; (—n) denotes 10~".

U 1.000 1.044 1.096 1.115
XA~ 1 3 5 6
Exact NDWBA Exact NDWBA Exact NDWBA Exact NDWBA
Ioo 0.9998 0.9998 0.9595 0.9589 0.9169 0.9145 0.9051 0.9008
I,7X10 0.58(—3) <0.6(—3) 0.1904 0.2048 0.3820 0.4250 0.4340 0.4873
I;7X100 0.63(—5) <1.(=5) 0.1103 0.0200 0.3570 0.0370 0.4428 0.0780
I5X 10° 0.31(—4) <1.(=5) 0.0889 0.0500 0.3649 0.290 0.4964 0.4700

matrix elements with the remainder of the poten-
tial (this work is now in progress). We claim that
this simple and “cheap” approximation is enough
to study the atom-surface scattering from compact
metallic surfaces where the softness is more impor-
tant. In case of harder potentials, we suggest that
the approach of a distorted-wave Born approxima-
tion starting with the HCS as zero-order solution
may give a good description of the elastic intensi-
ties.
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