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Spontaneous dimerization is found in the S =
2

isotropic Heisenberg antiferromagnetic chain

with competing nearest- and next-nearest-neighbor exchange, J2/Jt & 6, and results from the

same umklapp processes that lead to the Neel state when easy-axis exchange anisotropy is

present. Spontaneous and externally induced dimerizations are contrasted.

Recently Haldane' noted that the complex critical
behavior associated with magnetic fields and anisotro-
pies in the ground state of the exactly soluble S = —,

antiferromagnetic Heisenberg chain was fully ex-
plained by hitherto-neglected umklapp processes of a
type appropriate to spinless fermions. This was later
independently noticed by other authors including
Black and Emery and den Nijs, who discussed the
importance of this process for understanding a variety
of related field theories and two-dimensional critical
phenomena. Here, I report that the same processes
allow the currently topical phenomenon of spontane-
ous dimerization in the isotropic antiferromagnet with
competing exchange ("frustration") to be explained in
terms of the by-now familiar one-dimensional (1D)
analog of the Kosterlitz-Thouless critical behavior.

For nearest- and next-nearest-neighbor exchange
J1 and J2 I find an instability against spontaneous di-

merization for J2 & J2 =
6 J1. This throws into

perspective recent work' on the interesting case
J2 = —,J1, where the ground state is constructed from

spontaneously dimerized uncorrelated spin dimers. 4

I consider the S —, spin system

N

X=IJt (SfSi+r + Sit'St+& +
I iJ I SirSi+t ) +J2S i Si+/

I will be interested in 2kF density-wave states with or-
der parameter g~=g ~=g(pkF), p =+1, kF=

2 rr,
1

where g(k) = (ckck+ ). Noting that

I(—1)"(c„'c„)= Xg(k)

I(—1)"(c„'c„+t)=i /sin(k) g(k)

and in spin variables that these, respectively, corre-
spond to Neel order (S„') —(—1)"lg I, or dimer order
(S„+S„+t—S„+tS„)—( —1)"lgl (i.e., site and bon-d

centered density waves), I identify real g~ with the
Neel state, and imaginary g~ with the dimer state.

When 5 = J2 =0, the model corresponds to a free
fermion system, and I follow the idea that Luther
and Peschel6 (LP) applied to the model with J2 =0-
that of linearizing the fermion model about the Fer-
mi level to obtain a continuum field theory. When
this is carried out carefully, I obtain the effective
Hamiltonian

+J2[(tt'
2 )(nl+2
1 1

—[c (n;+, —
—,')c,~ 2+cH. ]} (2)

where the anisotropy parameter 5 is introduced to
facilitate the discussion. The model is usefully
described in terms of fermion variables via the
Jordan-Wigner transformation' S„'= (c„"c„—

2 ),
S+=(—1)"[Qt(„(1 2ct cq)]c„'; c„+~-=—(—1)&c„,
g =S'+ —,N, corresponds to periodic spin-boundary

conditions. The Hamiltonian becomes

X=$—
2 Ji(ci c+t+H.c.) + Jil~l(iti —

—,)(ni+i —
—, )

1 1 1

where yt =2(I &I +2J2/Ji) and @2= (I Al —6J2/J&);
iii~(x), p = +1, are independent Fermi fields, and
p~(x) is the correponding density operator. y2 is the
all-important spinless fermion umklapp te-rm, first iden-
tified in Ref. 1, but omitted in the original treatment
by LP as the Pauli principle implies iii~iii~iii xiii ~ =0,
and this was taken as ruling out umklapp processes.
(The term p =p' in y& was also omitted by LP; this
term represents renormalizations of the Fermi veloci-
ty described as Hartree-Fock terms. 7}

When J2/J, = —,Ill, the umklapp term y2 vanishes,
1

and X'"becomes a simple Luttinger model' solved
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by a Bogoliubov transfl~rmation, and characterized by
the correlation exponent vt: as In —n'I
(S+S ) —(—1)"In —n'I ", (c„'c,) —(—1)"In

—n'I '"+' 4'i' '
q = —, for free fermions, and the

solution of the Luttinger model when @2=0 gives

g = ( 4 +pi/2n ) 't'. Isotropy of the spin-correlation

functions dictates that q approaches the value q = I
in the isotropic limit I4I =1.6 s When F2=0, the
Luttinger model approximation (3) gives vi =0.82
when I hI =1 (or 71=1 when I hI =6J2/Ji =1.76), in-

dicating that renormalizations due to nonlinear terms
other than y2 also give quantitative corrections. '0

This suggests that the special line J2(b, ) along which

y2 vanishes deviates from the value J2/Ji = —, IXI at

larger values of I 4I. The gapless, fluid character of
the Luttinger model suggests the term "spin Jluid" is
an appropriate description of the y2 =0 spin chain.

%hen y2 40, I note following Ref. 1 that the um-

klapp term can be treated by a scaling theory entirely
analogous to that used for the umklapp effects in the
spin-

2
Fermi gas." The term y2 leads to an instabil-

ity against a 2k' doubly degenerate density-wave
state, with spontaneously broken symmetry. '2 I
identify y2 & 0 as leading to the Neel state, and

» & 0 as leading to the dimer state. [Note that the
canonical transformation i[i» exp( 4 ipsr) ifi», which

changes the sign of y2, changes g» to (i)»g» ]The.
scaling equations are of a familiar form, 2 "and in-

volve» and the correlation exponent ri(yi):

d lnD
=2(q ' —1)F2+0(y2)',

2 . 4

d(lnD)
=2»+0{v,), v, =»»,

where D is an ultraviolet cutoff scale or effective
bandwidth. The familiar scaling trajectories of these
equations are shown in Fig. l. W'hen IAI = &, sym-

metry dictates that the starting point —and subsequent

evolution of the scalin—g trajectories must be identified

the critical scaling trajectories q =1+y2. For
J2 & J2 =

6 Ji, the system is described by the stable

trajectory scaling to the critical point y2 =0, q =1,
and the competing interaction J2 does not change the
character of the simple antiferromagnetic case J2 =0.
For J2 & J2, the system must be identified with the
unstable critical trajectory, leading away from the
point y2 =0, q = 1 to the strong-coupling dimer-state
fixed point. Note that systems ~here scaling starts
near the line of unstablefixed points q

' &1, F2=0,
can be identified with the sine-Gordon (SG) field
theory" with coupling parameter p'= Smq ". the iso

tropic dimer state must thus be identified with the
limiting case p2 Sm of the SG theory. The dimer

gap, order parameter g~, and inverse correlation
length will all initially grow as (J2 —J2)' 'exp[ —aJi/

0

FIG. 1. (See text. } Scaling trajectories of (4}: %hen
I hI =1, initial parameter values fall on the critical lines aa',
scaling either to the limiting critical gapless spin-fluid point

y2 =0, it =1 {J2 & Jj) or to the dimer fixed point

(J2 & J2 }. Lines bb' and cc' are the loci of initial values for

I hI & 1 and I hl &1, respectively. Systems with initial

values close to (but not on} the unstable fixed line F2 =0,
q ) 1, are identified with the P2 Svr/=g sine-Gordon field

theory.

( J2 —Jq) ] for Jq & J2, where a is some numerical
constant controlled by the cutoff structure. This
transition is very similar to that seen in spin-isotropic
systems such as the spin-

2
Fermi gas with back-

scattering'3 and Kondo models'4 as the coupling
changes sign.

For Id I & 1, the system will remain in the gapless
spin-fluid state that characterizes the planar Heisen-
berg chain until J2 exceeds a critical coupling J2 (I),
when the trajectories will flow to the strong-coupling
dimer fixed point. The nature of the transition will

now be of "Kosterlitz-Thouless" type, 2 with the or-

der parameter, etc. growing as exp[—b (&)/[J2
—J2 (d ) ]' ] in the dimer region; the numerical con-
stant b(A) diverges as I5I 1. For I5I ) 1, J2& J2
there is a similar transition to the Neel state, as seen
in the anisotropic chain with J2 = 0.' For I 5 I ) 1, the
two density-wave regions are separated by the gapless
line J2 (5) along which the umklapp term y2 van-

ishes. Along this line, the Neel and dimer correla-
tions (S„'S*.) and ((S„S„+i)(S S,)) are the

dominant correlations at large separations, both fall-

ing off as (—1)'" " 'In —n'I ""', as easily obtained
from a Luttinger-model calculation following LP.
The critical exponent q

' continuously decreases
belo~ 1 along the critical line, Close to this line, the
system behaves as a SG system with P'= 8+vi ', the

principal elementary excitations are solitons carrying
S*=2 —, (created in pairs), but in regions adjacent to

the section of the critical line with q (—,S'= 0
"breather" bound-state excitations will also be
present (p' & 4n SG spectrum). The predicted
ground-state phase diagram in the (J2/Ji, I&I) plane

is sketched in Fig. 2.



25 RAPID COMMUNICATIONS 4927

J2/J) DIME R BOUND STATES
PRESENT

FIG. 2. (Schematic. ) Ground-state phase diagram in the

(Jpl jt, I hl) plane. For I 5I ( 1, J2 ( J2 (5), the system is

in the gapless spin-j7uid phase with in-plane spin-correlation
exponent g (1 (lines of constant q are depicted). The um-

klapp coupling y2 vanishes along the broken line, and along
its continuation separating the broken-symmetry dimer and
Neel phases, with critical correlation exponent q & 1. In
these latter phases, the ground state is doublet, with a gap

for excitation of pairs of S'=+
2

solitons (topological de-

fects); the region where S'=0 breather bound states are
present in the gap is shown. The soluble model with

J2=-J~ is marked with an asterisk.
2

In the isotropic model ( I hI = I), the fundamental
excitations in the spontaneously dimerized state are
S = —, soliton states, created only in pairs; the lowest

excitations above the doubly degenerate (moments
P =0, + m) ground states of an even-membered ring
of spins are thus a continuum of degenerate S =0, 1

pair states, with the gap minima at P =0, + m, the
identification of the isotropic dimer state with the
P2 = 8m SG system rules out breathers or soliton-
antisoliton bound states in the gap near P =0, + m.

Shastry and Sutherland have recently reported such
bound states in a region near the gap maxima (at
P = +

2
n) for the special model with J2/Jt = ~, in

this range lattice effects are important, and it is out-
side the scope of the long-wavelength —low-energy
SG description used here. The low-energy spectrum
deduced here for the dimer state is in complete ac-
cord with Ref. 3.

Finally, it is interesting to contrast spontaneously

dimerized states with those due to an externally im-

posed symmetry-breaking term X'=g g (—1)"
x S„~S„+~, as considered in the spin-Peierls problem. "
As noted by Cross and Fisher, "when translated into
fermion variables, this term gives rise to a new SG

problem, this time with P' = 2m g ', describing an
instability leading to a singlet pinned ground state
commensurate with the external dimerizing potential,
with soliton excitations that now carry S'= +1. The
isotropic model here corresponds to a P'=2m SG
system, and the scaling theory shows the dimer gap
d. d opens as IgI' '." It is interesting to note that
P'=2m is precisely that value where the SG has just
two S'=0 breather excitations, ' with opposite parity,
and where the lowest (even parity} breather is pre-
cisely degenerate with the S'= +1 soliton doublet,
forming an S = I triplet; the second (odd parity)
breather is a singlet S =0 state with a gap J3b q.

These two S =0, 1 states are the only elementary ex-
citations.

If the external dimerizing potential is applied to an
already spontaneously dimerized isotropic model with

J2 & J2, a similar spectrum results: The doublet
ground-state degeneracy is lifted, and there is now an
energy cost linear in the length of regions where the
system is in the "wrong" ground state: This imposes
a linear potential (a 1D Coulomb potential) that con-
fines the S = —, solitons (i.e., boundaries separating

regions of the two now inequivalent dimer configura-
tions) into bound S =0 or S = I pairs; the lowest-
energy bound state is symmetric, with S =1.

In the model of the spin-Peierls transition" the
"external" dimerizing potential arises spontaneously
because of lattice distortion; thus topological defects
where g changes sign may be "frozen in." For
P'( 4a, the energy gain per unit length associated
with the opening of the SG gap is finite, and an exact
(Bethe ansatz) calculation gives it as —,tan( 2

n tt)

x d, z/w„'s where v, is the spin-wave velocity in the
limit g 0, and tt=(P2/8m)/[I —(P2/gm)] =

3

when P'= 2m. Since e,/hq is also the characteristic
"healing length" for such a defect (which carries
S = —,), the defect energy is of order d q itself. In the

absence of interchain coupling, phonon dynamics
would allow tunneling motion of the defect, as in re-
cent models of solitons in polyacetylene, "and
features of the "spontaneously dimerized" spectrum
are recovered.

To conclude. The present analysis does not explain
one interesting feature of the special limit J2= —2J~ of
the isotropic model —that the correlation between di-
mers vanishes. However, it places this state in a
continuum of spontaneously dimerized states for

c 1J2) J2 =
6 J].
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