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Exact solution of an intrinsic interface profile
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An exactly solvable model describing phase separation in a planar lattice gas has been shown

to confirm aspects of Weeks's phenornenological columnar model, Here an intrinsic interface

structure is defined and computed precisely. The conclusions support Widom's original scaling

ideas and also some aspects of the work of Jasnow and Rudnick.

Recently it has been realized that the interface
between coexisting fluid phases probably has a dif-
fuse character' which is adequately modeled on a
suitable length scale by capillary wave theory. ' This
theory replaces discrete molecular structure by a con-
tinuum; the interface between phases is represented
by a surface without overhangs characterized energet-
ically by a surface tension. The surface is treated by
a linearization so that the essential statistical mechan-
ics is the equipartition theorem.

Such a theory may be derived from first principles
at a molecular level for the planar Ising lattice gas'
using a suitable length scaling, to be discussed below,
which smooths all events on a scale of the correlation
length. Capillary wave theory assumes thc inter-
change from bulk liquid to gas to be abrupt on cross-
ing the surface; this is undoubtedly true on the
length scale alluded to above but cannot be precisely
true at a molecular level. Indeed, it is tempting to
assume that there is an intrinsic, or local, structure
varying on the scale of the bulk correlation length
carried by a capillary wave. The purpose of this
Communication is to show how a recent, exactly
solvable model4 can give such a structure. This
model is related to the columnar model of Weeks. '

Referring to Fig. I, we place solid-on-solid (SOS)
restrictions on the lines x =0, N], and N~ +N2+1.
Then the long contour crosses these lines exactly
once each, giving two adjacent strips of the type con-
sidered in Ref. 4. Capillary wave theory may be
characterized by the probability P„,(y ~ Ni, N2) which

is conditioned by the intersection at y =0 on x =0
and NI +N2+1; it is given by

P«, (y ~ Ni, N2) =const exp [—[(N~' +y')' 'r(gi)

malizing constant.
Let the magnetization (or density) profile be de-

fined by

m(y ( N&, N2) = m"[P(y' )y I Ni, N2)

—P(y' (y ~ Ni, N2) ] . (3)

Then both (I) and (2) give the limiting theorem of'
exactly

lim m(aN'
~
N(1 —P),N(1+P))

=m'sgnaC [b I nl/(I —p )' '], (4)

where I' is the usual spontaneous magnetization
and the scale factor in the Gaussian function 4(x) is

& = [r(o) +r'"(O) ]' '

as discussed in Ref. 7. It should be noted that (1)
contains the leading terms of (2) in a development
for large N; this is the interface thermodynamic
term. s Equation (1) is a more precise formulation of
capillary wave theory which can have a scaling limit

K)
I

=K]

where r(8) is the angle-dependent surface tension. '
The exact distribution for y is

N„ N)+ N)+1

P(y ~ Ni, N2) =constZ~(y
~ Ni)Z (y ~ N2), (2)

where Z~(y
~
N) is the partition function for a strip

width N with extensive factors absorbed in the nor-

FIG. 1. The vertical lines on which the solid-on-solid re-
striction is made are x =0, N, and N& +N2+1. A typical

low-temperature expansion contour on the dual lattice is

shown. The orientation of bond weights is as indicated.
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There is an obvious analog with Ornstein-Zernike
theorytL One would like P(y I Nt, N2) to have a
well-defined nontrivial limit as N~, X2 c containing
a length scale related to the correlation length. Here
we consider the simplest case N2 ~, Ni =N. Us-
ing a convolution theorem, (7) becomes

Pi„(ai I N) =P(ai I W)/P„p(«i I N),
where f(ai I N) is a function whose Fourier series is

f(y I N). Now from Ref. 11,

P„,(~ I X) =exp {-it/[~(~) -~(0)]],
whereas

P('ai
I N) = e~&lc'/Aiv(«))

with

Aiv(oi) =cosh Xy(oi) +sinh N) (ta) cos8'(ta), (10)

where

cosh'(oi) = cosh2Et" cosh2E2 -sinh2Et' sinh2E2 cosa'

(11)
and

i/2 &/2(e'" A)(e—'"—8 ') 8
( eie A

—1)( eie 8)
with A =cothE2cothEi', 8 =cothE2tanhKi'. Here
E» and E2 are interactions scaled by kT and
exp( —2Et") =tanhEt. The low-temperature region
is characterized by 0 & 8 & 1. The branches taken in
(12) and (13) are y(ai) )0 for real to and
expi8'(m) =1. To develop Pi„,(y I it/) we examine
the singularities of Aiv(oi) in the complex plane.
Ther'e are poles at zeros of Aiv(cu), which are simple,
in the complex plane, given by

i &/2

(i ~) (r p)-1
(r —a ')(r —p ') (~p)" ' (13)

where r =exp', n and p are A and 8 with Et and E2
interchanged. The associated locations in the ao plane
are found from (12). There is also a branch-cut
structure coming from the factor (1 +cos8') from
AN(ai) and (13). The picture is shown in Fig. 2.
The limit as N ~ is just

1
P,„,(y I ~) =—J d~ e'"'/[1+cos8'(tu) ] .

Thus as y ~~ we have

P, (y I ) e "Oi'/y3/2 (15)

as we shall see.
Many definitions of intrinsic structure might be

tried. 9

Here we define P;„,(y I Nt N2) by

P(y I w, ,x,) = XP,„,(y-y, I xt, x,) P„,(y, I
iit', ,x,) .
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FIG. 2. The singularity structure of Pi„,(cu I N) which has
period 2m. There is a cut from op=2(E] —E2 ) to
v& -2(E& +E2 ) with simple poles embedded in it, and a
mirror image in the lower ha1f-plane. There are also simple
poles indicated by && corning from the two pure real solu-
tions of (13).
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where tio =2(Et E2'); tie —is the inverse correlation
length in the y direction.

Equation (13) also governs the distribution of wave
numbers in the planar Ising-model transfer matrix
with free edges, '2 or its dual which is the hard-edged
case." The result (15) is characteristic of a half-
planar Ornstein-Zernike problem. '"
On the other hand, it should be noted that the sim-

ple pole in Fig. 2 gives a one-dimensional Ornstein-
Zernike decay, but the residue vanishes as N ~~.
The occurrence of the length scale tiit' in (15) con-
firms one aspect of %idom scaling theory. ' Equa-
tion (7) and its development are reminiscent of the
ideas of Jasnow and Rudnick. '6

The limit Nt =/t/2 = Jt/~ ~ recaptures Eq. (22) of
Ref. 4, which is the lowest-order dispersion approxima-
tion to the exact profile of a finite strip, which can be
obtained exactly in terms of a Fredholm problem; this
is considerably less explicit than the calculation here.

Finally by taking the solid-on-solid (SOS) limit
overall it is clear that a capillary wave can carry an in-
trinsic structure with the SOS correlation length as
scale and reproduce the exact SOS profile.
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