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Long-time tail effects on particle diffusion in a disordered system
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We present a simple formulation of an effective-medium approximation to a model of particle
transport in a random medium. The small- and large-time asymptotic properties of the effective
transition rate in one dimension are computed. We also derive the first three corrections to the
leading asymptotic terms in the expansion. The results for the mean-square displacement and
fourth moment are in excellent agreement with a Monte Carlo simulation.

Classical diffusion in a disordered system has re-
ceived a revival of interest in the literature.!™® In a
single dimension, Alexander et al.! calculated some
properties of single-particle diffusion using a set of
master equations with distributions of transition
rates, a special class of singular distributions were
analyzed in detail. A class of one-dimensional hop-
ping models with random lengths between sites was
exactly solved by van Beijeren? he discusses the
long-time tail in the velocity autocorrelation function.

The problem of random transition rates has been
treated more recently by Odagaki and Lax® and Web-
man,* using a effective-medium theory. They applied
their approach to the bond percolation problem in
higher dimensions. Machta® has derived a long-time
tail of the velocity autocorrelation function in one
dimension by a novel renormalization-group ap-
proach. One class of these models corresponds to the
model of van Beijeren.? Another class of trap models
cannot exhibit long-time tails, when equilibrium con-
ditions prevail, as has been shown recently by two of
the present authors.®

In this Communication we present our results for
the frequency dependence of the particle’s mobility
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within an effective-medium approximation. We have
a simpler formulation than given in previous work,>*
one which can be easily extended to clusters of ran-
dom transition rates.

Consider a master equation with nearest-neighbor
transition rates Wﬁ,,' = from the @ to site & H Wﬁ.,’ =
is a random function of the site variables i and @
and is symmetric W_,, _=W_, _,,
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P(&¢|00) is the conditional probability that the par-
ticle is at site I at time ¢ given that it was at site 0 at
t=0. We explicitly choose a cluster of N sites, the
transition rates outside this cluster are replaced by a
time convolution of an effective nearest-neighbor
transition W (#) with the conditional probability. We
suppress the subscripts, since W (#) is understood to
extend only to nearest neighbors.

We define a function A~ with the following

property:

()

then using the shorthand notation P(#) = P(®@¢| 00), we have the set of equations
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where the sum over I extends only to nearest neighbors (NN).,
These equations may be treated by Fourier-Laplace transformation methods. In this manner, the equations are
diagonalized, except for a set of N coupled equations for the sites connected by random transition rates. Howev-
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er, these are linear equations.

In order to determine the function W (), we use a self-consistency condition; namely, the average over the
remaining random transition rates must yield conditional probabilities consistent with that given by Eq. (2) when
there are no random transition rates.’

In the Laplace transformed time variable this condition is

(Po(9) =1 [ d'k exp(ik ) . @
0 s+W(s) 2[1~exp(iE-§E.,)]

The brackets denote an average over the remaining fluctuating transition rates and the integral extends over a d¢-
dimensional unit cell in the reciprocal space; ||Qll denotes the volume of this unit cell and & - is the vector

from the lattice site &' to one of the nearest-neighbor sites .
In the rest of this work we shall restrict ourselves to a one-dimensional lattice of sites separated by a distance a.
Equation (4) is now (A =0)

<P0(S)> ‘—“Eo(S), (5)
where
_a (" dk cos(nka)
En(s9) = w fo s +2W(s)[1—cos(ka)l" ©

For N =2 we have one fluctuating bond, say Wy ;. The solution of Eq. (3) with the self-consistency condition,?
yields the same results as in Refs. 2 and 3

W(S)"" WO,I _
< WoJ'f’SE()(S)[W(S)—'Wo,[]>—0 ' (7)

For a cluster of three sites, N =3, the solution Eq. (3) and the self-consistency requirement yields

< [W(s) = Wo,1 11 +[Ei(s) — Eo() 1L W(s) — Wy, 4]} >__0

009 (8a)
where
Q(s) =1 +2[E(s) —Eo() 1 W(s) — Wy 1} {1 +2[E(s) —Eo(s)1[W (s) — Wy, —11}
—[2E(5) —E;(5) = Eo(s) 1L W(s) — Wo 1l W(s) — Wy, -1l. (8b)
I
In one dimension both Egs. (7) and (8) yield the fol- where
lowing asymptotic results up to second order in the 1
expansion variable: D! =< W >
(a) s = oo, 0,1
2
5 5 0 =LD /2 L__l_
W(s) =D, 1+—Sl- +;§“ , 9 1=7D¢ <[ Woi1 Dy >’
where and
3
D= (W), =—1p(|l - L [\i2¢
(W) 6,=—+4D3( D )+ 50

81 ==2{((Wy, -D.)?) /D,
The next coefficient in Eq. (9), as derived from Eq.
and (7, is

82=4((Wo,1= Do)’} /Do +6((Wo,1 = Doo)?).. 83=—8((Wo,1~D)*)/De=24((Wy, — Do)’
) s—0, +4((Wo,1—Dw)?)?/ D —20D{( Wy, —D.)?);
W(s) =Dy(1+6,\/s +655), (10) 1D
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while in the same approximation, the coefficient of

s*2in Eq. (10) is
4 2
_1nsn 1 1 21 1 1 3
83=5Dg <[___— >+—GID3/2<[W-FO]>

(12)

The corresponding coefficients obtained from Eq. (8)
differ from the above results only by a factor

— ((Wo,1— D)?)*/8Dy, and — D"

X ((1/ Wy 1 —1/Dy)?*)?, respectively.

Also, we note that the diffusion coefficients D,
and D, are exact. The term 6, presents a long-time
anomaly in the velocity autocorrelation function,
which is the inverse Laplace transform of W(s).
This function has a long-time tail proportional to
732, a typical behavior for one-dimension disordered
systems.>> The mean-square displacement in Laplace
transformed form is

(x2) (s) =2W(s)a*/s%, 13)

it has correction terms proportional to /2, £, and
712 for long times, which are obtained from Egs.
(10) and (12).

A quantitative comparison of the above results was
made with a Monte Carlo computer simulation of the
model. We consider random transition probabilities
with two values T and I'< (for the present work we
chose <= 710—1‘ and equal numbers of both species

of transition rates). In Fig. 1, a log-log plot of the
mean-square displacement over four decades of time
is presented. The short-time behavior following from
Eq. (9) is given by the full line; it yields a good fit to
the data up to about t =1. For times greater than
t > 5 the long-time asymptotic approximation from
Eq. (10) is an excellent representation of the data.
In view of the agreement with the numerical simula-
tion where 0, and 0, represents significant corrections
and because 6, and 0, are unchanged by including
larger clusters, we conjecture that they represent ex-
act results.

The fourth moment is more sensitive to the func-
tional form of W (¢), since it is a nonlinear functional
of this rate

(xH () = 2W;2(s) +24I’£’32(s) at. (14)

Figure 2 shows the agreement between the effective-
medium theory and the computer simulation.
The effective-medium theory yields a quantitative
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FIG. 1. The log-log plot of the mean-square displacement
vs time. The time is scaled to units 1/2T" and the mean-
square displacement is scaled to units of a2. The dashed
lines represent the long- and short-time asymptotic behavior.

representation of the data in one dimension, and it is
not restricted to a single dimension. Future work will
be devoted to a more detailed analysis of the above
problem and especially, the contributions of the
long-time tails to the physical moments and mobility
in higher dimensions.
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FIG. 2. The log-log plot of the fourth moment of the dis-
placements vs time.
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