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Spin-density fluctuations and the energy of liquid 'He
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We introduce spin-density fluctuations into the Slater-Jastrow trial wave function for liquid

He using a spin-dependent correlation operator. The unpolarized ground-state energy is there-

by lowered by 0.3 K and probably stabilized with respect to the polarized state. A crucial ele-

ment in the calculation is the correct treatment of a substantial cancellation between direct and

exchange contributions to the energy.

The Slater-Jastrow wave function

&=exp —, Xu(ij) ip)
i&j

u(i j) =u'(r())+u (rS) a( aj . (2)

This operator introduces local spin-density fluctua-
tions into the ground state which will lower the ener-

gy in the unpolarized phase, but will have no effect
on the polarized phase (where spin and density fluc-
tuations are equivalent).

We use the hypernetted chain (HNC) theory to
evaluate an approximation to the energy and we
determine u'(r) and u (r) by a free variation of this
energy. %c will show that the truncation of the en-
ergy expansion, particularly with regard to Pauli and
exchange terms (even with u =—0) introduces uncer-
tainties on the order of 0.2 K. %e conclude tenta-
tively that with the spin fluctuations the unpolarized
phase has the lower energy at zero pressure, but that
the polarized phase remains lower at higher pres-
sures.

The mathematical problem is to evaluate the ex-
pectation value of the Hamiltonian

A2V]2H=g- — ' +XV(r„),
j 2l71 I Qj

with u (i,j) depending only on relative separations, is
widely used for the evaluation of the energy of nor-
mal liquid 3HC. Monte Carlo calculations with this
trial wave function' have shown, ho~ever, that the
energy for the polarized liquid (all spina in i/) paral-
lel) is about 0.4 (+0.2) K lower than for the unpolar-
ized liquid. Real liquid 3He does not show this fer-
romagnetism. Extrapolation from the measured sus-
ceptibility implies that the energy in the unpolarized
phase should be the lower by a fraction of a degree K.

In this Communication wc consider a wave func-
tion of the form (1) with a local, spin-dependent
operator

——-+ X p g (r)V' (r)d r +T,FE
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V' (r) = 4'7'u'(r) + (m/A') V(r) (4b)

TJF= 4
V' e" (4

and & acts only on the single-particle states in if)

in the wave function (l) and (2). Apart from the
added complication of the Sister determinant iP),
the problem is equivalent to the evaluation of an ex-
pectation value for a Heisenberg ferromagnet. 2 The
main difficulty here is that the spin operators in (2)
do not commute amongst themselves. Formally, this
can be overcome by assigning a fictitious time to each
of the operators and introducing the Dyson time or-
dering or T product. The operators may then be as-
sumed to commute within the T product. %e have
discussed this in detail elsewhere. ' For the present
calculations we note that there are two classes of dia-

grams for which the noncommutivity of the spin
operators is of no consequence. The first are the
"ladder diagrams"3 ~ which involve the repeated
scattering of a pair of particles from the Fermi sea
and the second are the ring or chain diagrams of sin-

gle, spin-dependent correlations which~ontrol the
possible accumulation of long-range spin correlations.
In so far as we are concerned with the correct treat-
ment of only these two classes of diagrams, the HNC
theory follows exactly as for spin-independent correla-
tions. 7 %e note that so far as these two classes of di-

agrams are concerned we can obtain identical results
starting from the symmetrized product wave function
of Pandharipandc and %iringa' or the independent-
pair wave function of Owen. 6

The energy per particle is written as a sum over
singlet (s) and triplet (i) states in this approximation
as follows7
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and (Q!. The functions g"(r) are the singlet and
triplet state projections of the two-particle distribution
function. The singlet and triplet projections are relat-
ed to the central and spin components by

To evaluate the energy we first eliminate the Jas-
trow correlation factors u (r) in favor of a renormal-
ized correlation factor gI(r) T. his factor is that con-
tribution to the two-particle distribution function in
which neither of the two end points is exchanged. 7

This is accomplished explicitly by the HNC equa-
tions'8

u (r) =lngtt(r) —N'(r) —E~(r), u=s, t

N~(k) =g s(k) [g s(k) [1+X'(k)] —[1 Xg (k—) ]z+ 1}/[1+[1+X'(k)]ga(k) }, P = c, o.

(6a)

(6b)

where Xq, and X are non-nodal subdiagrams in
which one or both of the end points is exchanged.
They are defined as functionals of g~ and evaluated
in the approximation described in Ref. 7. E&~ is the
sum of elementary diagrams in which neither of the
end points is exchanged. It is set to zero. We note
that the r-space equation separates into uncoupled
singlet and triplet components and the k-space equa-
tion into central and spin components. We stress
that for u 4 0 the spin component of Eq. (6b) is an

approximation. It correctly describes chains of single
u correlations, but not chains built from the r-space
parallel connection of two or more u .' We have as-
sumed that these are negligible and it is more con-
venient to include them with incorrect coefficients,
rather than to write equations which explicitly ex-
clude them.

The calculation of the energy requires the com-
ponents of the full distribution function g (r).
These can be expressed as a sum of terms in g~ and
particle exchanges. 7 The leading terms in this expan-
sion are shown in Fig. 1, where the dashed lines
represent a renormalized correlation factor g&

—1 and
the directed lines represent exchanges from the Slater
determinant. We have extracted a factor of gI(r) in

order to cancel the repulsive core of the interaction.
Those terms in which the two external points are
within the same loop of exchange lines are called ex-
change terms and those in which they are in disjoint
loops are direct terms. We find numerically that
there is a substantial cancellation between direct and
exchange terms involving the same number of renor-
malized correlation lines, In order to maintain this
cancellation we will classify the terms according to
the number of renormalized correlation lines which they

contain. Diagrams (a) and (b) are first order, dia-
grams (c) and (d) are all of the second-order direct
graphs, and (e) and (f) are the corresponding ex-
change graphs. Diagrams (c) to (h) are "ladder" di-

agrams, they do not mix singlet and triplet com-
ponents of g~ and we evaluate them correctly. Dia-
gram (i) is a nonladder term and mixes the singlet
and triplet components of g~. Maintaining the can-
cellation between direct and exchange graphs in this

expansion is an important aspect to the calculation
and applies to both spin-independent and spin-
dependent correlations. We expect, moreover, that
the truncation of this expansion for g in terms of g~
is the main source of error in our calculation, and we
use it to estimate the uncertainty in our results. This
classification is similar to the Wu-Feenberg expan-
sion of statistical correlations, although not identical,
since our renormalized correlation function g~ al-
ready contains some statistical effects through X~,
and X„.

The quantity TJF may be expanded in powers of
g&

—1 in a similar way. ' We define the order of a
contribution to TJF to be equal to the number of
dynamical correlation lines. This is consistent with
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FIG. 1. Some diagrams in the expansion of. g (r) in terms
of the dynamical correlation g&

—1 (dashed line).
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the classification given above when g (r) is combined
with V' of (4b) to give an energy.

We have described the Euler-Lagrange equations
for determining the optimal correlation functions for
spin-independent correlations in Ref. 7. In the
present case the equations are identical to Eqs.
(4.1)—(4.3) of Ref. 7 except that all quantities and
equations develop two components, either singlet and
triplet for r-space equations or central and spin for
k-space equations. The Euler-Lagrange equations are
conveniently written as two-body scattering equations
in singlet and triplet states as follows

g2~2 a 1/2

+ 1'(r)gI(r)'"

+ p „Sp( ~
r —r ~) 1"(r')gI(r') '~'d r '= De(r)

(7)
S~ is the two-particle distribution function for a
noninteracting Fermi gas. It appears as a state-
averaged Pauli operator and ensures the healing of g~
as 1+0(r 2) for large r 7The .term D (r)
represents the contributions due to scattering in ex-
change states and all higher-order terms. The ex-
change terms have opposite signs in singlet and trip-
let states and it is this difference which generates the
spin correlations.

We have solved the Euler-Lagrange equations for
the correlation functions and evaluated the energy
using both spin-independent (u =—0) and spin-
dependent correlations in both the polarized and un-
polarized phases. Table I shows the energies at a

density of 0.016 A s. Es and E, are the contributions
to the energy from the direct and exchange parts of
g (r) and the order refers to the dassification accord-
ing to the number of correlation lines as discussed
above. The third-order contribution includes only di-
agrams (g) and (h) of Fig. l.ta The penultimate
column gives the total energy through the described
order and the final column gives the Monte Carlo en-
ergies.

For the polarized phase the cancellation between
direct and exchange diagrams beyond first order is al-
most complete and the net contribution in any order
is dominated by 7'JF. This cancellation is also evident
for the unpolarized phase although it is not complete
because only half of the particle pairs are exchanged.
A FHNC resummation of this expansion will include
the third-order exchange diagram (h) but not its
direct partner (g). This has led to an overestimate of
the difference in energy between the polarized and
unpolarized phases. " We obtain a rough estimate of
the uncertainty introduced by the truncation of this
expansion by comparing the first- and second-order
terms. These error estimates are given in Table I
with the second-order energy.

Figure 2 shows our second-order energies for a
range of densities in both the polarized (dashed line)
and unpolarized phases together with some Monte
Carlo results of Ref. 1. The error bars on our calcu-
lation are again obtained by comparing the first- and
second-order contributions.

There remain two possible sources of error in our
calculation. The first is the approximation of setting

TABLE I. Calculated energies (in K) at p =0.16 A for the polarized and unpolarized phases
with spin-independent (u~=—0) and spin-dependent (u A 0) correlations. E& and E, are direct
and exchange contributions from the described order, E is the total energy through the described
order, and EMc are from Monte Carlo calculations (Ref. 1). The order describes the number of
renormalized correlation lines in the energy evaluation and does not apply to EMc.

Order Eg E EMc

Fermi
1

2
3a

Fermi
1

2
3a

Fermi
1

2

—3.3
1.2
0.9

—28
0.8
0.5

208

0.8

—1.3
—1 ~ 1
—1.0

—0.8
—0.5
—0.3

—1.2
—0.6

Polanzed

—0.8
—0.4

Unpolarized (u —= 0)

—0.4
—0.1

Unpolarized (u~ W 0)

—0.4
—0.1

4.7
—0.7

—1.0(+0,3)

2,9
—1.1

-0,9(+0.2}

2.9
—1.4

-1.3(+0.2)

-1,3(+0.2)

—0.9(+0.2}

' Incomplete (Ref. 10).
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u(i j)=u(k)[k (k —k, +kg)] ' . (g)

The correlation function (2) is an approximation to
this state dependence which distinguishes only
whether the particles occupy even or odd relative par-
tial waves by distinguishing whether they occupy a
singlet or a triplet spin state. The averaging over k;
and k&, which gives a correlation function of the
form (2), loses the pole at k - kI —kj in expression
(g) . .This pole should determine the long-range r-

space or small-k behavior of the contribution to the
distribution function which comes from the scattering
of a pair of particles in exchange states. Although

Ear =0 in Eq. (6a) and it applies to both spin-
dependent and spin-independent correlations. For
spin-zero bosons this would be the only source of er-
ror in the HNC theory. %e have repeated our calcu-
lation assuming Bose statistics for p = 0.016 A 3 and
find an energy of —2.4 K. The Monte Carlo evalua-
tion of this energy'2 gives —2.9 K and the error in the
HNC approximation is about 0.5 K. This error will

be significantly smaller for fermions, however, be-
cause the elementary diagrams contributing to Eqq all
have at least two internal points which may be either
exchanged with one another or not. There will be a
substantial cancellation between these two possibili-
ties (which should be almost complete for the polar-
ized system).

The second source of error applies only to spin-
dependent correlations ~here we have calculated
correctly only diagrams with a ladder structure or
those with single rings of spin correlations. The lead-
ing correction to this approximation is through vertex
corrections to the effective interaction of Eq. (4b)
(Refs. S and 6 ). We have calculated the leading ver-
tex correction and find that it raises the energy by
about 0.01 K. This is less than 4'lo of the energy
lowering due to the spin correlations.

Finally, let us remark on the choice (2) of spin-
correlation function. In second-order perturbation
theory4 the correlation function between particles in
momentum states kI ag.d k&, which scatter by
transferring momentum k, is independent of their
spin states and has the following form:

Monte Carlo:
& Unpolarized (U = 0)
~ Polarized

Polarized

Unpolarized

(U «0)

0.01 0.015

Experiment

0.02 0.025

p(A )

FIG. 2. The energy per particle in the polarized and un-
polarized phases with spin-independent (u =—0) and spin-
dependent (u W 0) correlations. All calculations used the
Lennard- Jones potential.

the correlation function (2) may be reasonable for
evaluating the energy, it does not give a proper
description of the long-range structure of the wave
function in exchange states. This means, for exam-
ple, that our calculation does not give a good descrip-
tion of the spin-dependent structure function in the
small-k limit, nor can we establish a connection
between the existence of solutions to the Euler equa-
tions and local stability.
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