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Calculation of the dynamical exponent z for the three-state Potts model
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We have found using the dynamic Monte Carlo renormalization-group method that the

dynamic critical exponent z for the three-state Potts model on a square lattice has the value

2.7 +0.4.

Recently, the dynamic critical exponent, z, has
been computed for the one- and two-dimensional
kinetic Ising model using a dynamic Monte Carlo
renormalization-group (DMCRG) method. ' We have
chosen to look at the three-state Potts model to see if
we could discern any difference in its value of z from
that of the Ising model. Currently, there exists only
one estimate of z for this model and that was by For-
gacs et a/. ' who found using the Migdal RG transfor-
mation that z =2.25 for q =3, and z =2.065 for the
Ising model. As far as we know there are no esti-
mates from series calculations or numerical simula-
tions.

Before proceeding to our calculation we will com-
ment on the reliability of the DMCRG method. Re-
cently, Mazenko and Valls (MV)' have claimed that
none of the current methods including those not util-

izing RG techniques were reliable for obtaining the
dynamic critical exponent, z. MV's criticism of
DMCRG consisted of claiming that it was not sensi-
tive enough and that good static results and good
one-dimensional (1D) results, were not sufficient
checks on the method. They claim that the dynamic
scaling regime may be very narrow in 2D.

However, we believe the DMCRG is reliable. The
errors in Monte Carlo calculations can be reasonably
well assessed, and thus its accuracy can be deter-
mined, and so far it has been found to be sufficient
to make reasonable estimates for z. The possibility
that the dynamic scaling regime is very narrow does
not hinder the use of DMCRG since this calculation
is made right at T, which is known exactly for the q-

state Potts models. In the DMCRG method the
correlation length can be many times the size of the
system simulated. The only requirement for the
method to work is that the irrelevant variables die
out quickly upon blocking. Also, Monte Carlo treats
all dimensions on the same footing, unlike other
methods which exploit certain simplifying features of
1D systems. Thus, a good result in 1D does carry
weight in increasing the validity of the method in

higher dimensions. The power of the DMCRG and
static MCRG is that it allows one to obtain informa-
tion on the infinite lattice by a clever use of Monte
Carlo simulations of finite lattices. We will summa-
rize the method below.

The reduced Hamiltonian for the Potts model is
defined as'.

H=K $5. .. s;=1, 2, or 3
&t'i)

The sum is over nearest-neighbor spins on a square
lattice. The dynamics of the model is given by the
usual Metropolis rule where the transition probability
equals min(e ', 1) where 5H is the change in the
reduced energy in going from an old state to a new
state by changing the value of one spin chosen at
random.

We now review the DMCRG method. First we
create a sequence of spin configurations using stand-
ard Monte Carlo methods at a coupling K =Jlks T.
From these configurations we construct a sequence of
block spin configurations, where each block spin is
formed out of four spins by the majority rule. Ties
are broken by a random choice. From the block spin
configurations we construct another sequence of
block spins in the same way as above. This pro-
cedure is continued until we have reached a 2 & 2 lat-
tice of block spins. At each blocking iteration, all
length scales have been reduced by a factor of b =2.
Thus, the correlation length has been reduced by a
factor of 2 and the correlation time by a factor of b'
or 2'. This is how the dynamic exponent z is defined.
Any static average over the block spin system is an
average of block spins weighted by the Boltzmann
probability of the renormalized Hamiltonian. If the
l && l block spin lattices of two spin systems have the
same static averages then they must have the same
Hamiltonian and the same correlation length. If we
had to iterate m times on an %spin lattice and m+1
times on an Nb spin lattice at the same temperature
to match static averages, then one block spin lattice
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has a correlation length of g/b and the other
g/bt +'). Since they must have the same correlation
length, g must equal infinity and we are at the critical
temperature. Similarly, if a time-dependent average
E(t) of one block lattice and E(t') of the second are
equal then t/t'= b' In. this way z can be determined.
For our calculations we used the quantity:

E(K, r, m, W) =(I/W ) XS,'&(r)SJt'(0),

where SI~~~ is a block spin after the mth iteration, N
is the size of the block spin lattice, t is time measured
in passes through the lattice, L is the reduced cou-
pling, and N is the number of spins in the original
lattice. The sum is over all nearest-neighbor pairs of
spins or block spins. To verify E, we check that

E(K„O,m, N) =E(K„G,m +1,4N)

for m sufficiently large. To determine z we find

E'(K„r,m, x) =E'(K„r',m +1,4X),
where

E'(K, r, m, W) =E(K„r,m-, ~)/E'(K„0, m&) .

Dividing through by the static average wil1 eliminate
some of the error due to static quantities not match-
ing exactly either because of statistical uncertainties

or the remainder of small effects due to irrelevant
operators or finite size effects.

Usually, in Monte Carlo simulations one takes a
configuration and runs it for as long as possible to
obtain an equilibrium average, and sometimes starts
out with one or two other configurations to see if one
gets the same results. We have found that after
averaging over about 10 to 50 thousand passes there
is no change in the average value obtained if the two
systems started from the same configuration. How-
ever, if a different starting configuration was used a
slightly different value was obtained (a fraction of a
percent different). This is because there are very
long correlation times at the transition and thus the
system tends to stay in the same region of phase
space. To get around this we used 100 different
starting configurations where the spins had random
values and ran each for 24000 passes skipping the
first 8000 passes for the purpose of equilibration. In
addition to sampling more of phase space, this
method has the advantage that when you compute
standard deviations (SD) over the 100 data points
you really have independent measurements and thus
this computation is a reliable estimate of the error
bars.

In Table I we show the results for lattices of 16,
64, and 256 spins. The static quantities appear to

TABLE I. DMCRG results. Column under N~ labels the size of the spin or block spin lattice

over which averages were computed. The first column of z values is based on matching from the
256 spin lattice to the 64 spin lattice and the second column, matching the 64 to the 16 spin lattice.
E(t =0) and E'(I), which are defined in the text, are listed under the columns specifying the origi-

nal number of spins %

E(t =0)

256 0.8114 a0.0005
64 0.8244+0.0008
16 0.8551 k 0.0013
4 0.9172 +0.0017

0.8269 +0.0005
0.8544 +0.0007
0.9106 k 0.0006

0.8535 +0.0007
0.9066 +0.000S

E'(r)

256
64
16

0.839 +0.002
0.909 +0.003
0.965 +0.003
0,992 10.004

2.7+0.4 O.S98 10.002
2.6 &0.3 0.954 XO.002
2.7 k 0.4 0,981 20.002

1.8 20.2
2.2 20.2

0.956 20.002
0.977 *0.002

256 0.822 a0.002
64 O.S88 X0.003
16 0.946 +0.004
4 0.974 +0.004

2.6 X0.3 O.S70 +0.002
2.6 +0.3 0.927 k 0.003
2.7 +0.2 0.951 k 0.002

2.0 +0.2 0.927 a0.003
2.0+0.2 0.951 +0.003
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match on almost three levels for 256 matched to 64
spins, For m =0 (on a 64 spin lattice) there is
matching within two standard deviations, for m =1
they match well within one SD, and for m =2 they
are about three SD's off. We might expect the aver-
ages not to match for m =0 since the effects of ir-
relevant operators would be most prevalent here.
For m =2 we would expect matching, if there was
matching for m =1. The problem may be due to sta-
tistical fluctuations. Runs ]p as long for the 64 spin

lattice and
~

as long for the 256 spin lattice matched

within one SD and had averages intermediate
between those shown in Table I. Thus, we may have
unluckily hit the outskirts of each lattice's statistical
bounds. Two other possibilities are the very small ef-
fects of irrelevant operators that have not quite died
to zero after two iterations of the RG, and the RG
being slightly different for the two lattices of dif-
ferent size. In any event the effect is very small and
we can at least partially cancel it in our dynamic
analysis by dividing the dynamic averages by their
static counterparts. The same degree of matching on
two levels is found when considering the 64 and 16
spin lattices.

e now compare the dynamic quantities. In Table
I we show results for E'(t) for r =5 and 10 for the
16 spin lattice, 20 and 40 for the 64 spin lattice and
80 and 160 for the 256 spin lattice. If there were per-
fect matching z would have the value 2. Since there
is not we must interpolate to find z. The results for

matching from the 256 spin lattice onto the 64 spin
lattice is that z =2.6 or 2.7 plus or minus about 0.4.
The error bars are based on making the largest
change in both the E'(t) 's from each lattice. The
fact that the same value of z occurs for any pair of
E'(t) 's used gives us confidence that the method is
working and that we are indeed looking at the scaling
behavior of the model. We also note that when we
match averages from the 16 spin lattice onto those
from the 64 spin lattice we obtain the classical value
z =2 which gives further evidence that we are seeing
effects due to critical fluctuations which have not ap-
peared on the smaller lattice. To determine whether
our estimate of z is in fact the asymptotic value we
would have to look at larger lattices. However, the
computer time required to obtain the same accuracy
would be an order of magnitude greater for a 1024
spin lattice.

We see the same trend for z as a function of q
(q =2 is the Ising model) as Forgacs et al. ,

' namely,
that z increases with q. Also, the DMCRG results
clearly show a difference between the results for the
Ising model where z =2.17 and the three-state Potts
model where z =2.6—2.7. Bath these results are dis-
tinct from the classical value of z =2.
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