
PHYSICAL REVIE% 8 VOLUME 25, NUMBER 7 1 APRIL 1982

Temperature-dependent effective mass of a self-trapped
electron on the surface of a iitluid-helium film
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%e have used the Feynman path-integral formulation of the polaron problem to compute the

temperature-dependent effective mass of a two-dimensional electron on a film of liquid helium

for values of the coupling constant from creak to strong. Because of the nature of the ripplon

spectrum (very low velocities) ere find that the self-trapped structure (found at T =0) "melts"
for rather small kT/E@. Here E~ is the zero-temperature binding of the localized state.

I. INTRODUCTION

In a previous paper' we formulated the problem of
a two-dimensional (20) electron on the surface of a

liquid-helium film as a polaron problem. %C used
the Feynman path-Integral formulat1on of the po-
laron to compute the ground-state ( T =0) energy
and effective mass of the system for all values of the
coupling constant (from strong to weak). The defini-
tion of the coupling constant arises from the coupling
of the electron to the surface ripplons of the helium
in the presence of a perpendicular pressing field. %C
found that the effective mass undergoes an extremely
rapid transition from Rn clcctl'on1c value to R value
on the order of several helium masses for easily at-
tainable (experimentally) coupling constants. A
"quasilocalization" transition occurs. The extremely
strongly coupled localized state is a self-trapped dimple-
11kc state Rs dcscI'1bcd by Sander. %c also found
that in the strong-coupling limit, the mass is inverse-

ly proportional to the square of the ripplon frequency
at the capillary wave number, k, . As this ripplon
frequency vanishes, the strong-coupling mass goes to
infinity, as does the jump in mass, and the transition
looks more and more like a real localization transi-
tion.

It is of obvious interest to investigate what happens
at finite temperatures. Does the dimplelike state
"melt" at some temperature~ If so, how rapidly

does this occur~ In this paper we answer these ques-
tions. Because of the nature of the ripplon spectrum
(very low velocities), we find that the self-trapped
structure melts for rather small values of kT/Es. Es
is the zero-temperature binding of the localized state.

II. FORMULATION

with
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In path integral form, the free energy is defined by

e ~e=Z, JtD r (r) e~,

where Z„ is the free ripplon partition function, and S
is the action arising from the Hamiltonian in Eq. (1).
If So is some approximate quadratic action, then

S0 S-SoI' I' -kTln ~ D r (r)e e

where

(&)=J~ e 'S Dr( ) rJ e 'Dr(r), (g)

Equation (7) is a variational principle for the free en-
ergy. %C again pick So as arising from the Lagrangi-

Here 8 is a perpendicular pressing field, either exter-
nally applied or arising from the image potential from
the substrate. The ripplon frequency is given by

t
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where as before p, o-, and g' are the density, surface
tension, and acceleration of the liquid due to its van
der %Rais coupling to the substrate. As in the T =0
problem, ' we linearize the ripplon dispersion relation

As in the T =0 problem thc Hamiltonian is

p20= + Xa-a-to)-+ U
2m

L =-m — +—Mdx
dt 2 dt

——,
' x(x —y)', (9)
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where

2
1
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which describes the interaction of the electron with a
particle of mass M via a spring with spring constant
~. Again the variational parameters are defined by
«/m =(t1 —w2) and M/m =(v —w )/w . The trial
free energy is then

Equation (14) reduces to the model mass t ~/w at
T =0.

As in the ground-state problem, the capillary con-
stant is k, = (pg'/o )')~, and we define a coupling
constant, a = (eh)'/(grrok, '/2) ()t =m =1),with ener-

gy measured in units of k, /2 = u, . We also define a
reduced inverse temperature xa =Pe, . We minimize
the free energy in Eq. (10) and use the values of u

and ~ so obtained to calculate the effective mass
from Eq. (14) for various values of xo and a.
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is the temperature- and time-dependent response
function of the system. It should be noted that we
do not include in Eq. (10) the free particle free ener-

gy, and free ripplon free energy (F,) because they do
not depend on the variational parameters (v, w)
which determine the effective mass (see below).
However, in order to make any detailed comparison
of the total free energy with the ground-state energy,
they ~ould have to be accounted for.

It is possible to define an effective electron mass
for this system in the following way. It is well
known6' that if a free particle is put into a weak con-
stant external field, f, then the free energy changes
(to order f') by an amount

f2 2 2

y (m) (12)
24m'

If we then apply a constant external field to our sys-
tem, we can define an "effective" electron mass as

1 —24 1 1. BI'
m' P g y2 g Bf

III. RESULTS AND DISCUSSION

The results of our minimization are given in Pigs.
1 and 2, where we have plotted the effective mass
[from Eq. (14)] versus n for various temperatures,
xo, and versus xo for various values of o,. The value
xo =100 corresponds to T =17 mK since v, =1.7 K
for a 100-A-thick helium film. %e also show, for
comparison, our earlier results for the zera-
temperature mass in Fig. 3. The figures show that
the mass decreases toward the free electron mass for
all values of the coupling constant as the temperature
increases (as expected). For high temperature
(x&&=1) the mass remains free electronlike even as
the coupling constant increases. Figure 1 indicates
that the strongly coupled dimplelike state has already
"melted" for kT/Es ( 1 [Es (Ref. 5) is the zero-
temperature binding energy of the localized state and
at xo = 100, kT/E& —0.75]; and the sharp transition

1
at o, = —, has been considerably broadened and re-

duced in magnitude (compare Figs. 1 and 3 ).

~ X =&0~0

xo =&0
O X0 =30

Xo = 1.0

which becomes, when the path integrals are per-
formed, 0.1 10

PPl 2+ 1—
N y

1 r 1

w' 6 Pv 2—coth =
u2 Pv 2 Pt1

(14)

FIG. 1. Temperature-dependent effective mass vs cou-
pling conStant e for various temperatures. Here xo= k,2/

(2/kT). Points are numerical results, lines are guides to the
eye.
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FIG. 2. Effective mass vs temperature for various cou-
pling constants. Points are numerical results, lines are
guides to the eye. In both figures, the effective mass is
given by
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FIG. 3. Model mass (mo) vs coupling constant
a = ( T =0). Feynman mass (mF) vs coupling constant
e(T =0}. Mass in units of free-electron mass. Points are
numerical results, lines are guides to the eye.

We can obtain an approximate expression for the
effective mass in the strongly coupled state, at very
low temperature, by using in Eq. (14) the values of
the variational parameters obtained from the T =0
results' with corrections from recoil and internal ex-
cited states included. We obtain

(15)

or

pv = xoWa

(17)

~here q = co,/(k, '/2) (ra, = sk, for the linearized ripplon
dispersion relation). Then

investigated numerically, it does show the following.
The zero-temperature model mass X (being propor-
tional to a/q') ~ as q ~0. However, for finite
temperature, the effective mass as we have defined it
here remains finite because of the temperature-
dependent correction term indicated in Eq. (18).
Therefore, the jump in mass, at 0. ——,, remains fin-
ite as q ~0 (i.e., as the ripplon velocity vanishes)
and the *'localization" features of the transition are
smeared.

The fact that the dimplelike structure has begun to
melt at T =17 mK (for a 100-A film), diminishing
the jump in mass, indicates that the temperature has
a significant effect and that experiments must be
done at quite low temperatures. However, this tem-
perature is attainable, suggesting that experiments to
look for the "localization" transition described here
and in our earlier papers' are difficult, but possible.

N

m (x'+ 6/xoWn)

Even though the range of validity of this expression
is for a somewhat lower temperature than we have
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