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Behavior of the Sorel resummations for the critical exponents of the n-vector model
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We study the behavior of the Borel-resummed renormalization-group functions for g($ ) in

three dimensions under transformations between different definitions of the renormalized cou-

pling constant. By comparing this behavior with that of certain "explicit" functions whose exact
values are known, we are able to improve the accuracy of present estimates of the critical ex-

ponents for the n-vector model. Our results are consistent with the assumption that the

renormalization-group functions are analytic in a circle in the complex g plane with a cut from

the origin along the negative real axis.

I. INTRODUCTION

The critical exponents for the n-vector model in
three dimensions are given in g ( $ ')' field theory [in
three dimensions, and with an 0 (n ) symmetry] by
the values of the renormalization-group functions
evaluated at the first nontrivial zero of the P func-
tion. I.e Guillou and Zinn-Justin" have applied esti-
mates of the large-order behavior of perturbation
series in g( @ ')' theory to the calculation of the criti-
cal exponents using Borel-resummation methods,
with encouraging results. Their method is in princi-

ple more accurate than both the Pade-Borel technique
and the high-temperature series estimates and furth-
ermore the values obtained by them are compatible
with those obtained by the order methods, and also
with the cxpcriMcnt81 Icsults,

%e have been motivated by the promising success
of this technique to attempt to extend it in two gen-
eral directions; first, to more precisely estimate the
accuracy of these calculations given some finite
number of terms in the perturbation expansion, and
to learn how to modify the technique in order to im-

prove this accuracy; second, to study the sensitivity
of these calculations to the analytic properties (in g)
of the renormalization-group functions, and in partic-
ular to examine the possibility that the Borel-
resummation technique might be used to directly
check the consistency of certain assumptions about
these properties.

For both cases our method is to exploit the free-
dom, which exists in any renormalizable or super-
renormalizable field theory, to adopt any of a wide

range of physically equivalent definitions of the re-
normalized coupling constant. %e have studied the
behavior of the Borel-resummed renormalization-

group functions at finite orders under transforma-
tions between these various definitions. First we

determine whether the sum will converge more
quickly and give a more accurate result in some cou-

pling constants than in others. Second, we show in
certain simple cases that the sum is sensitive at finite
orders to the analytic structure of these functions.
Thus we may establish which of the coupling con-
stant transformations lead to renormalization-group
functions which fail to satisfy the analyticity require-
ments for Borel resummation in the new (trans-
formed) coupling constant, whereby we can test the
consistency of certain assumptions about analyticity
in the original (untransformed) coupling.

Our paper is organized as follows: Section II is a
brief review of the method of Le Guillou and Zinn-
Justin. In Sec. III we define the transformations on
the coupling constant, and derive certain constraints
on these transformations which will arise from the
requirement that the transformed renormalization-
group functions be Borel resummable in the
transformed coupling constant. In Sec. IV we will ap-

ply our procedure of coupling constant transforma-
tion followed by Borel resummation to a set of expli-
cit functions whose exact values are obtainable by
other means. Two significant results will emerge
here: (l) that the effect of "blindly" transforming
the coupling constant, i.e., of producing transformed
functions which fail to satisfy the analyticity require-
ments for Borel resummability, is apparent even in
the first six terms of the Borel sum; (2) that certain
of the proper transformations improve the apparent
convergence rate and the accuracy of the Borel sum
at these finite orders (and more particularly that, at a

given order, the most precise value will be given by
the most rapidly converging Borel sum). Finally, in
Sec. V we will apply our method to the renormaliza-
tion-group functions. It turns out that these func-
tions behave under the coupling-constant transforma-
tions much like the explicit functions of Sec. IV. In
particular, the behavior of the renormalization-group
Borel sums with respect to the improper "blind"
transformations is consistent with the assumption
that these functions are analytic in a circle in the g
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plane with a cut along the negative real axis (where g
is the original untransformed coupling constant); and
furthermore, just as for the test functions, certain of
the proper transformations improve the apparent con-
vergence rates of the Borel sums, and there is good
reason' to believe that, as in Sec. IV, these improved
convergence rates are associated with more precise
values for the critical exponents. We have tabulated
our best estimates for the values of the critical ex-
ponents along with those of Le Guillou and Zinn-
Justin, at the end of the paper.

II. METHOD OF Le GUILLOU AND ZINN-JUSTIN

In the g( $ ')' field theory large orders of the per-
turbative expansion of any physical quantity A (g),
with

A (g) = Xa„g",

where Bt will be given in terms of [a;] with i ~ j. So
if we are given only the first k of the perturbation
coefficients a;, we may define an approximation
A'"'(g) to A (g) by

k
A'"'(g) —= XB, dte 't' [x(t)]"N

t
Il 0

~here

A' " (g) A (g)
k ~oo

This method is first applied to the calculation of
the zero g' of the Gell-Mann —Low function, and then
to the calculation of the other renormalization-group
functions evaluated at g'. The results are consistent
with one another and with results obtained by other
methods and thus they are consistent also with the
assumption mentioned above concerning the analyti-
city of 8 i( y) in y.

behave for large n as

a„—n!( —u) "n', (2)
III. COUPLING CONSTANT TRANSFORMATIONS

where 0, and e have been calculated in three dimen-
sions for the various renormalization-group func-
tions. We now define the Borel transform 8 of A

by

aky
k

I"(k + b'+1) (3)

1

A (g) = XB„~I dte 't' [x(t)]" (6)

where b' may be varied freely in order to control the
convergence properties of the Borel sum. It follows
from (2) and (3) that the first singularity of 8,(y)
occurs at y = —1/n, where B,(y) will behave as

(1+ay) ' ', or as In(1+ay) for b'=e+l.
The Borel sum for A (g) will be given by the in-

tegral:

A (g) = dte 't' B,,(gt)

The range of integration in (4) extends outside of the
circle of convergence of the sum in (3); but this diffi-
culty may easily be dealt with as follows'. assuming
that 8 i(y) is anaytic in the y plane cut from —1/u

to —~ along the negative real axis, we can map this
cut plane into a circle in the x plane with

y =gt =x(1 —,' nx) ' .—

The range of integration in (4) will now run from
x =0 to x =4/a, and 8 (gt) will be given by a con-

vergent series in x throughout this range.
Finally, then, we will have

G(g) =g+0(g'), (8)

from one coupling constant g to a new one G. G(g)
is required to be nonsingular and invertable on the
interval 0 «g & g', where g' is the first nontrivial
zero of the Geil-Mann —Low function p(g). The new

p function in G is given by

p(G) -=p(g)
Bg

and we ~rite

y(G) —=y(g(G)), (10)

where y(g) represents all renormalization-group
functions other than p(g), and y(G) are correspond-
ing functions of the new variable

t'Hooft4 has defined a transformation of the form
(8), which has been studied in detail by Khuri and
Mcsryan, ' for which Pt = Pt, P2 = P2, and Pi =0 for
i ) 2 [where p(G) —= Xp, G']. This particular
transformation turns out not to be well suited to our
purposes here, however, since it tends to worsen the
apparent convergence rate of the j(G). We have

Subject to certain constraints, one is free in a re-
normalizable field theory to adopt any of a wide
range of different but physically equivalent defini-
tions of the renormalized coupling constant. All of
these, however, must preserve the first two coeffi-
cients in the perturbative expansion of the Gell-
Mann —Low function, which both have direct physical
significance. The higher-order terms, on the other
hand, may vary freely as we redefine the coupling
constant.

We consider transformations of the general form,
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found it useful, rather, to consider transformations of
the form:

g = XQ(G',

where e ) 0 and G = ~G ~e'&. These conditions are
known to be satisfied by the renormalization-group
functions for g(q ) 2 in the original variable g, with
g' the first nontrivial zero of P(g).

If now we assume that all of the renormalization-
group functions are analytic in the old coupling con-
stant g throughout a circle in the g plane with a cut
from 0 aloof the negative real axis, we may easily
derive necessary conditions on the Q~ in (11) such
that the new y(G) will satisfy the Borel analyticity
conditions (13) in G. Consider for example the
transformation

g =6+56, 5&0

It turns out that (14) will map no part of the negative
real g axis into the region (13) so long as

s&n—
3

and similar bounds may easily be found on the case
of negative 5, and for morc complicated transforma-
tions as well. In what follows we wi11 test the con-
sistency of the assumption above regarding the
analyticity of the renormalization-group functions in

g by comparing the results of transformations which

respect the analyticity conditions in G [i.e., of, say,
the form (14) and (15)l, with the results of transfor-
mations carried out blindly; without respecting these
conditions.

Furthermore, it is not difficult to show for any
transformation of form (11) with

~ Q~~ ( I,Yl & 1 that

as J~oo (16)

where m is some finite number. The value of Q2 is
determined by the requirement that Pt =P~ and

/32=P2, and is given by Q2=0.
It remains now to consider which of the transfor-

mations will preserve the Borel resummability of the
renormalization-group functions. If a function y(G)
is to be Borel resumrnablc on an interval 0 ~ 6 ~ 6'
it is necessary that the large-order perturbation coef-
ficients for y(G) in G behave as

y„—n! ( —c)"n",

where c and d are constants, and that y(G) be ana-

lytic in the region
1

0-IGI-IG'I; —+
2

where y(G) is defined as in (10).
Finally, recall that in order to carry out the map-

ping (5) which yields a convergent expression for
B,(gt), Le Guillou and Zinn-Justin assume without

proof that 8 (gt) is analytic in the gt plane cut from
—I/n to —0 along the negative real axis. For our
present purposes we shall require not only that the
untransformed 8,(gt) have this property, but that

the new, transformed 8 (GJ) [i.e., the inverse La-

place transforms of the y(G)] have it as well. It can
be sho~n for a wide variety of explicit functions that
if 8,(t) has this analytic structure in gt then 8 i(GJ)
will have the same structure in GJ.' Furthermore,
recent studies9 of the effects of inserting complex
singularities (which violate this assumption) into a

variety of explicit functions suggest that, although
such singularities will spoil the rigorous convergence
of the full Sorel sums, they will not introduce any
substantial error into results obtained from low-order
partial sums such as are calculated in the present pa-
per.

TRANSFORMATION PROPERTIES OF
SOME EXPLICIT FUNCTIONS

%e consider in this section a set of functions
Pg(g) of the general form

Pg(g) = Ej~e '== —
dr

(n+gr)~
(17)

where Q, n, and K are positive real numbers. We
have in general adjusted n and E (for a given Q) so
as to make Pg(g") = y(g') where g' is the zero of
P(g), and also to set the perturbation coefficients
P~ ——y„. The functions Pg(g) are Borel resum-

mable and analytic in the complex g plane with a cut
along the negative real axis from 0 to —~.

%e will study the behavior of these functions
under transformations on the coupling constants,
G (g ), which generate transformed functions
Pg(G(g)) =Pg(g) We define the s. tability Sof
- (x) -(w) .

P~ [where Pg is defined as in (7) 1 with respect to
a given transformation G(g) by

(18)

where

so that, for example, S ~ as %
Now, if we carry out a set of transformations of

the form (14), subject to the bound (15), for various
values of 8, and if we also "blindly" carry out anoth-
er set of transformations of the more general form
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g =G+SG', 5 real
- (6)

and the accuracy A of Pg (G):

W —= ~PtI"(6(g)) Pg(g) ~

—.

In particular, we find that

C &3

(21)

(22)

(23)

So that the best apparent convergence rate will indi-

cate the most accurate value, and C itself may serve
as an upper bound on the error associated with that
value. This result is both what one would have ex-
pected and what one would have hoped for; it too
will be helpful in the analysis of the renormalization-
group functions.

We have typically carried out transformations G(g)
of magnitudes up to 56 —O(g/2) [where
g —O(1.5) ], and the variation of the convergence
rate C in this range is typically of the order of a fac-
tor of 10. Furthermore, the calculations have all
been carried out for a range of values of Q, and also
for various different choices of the convergence fac-
tor b' in (3), and all of these have attested to the
general nature of the conclusions above.

We find, then: (1) that the analytic properties of
the Pg(G) have discernable effects at finite orders in
the 13orel sum; (2) that at these same finite orders
C & A. These are certainly not in the nature of
rigorous theorms; they are rather observations about
a wide class of explicit functions which we have ex-
amined [both of the form Ptl( 6) and of other
kinds], and within which we have not found notable
exceptions. %e shall assume that they give us a good
guideline to improving the calculations of the
renormalization-group functions.

V. TRANSFORMATION PROPERTIES OF THE
RENORMALIZATION-GROUP FUNCTIONS

The main result of the present work is the observa-
tion that the properties of the renormalization-group

(11), not subject to the analyticity conditions, we find

that for fixed values of g and 6, Pg(G) is more stable

by a factor of 10 with respect to transformations of
the form (14) and (15) than with respect to those of
the form (11) which do not preserve the analyticity
conditions. The Borel sum is, then, already discern-
ably sensitive at this order to the analytic structure of
Pg(6), and this will prove a useful tool for studying
the renormalization-group functions.

Furthermore, there is a connection between the ap-- (6)
parent convergence rate C of Pg (6), defined by

C —= iPg (6) —Pg (6) i+ iPg (6) —Pg (6) i (20)

for the analytically proper transformations G(g) of
the form

8 lngo
P(g) —= (d —4)

Bg

where

Z(4)
go=g

(24)

(25)

Z(g) being the renormalization constant for the field
and Z&4&(g) that for the vertex, and where the renor-
malized coupling g is normalized such that

P(g) = —g+g'+O(g')

Then we have
r

(( ) p( ) dlnZ(g)
dg

(26)

v(g) —= 2+P(g) d lnz(2) —((g)
dg

y(g) —= v(g)[2 —g(g)]

5(g) —= —,
' (3v —y)

~(g) =p'(g),
where Z&2& is the renormalization constant for the P2
insertion. The critical exponents and the leading or-

functions with respect to the coupling-constant
transformations are much like those of the Pg(g) of
Sec. IV.

First of all, our results are consistent with the as-
sumption that the renormalization-group functions
are analytic within a cut circle around the origin in
the g plane (with the cut running out from the origin
along the negative real axis). In particular, we find,
exactly as in the case of the P' '(6), that the various

(6) Q

y (6) are typically more stable by a factor of 10
with respect to the analytically proper transformations
than with respect to the improper ones.

Furthermore, certain of the proper transformations
of the form (20) [where the original couplings g are
those given by Le Guillou and Zinn-Justin as the
zeros of P for the various N; g —O(1.5)] and of typi-
cal magnitudes 66 —O(g/2) improve the apparent
convergence rates of the y (6) by a factor of 10,

(6)
- (6)

just as for the Pg (G). - (6)
Indeed all of the essential features of the Pg (G)

which are noted in Sec. IV are both qualitatively and
quantitatively characteristic also of the renormaliza-
tion-group functions. This persuasively suggests that
(23) will be valid for the y(g) as well, and so pro-
vides us with a more accurate means of calculating
the critical exponents and of estimating the error.
%e have carried out this program for the
renormalization-group functions calculated by Le
Guillou and Zinn- Justin.

%e adopt our definitions directly from their paper,
namely,
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1.2412 f0.0011
0.040+0.001
0.6302 10.0003
0.3265+0.0011
0.81 %0.05

1.241 +0.002
0.031 X 0.004
0.630+0.0015
0.325 +0.0015
0.80 + 0.04

1.3172 +0.0007
0.041 + 0.0025
0.672 2 0.002
0.3479 +0.0013
0.80 +0.020

1.316+0.0025
0.033 + 0.004
0.669 +0.002
0.3455 + 0.002
0.78 +0.02S

1.390 2 0.005
0.042 t 0.0020
0.708 t 0.003
0.369 +0.002
0.782 +0.004

1.386 f0.0040
0.033 +0.004
0.705 +0.0030
0.364S +0.0025
0.78 + 0.02

1.1617 Z0.0012
0.034+0.001
0.5884+0.0004
0.3092 + 0.0008
0.78 + 0,055

1.1615 + 0.002
0.027 +0.004
0.588 +0.001S
0.302 + 0.0015
0.80 + 0.04

TABLE I. Comparison of our results for the critical ex-
ponents (left column ) with those of Le Guillou and Zinn-
Justin {right column; Ref, 2).

Finally we remark that our technique, and the
Borel-resummation method in general, are less accu-
rate in the case of q than in that of the other, larger,
exponents. The apparent convergence rates for q'
are rather slow and are difficult to improve upon
even by the coupling-constant transformations, and
q' ' varies under these transformations by as much
as a factor of 2, in contrast to v", 0-'6, 5', and
ao'6' which vary at most by factors of 1 +0.05.

For the other critical exponents our results are al-

ways slightly larger than, but in general consistent
with, those of Ref. 2. In this sense our results
strengthen the reliability of the Sorel techniques for
the present case.

Our best estimates for the critical exponents, along
with those of Le Guillou and Zinn-Justin (Ref. 2) are
presented in Table I. The error is the sum of two
components: (l) the error ln 'y(G(g )) fof a given
value of g', which we determine via (23) with the
mimmum value for C; (2) the variation of j(G(g"))
over the range d (g") of the error in g' itself, where
we have taken 3 (g") directly from Ref. 2.
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