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It is shown how recent Padé-approximant schemes, in density and attractive two-body cou-
pling strength, for the ground-state energy of liquid “He are not inconsistent with the present

knowledge of two-body scattering data.

Recently a new procedure for describing the
ground-state-energy equation of state for quantum
fluids has been proposed.! However, the only exam-
ple carried through in detail for comparison with ex-
periment was liquid “He. In that case, agreement
with experiment was poor, with the saturation density
and binding energy each being approximately an or-
der of magnitude too small. Part of the problem
could have been the three-parameter interatomic po-
tential model used, namely, the hard-core square-well
(HCSW) model. Indeed we are now extending Ref.
1 to more realistic potentials, e.g., those proposed by
Aziz et al.? However, we now believe the primary
difficulty in Ref. 1 was in the HCSW potential param-
eters of Burkhardt® used there. The purpose of this
report is to examine this question and present new
potential parameters for the HCSW potential of “He,
determined by experimental bounds on the *He,
two-body scattering length* and the empirical satura-
tion density and binding energy of liquid “He.

The starting point for constructing an equation of
state for the ground state energy of boson fluids in
Ref. 1 is the well-known,* low-density (non-power-
series) expansion in (pa®)'/2, where p is the particle
density and a is the S-wave scattering length of the
two-body system. As it stands, the series is useless
for two reasons: (a) only the first few coefficients
are known, thus limiting its validity to very low den-
sities and (b) the empirical value of a is often nega-
tive giving rise (since the leading term in the energy
per particle is 27%2pa/m) to a negative pressure in-
stability. The latter difficulty is circumvented by ex-
panding the scattering length a in powers of the at-
tractive strength parameter; one then has a power
series in this parameter and a nonregular series in
(pc®)'2) where c is the diameter of the repulsive
cores, which is then extrapolated to nonvanishing
values by the use of different generalized Padé ap-
proximants,® as discussed in Ref. 1. One thus has a
perturbation theory about the hard-sphere Bose sys-
tem, in analogy with the highly successful schemes
available for classical fluids,” except that for the
quantum case perturbative corrections can be carried

25

out to high orders with relative ease. In Ref. 1 this
was done up to fourth order for liquid “He.

The two-body interatomic potential used was the
HCSW potential defined by

+o0 (r<c)
v(r)={-vy (c <r<R)
0 (r>R) )
with the parameters given by 1°3urkhardt as vo=142
K, R=5.5 A, and C=1.685 A. For such a potential

the S-wave scattering length is given in closed form
by

a/c=1+a(l—tanvr/vX)
::1"',‘1(-%}‘"1_25}‘2——'“) , (2)

where
muvyg
ﬁ-2

a=(R—-0c)/c, A= (R—-0)?,
where the power-series expansion diverges for
A > w2/4 =2.467. The parameters of Ref. 3 give
A=1.719086, a =2.264095 and a = —5.45289 A.
This led in Ref. 1 both to a binding energy and a
saturation density much too small for liquid “He.
However, existing low-energy experimentaloresults
on the two-body system imply that |a| > 20 A and in
fact a recent study® shows the Aziz ef al.? potential to
1‘1)ave a very weakly bound state and a =+122.25211
A.
Using Eq. (2) the energy/particle in Ref. 1 is, up to
fourth order in A,

E/N=¢e(x,\) = 3 &,(x)AN+0(N\°) , 3)
=0

where x = (pc®)'/2. The hard-sphere energy eo(x)
was found [Eq. (15) of Ref. 1] to fit the available
Green’s function Monte Carlo data points® and
showed an ‘‘uncertainty-principle’’ divergence (ran-
dom close packing) at x =0.7082. For €;(x),
i=1,2,3,4, which contains four terms including a
Inx one, the generalized Padé approximants denoted in
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Ref. 1 by H{V (x), H{V (x), F{¥V (x), and F{IV (x),
respectively, were found adequate there to give a
divergence-free representation in the region of physi-
cal densities. Finally, (regular) Padé approximants in
X\ were constructed but found to be unnecessary com-
pared with the straightforward fourth-order perturba-
tion series, denoted by [4/0], as the value of A quot-
ed above is apparently ‘‘small”’ compared with 72/4.

We have reinvestigated the possibility of reducing
the 90% error in both energy and density of Ref. 1 to
essentially zero. This was done by first decreasing
the hard-sphere diameter c to increase both the sat-
uration density and binding. Once the correct density
is obtained the value of ¢ remains essentially fixed;
we then change R accordingly so that « in Eq. (2)
remains as before, otherwise unwanted poles develop
in the x approxignants as describeod in Ref. 1. This
gave ¢ =1.043 A and R =3.404 A, and Eq. (2) gives,
for the empirical limit |a| > 20 A, the limits
2.2614 < A < 2.7439. The intermediate voalue
A=2.527 (v9=5.453 K and a =+82.17 A) gives the
empirical binding with the best approximant, namely,
the [3/1]. The energy/particle as function of density
is shown in Fig. 1 for different A Padé approximants.
A 20% improvement in binding is seen as one goes
from third- to fourth-order perturbation theory ([3/0]
compared to [4/0]). A much larger improvement is
noted in going from second to third order ([2/0] to
[3/0]), as well as an abrupt increase in the saturation
density.

We thus conclude that the constructive methods
developed in Ref. 1 can claim not only to have found
a proper ‘‘smallness parameter’> () for the descrip-
tion of boson liquids but also to give essentially the
right binding and saturation density given the present

energy /particle
(Tunitz 7.14K)

\Rr1]
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FIG. 1. Energy per particle in units of the empirical bind-
ing energy per particle of 7.14 K and the saturation density
of 0.022 A3 of liquid “He, as obtained with several (regu-
lar) Padé approximants in A, the attractive strength parame-
ter of the HCSW potential used.

empirical uncertainty in the two-body potential ener-
gy curve.
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