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Effect of strain on the protonic ordering in stluaric acid
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Within a simple model it is shown how 1ocal strain fields impose an important symmetry=

breaking constraint on protonic ordering in squaric acid (C4O&H2), possibly implementing a

first-order transition to the observed antiferroelectric state.

I. INTRODUCTION

The chemical constraints on a molecule of squaric
acid (Cq04Hq) in the sense of Lewis' that all bonds
are saturated can be satisfied, when only two of the
four hydrogen atoms surrounding a given carbon-

oxygen complex in the solid transfer charge to the
molecule' (see Fig. l). Classically speaking, the four
energetically favorable protonic configurations are
those in which hydroxyls are adjacently positioned
about the cyclobutene ring. That in which the hy-

droxyls are diagonally positioned is energetically un-

favorable, necessitating a double carbon bond across
the diagonal for chemical stability in that case. It
shouM be noted that the strong covalent double car-

bon bond on the side of the cyclobutene ring where

the protons sit strongly distorts the squaric shape of
the molecule into a trapezoidal form. In the solid

state the molecules bind in planar layers' ' (see Fig.
2). Below a temperature T, —97'C, the protons or-

der ferroelectrically within each plane, such that the
chemical constraint on each molecule is satisfied.
The protonic configuration in adjacent planes is anti-

ferro electric.
To a great extent the interest in squaric acid stems

from the posslblllty that the pI'otonlc ordering ls

essentially a two-dimensional phenomenon, the sub-

stance then serving as a testing ground for renormal-

ization-group theories, as well as for solutions to ver-
tex or bond models, 6 ~ Recent vertex model calcula-
tions ' have predicted a second-order transition for
the protonic ordering in squaric acid. Using a local
normal coordinate scheme' for the protonic degrees
of freedom, and a renormalization-group approach to
eliminate certain irrelevant terms in the free energy,
Feder6 7 is lead to a three-dimensional x-y model for
squaric acid that also exhibits a second-order transi-
tion. Recent experiments, "'2 however, offer strong
evidence that the transition in squaric acid is of the
first order.

Basically, all current models for squaric acid suffer
a common weakness: They neglect the distortive
response of ihe cyclobutene ring to the protonic
motion, and treat the squaric molecule as a point, as-

slgnlng to this point some paltlcular pI'otonlc

configu-

rationn (vertex arrows or local normal coordinate).
In view of the strong molecular distortions that are

~~~ proton

~ hyclroxyl

—~ carbon

~ oxygen

FIG. 1. Squaric acid molecule.

FIG. 2. Four unit cells of crystalline squaric acid. Black
and white dots differentiate between neighboring squaric

planes.
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expected to be involved in protonic hopping, such ap-

proaches neglect an important aspect of the transi-
tion. In particular, these molecular deformations can
lead to the formation of energetically unfavorable lo-

cal strains within the squaric plane, implicating an ef-
fective driving force for the transition.

Another apparent weakness of the existing models
is that they necessitate the ad hoc introduction of an
antiferroelectric interplanar coupling, while at the
same time admitting a ferroelectric coupling within
the squaric plane. In the relatively successful Slater-
Tagaki theory' ' of the protonic ordering in potassi-
um dihydrogen phosphate (KDP) the ferroelectric
state appears naturally as a result of crystal anisotro-

py. In squaric acid, however„ the four chemically al-

lowed configurations are crystallographically equiv-
alent, and even when the ice constraints are imposed,
without the ad hoc inclusion of appropriate order
parameter couplings, all current models predict a

paraelectric state for squaric acid.
In this paper it will be shown that local distortions

of the lattice in response to protonic motion favor in
a natural way the observed antiferroelectrically or-
dered state, and that a first-order transition to this
state may occur as a result of the local strain effect.

II. FORMULATION

If it is assumed that the entropy of the system is

primarily contained in the ferroelectric degrees of
freedom, then the following separation of the
Helmholtz free energy F is possible. '

F =Fg+E, +Eg, ,

where Fd contains solely protonic degress of freedom.
In a uniformly strained crystal the purely elastic en-

ergy E, is given by'

E gx'cr, XePeP'

where I' defines the irreducible representations of the
crystal space group, i specifies the basis functions of
the representation, and j and j' are used if more than
one basis set carries the representation. The {c",)
are phenomenological elastic constants, and the {e, I

are linear combinations of the Cartesian components
of the uniform strain tensor, having the transforma-
tion properties of the (I'ji)-basis functions.

The ferroelastic coupling term E~, which I assume
to be of the 1-site type, is given by" '

Here f —= (n, s) labels the position of the sth rnolecuie
in the nth unit cell of the crystal. The 1-site coupling

coefficients will be assumed to be site-independent.
The ferroelectric degrees of freedom are summarized
in the functions {qp), which transform as do the
(I ji)-basis functions. They are formed from bilinear
combinations of the Cartesian components of a local-
ly defined vector ri(f ) that specifies in a certain
sense the electric polarization in a molecule. ' The
local strain functions {(;"i)describe the molecular de-
formations, which, for reasons given in Sec. I, couple
strongly to f(f ) only at the site f.

If {Rs)fare the position vectors of the atoms which
neighbor the site at Rf in the undeformed crystal, then
the 1-site local strain functions may be defined as"'

g n(f ) =—g g i(ff + &)
(R z)f

where the 2-site Cartesian components of the local
strain tensor are given as

+ ( Yf Yg) (xf —xz) ]

with similar expressions for the other components.
Here rf —= (xf,yf, zf) is the displacement away from
Rf = (Xf, Yf,Zf) in the deformed crystal. It may be
shown"" that Eq. (3) reduces to the usual expres-
sion" for the ferroelectric free energy in the presence
of a uniform strain, if one imposes the following con-
dition:

b r 2a2gr
JJ JJ

in the case of a cubic crystal with lattice parameter a.
Here the b" are the coupling coefficients for the uni-

form strain case. '

Assuming that the elastic degrees of freedom can
locally follow the protonic motion, the equilibrium
atomic displacements can be calculated for a given
configuration of the local normal protonic coordinates
by minimizing F with respect to these displacements.

III. SYMMETRY CONSIDERATIONS

The free energy of the system must be invariant in
form under the symmetry transformations of the
high-temperature phase, The space group of this
phase is tetragonal 14lm5, which has two one-
dimensional representations A and 8, each with two
inequivalent basis functions:

(x'+y' and z')„,
(x2 —y2 and xy)s

as well as a two-dimensional representation E with
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basis functions (xz,yz)E. Thus the irreducible strain
functions may be written as

(Al g +g gA2

k '=4~ —
kyy,

&El=~., &2E=&~,

(8)

C12 2 C13~

C22= 2C

E 1C =2C44,

C12 2 C16
1

(10)

where symmetrization is implemented through the
definition

whereas the irreducible protonic functions are given
as

Al ( )2 + ( )2 A2 ( )2

2ip' = (21,)2 —(2iy)2, 2tp2 = rt„qy ,

E E
'91 = '9x'gz~ '92 = ty'9z

The 14/m symmetry demands that the 4th rank
elastic tensors (Cjkl) and (Blgkl) be polar, each with
41 nonzero Cartesian elements, 21 of which are in-

dependent. " Using the usual index notation" to be
assigned to the erst or the last pair of Cartesian in-

dices, the following relations between the irreducible
and Cartesian components are obtained:

C1 1 4 ( C 1 1 + C12) i C11 g ( C1 1 C12)
1

consider the simplified model of Fig. 3. The C-0
complex is replace by four "effective" atoms at the
oxygen sites, interacting elastically as shown by wavy
lines in the figure. Here the large black or white dots
serve to distinguish between effective atoms on
neighboring squaric planes, and the orientation of the
protonic coordinates is represented by planar vec-
tors. 6 7 In the absence of ferroelastic coupling (case
shown in Fig. 3), the effective atoms lie in elastic
equilibrium at the corners of a square, and the pro-
tonic state will be paraelectric "ice," if no dipolar

couplings are added to the model.

It should be pointed out that there exists an impor-
tant geometric constraint on the relative positions
of molecules in neighboring squaric planes: The
molecules of one plane are "nested" into the large

empty spaces of the other, so that the apparently very
open structure in a plane is strongly compensated in
three dimensions. This leads to the fact that the per-
pendicularly oriented hydrogen bonds in nearest-
neighbor planes are separated by only -2.63 A, as
compared to -4.4 A between such bonds within a
plane. In fact Raman studies indicate that the in-

terplanar coupling is strongly localized in the crossed
hydrogen bonds of Fig. 3. For this reason it is ex-
pected that the "perpendicular bisector" configura-
tion of neighboring bonds along the crysta1 b axis will

be strongly preserved in the strained crystal. This ex-
pectation is further reinforced by chemical shift mea-
surements, which indicate that the electronic en-
vironment of the protons in these bonds remains

C,p=—2(C p+Cp )

Similar relations may be written down for the com-
ponents of the ferroelastic tensor B, although in gen-
eral, the symmetrization Eq. (11) cannot be em-

ployed, so that

a

B12 2 B13 B21 2 B31

and

B12 = 2B16 +B21 =
2 B61

1 - g 1

The quantity B12= B21 always by symmetry. "

IV. MODEL FOR SQUARIC ACID

As discussed in the Introduction it is the trap-
ezoidal distortion of the carbon ring which couples
strongly to the protonic motion. However, it is the
motion of the oxygen atoms which leads to local
straining over some small region of the crystal. Since
the C-0 and 0-H. . . 0 bonding lengths and bonding
angles are not expected to change much in the tra-
pezoidally distorted molecule (see Fig. 1), we can

FIG. 3. Simplified model of squaric acid in which the C-0
complex is replaced by four "effective" atoms at the oxygen
sites which interact elastically (wavy lines). The protonic
configuration is represented by the set of arrows.
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unaltered as the crystal is cooled through the transi-
tion temperature T,. Apparently the observed soften-
ing of the quasilongitudinal and quasishear wave
elastic modes, which propagate parallel to the crystal-
lographic ~ and c axes shown in Fig. 3, is due primarily
to a softening of the intramolecular force con-
stants (wavy lines in Fig. 3), rather than to a softening
of the hydrogen bonds which link the molecules.

Since this rigid bond picture for the crossed hydro-
gen bonds is also consistent with the molecular defor-
mations discussed at length in connection with Fig. 3,
a further simplification of the model is possible: The
four effective atoms involved in the crossed bond
configurations of Fig. 3, are considered to move as a
single unit, and the rotational motion of this unit,
which ~ould involve a change in the hydrogen bond-
ing angles relative to the squaric molecules, will be
ignored. The imposition of these strong steric con-
straints on the atomic motion in neighboring planes
leads to the strictly two-dimensional model shown in
Fig. 4. Here the four atoms of a crossed hydrogen
bond are represented by a single effetive atom at the
sites where the bonds cross, depicted in the figure as
a crossed dot. These atoms are then considered to be
interacting through the elastic forces, represented by
double wavy lines in the figure. In this "bedspring"
model the information concerning the protonic
configuration is fully contained in the sublattice of ar-
rows on the sites, {f j; whereas the elastic configura-
tion of the crystal is represented by the positions of
the interaction centers (crossed dots), relative to the
equlllbrlum suwattlce of sites, {Fj.

V. ELASTIC ENERGY IN THERMAL EQUILIBRIUM

The sites {f },denoting the protonic configuration,
will be designated by the integer pair, (o., P), whereas
the sublattice of sites, {Fj, denoting the positions of
elastic equilibrium, are labeled by the pair (l,m).
With this convention the irreducible strain functions
are calculated to be

zA15'e, p &l+l, m Xl,m +&l+1,m+1 Xl,m+1

+3 l„m+1 3 l, m +3 l+1,m+1 3 l+1,m

F81
S'e, P &l+1,m &l,m +&l+1,m+1 Xl,m+1

3 l, m+1 +3 l, m 3 I+1,m+1 +3 l+1,m

p82
5 I,P &I+1,m+1 &I+1,m +Xl,m+1 Xl,m

+3'l+1, +1 3'l, +1 +3'l+1, 3'l,

Here the positive constant factors involving a, the
unstrained distance between interaction centers, have
been absorbed into the respective constants {8r, } of

JJ
Eq. (3).

For T & T, I consider a periodic Auctuation of the
local protonic coordinate vi B f(K,B———) with wave
vector Q in the model plane of Fig. 4:

n, p=ge[cos(Q Kt +@)x+sin(Q K1 +1t)y]

where $ = 8+Q d, 8 being an arbitrary phase and
d=—(R B

—K1 ). Cyclic boundary conditions are as-
sumed, and the phase of q is fixed, arbitrarily, by
setting /=0 in Eq. (15).

Defining the protonic turn angle as

where the second equality must hold by symmetry,
the irreducible protonic functions may be written as

Al 2

viB'B= qe2cos[21{1(I+ m) ],
qB2B ——qe2sin[21{1(I + m) ]

(ig)

FIG. 4. Further simplified model in which the four atoms
of a crossed hydrogen bond are represented as a single unit
without internal degrees of freedom, denoted by a crossed
dot. These units interact elastically (double wavy lines) and
are in elastic equilibrium on the sublattice of points [Fj.
The protonic vectors lie on the interpenetrating sublattice {f).

~here a factor of —, in g,'p is absorbed into the
respective coupling coefficients. Equation (17) shows
that the fully symmetric terms in the elastic free en-
ergy are independent of the direction of q, p in the
model plane, so that only surface terms will survive
the strong cancellation which occurs in the A 1 terms
of E»,. Since only bulk phenomena will be con-
sidered in this paper, the ferroelastic coupling energy
may be written as follows:

X(gB (B1 Bl +gB (B1 B2

l, yN

+&F16. 'vB, '+&2241, 'rii ').
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In view of Eqs. (12)—(19) the irreducible functions
have been relabeled with the indices (l,m).

The purely elastic energy may be written as

1
X b&l[ (XI+1,m Xim)'+ ( em+I V—i m) ']
I,m

+~1[(XI, +1
—

XI, )'+(PI+1. —
3'I, )']]

(21)
where ~l and K, are longitudinal and transverse spring

I

constants, respectively. %'hen the strain is uniform
this expression must reduce to Eq. (2), which sug-
gests a method for expressing (ni, K,) in terms of the
usual elastic constants. Here, however, ~I and ~, will

be taken as the fundamental quantities.

Minimizing the elastic free energy with respect to a
particular displacement r I, yields a set of 2@Mcou-
pled linear algebraic equations for the displacement
components

and

&1(2xl,m xi+1,m xl—1 m) + K (12 xlm xi m+1 x —) +-'2) [8 (1 —e '0) e '0 '+ +8„'(1—e 'p)e '0 '+ ] —=0

(22)

«(2w. —xi. +1
—

xi, -1)+nl(2zi, —xi+). —xi-), )+—'2)02[8,(I —e"p)e "0" +m+8,'(I — ~e' )0"e"0+m] —=0

(23)

where

8„—= (811 +8„)+i (8„+822)
By = (811 821 ) + I (812 822 )

and (N, M) is the range of (l, m).
Assuming solutions of the form

x —= J A (a)e' ('+ 'da

( )e ia(I+m)d

(24)

(25)

I

with

lt'0 ———[2(nl+ n, ) (cos24 —1) ]

Q1= (1 —cos4$)

Q2—= sin4& .

(31)

From Eqs. (29) one sees that the coefficients (X(,X2)
and ( Y1, Y2) weight the effect of the local protonic
motions on the local lattice motions.

Using the fact that

Eq. (22) becomes

A„(a)(1—cosa)e' "+ 'da
I,m

and that

B1 B2 (32)

where

=C e 210(I+ )+C„"e '~('+ ) (26) N M 4
Bl,B2 2 (33)

C, —= )p82„2[4( +nin, ) ] '(e "0 1)—
with a similar equation for the y component.

By inspection, the solution of Eq. (26) is

(27)

so that the displacements may be written as

Xl,m X1'gl, m +X2'gl, m
B1 B2

yl, m
= Y1gl,m + YB1 B2

A (a) = (1 —cosa) '[C„S(a+2([1)+ C„'S(a—2([1) ]

(28)

when (W,M) are very large positive integers, the total
ferroelastic energy per molecule, Er —= (E, +Ed, )
x (WM) ', is found to be

Er= ——,'(nl+1(1)(1 —cos2([1)(X('+X2 + Y1'+ Y2) )' 2. 0

(34)

This is a manifestly negative fourth-order term in the
Landau-Ginsburg free energy, which when dominant,
will lead to a first-order transition. 6

Substitution of Eqs. (30) into Eq. (34) yields the
simple expression

where

X1 +0[(811+821 ) Q1 + (812 +822) Q2]

X2 =+0[(812 +822) Q1 (811 +821)Q2]

Y1 =—Ep[ —(811 821 ) Q1 —(8)2
—822 ) Q2]—

Y2 lt 0[ (812 822 ) Q1+ (811 821 ) Q2]

(30)

Er = —Bq, cos (112)p,

where

8~—= 2(KI+«) '[(BB(1)2+(BB)2)2

+(82B) )'+(82B2)'] .

Equation (35) shows that the total ferroelastic in-

(35)

(36)
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teraction energy favors either the purely ferroelectri-
cally ordered state, P =0 or equally well the observed
ordered state, P=m. Equations (22) and (23) imply
that for / =0, n in a crystal with fixed center of
mass the strain will be fully clamped in the bulk;
whereas for other values of P the bulk strain is only
partially clamped, leading to a higher net ferroelastic
energy.

VI. SUMMARY

Within a simple model the ferroelastic instability of
squaric acid is treated by imposing a spacially periodic
fluctuation of the local normal protonic coordinate
upon the paraelectric state of the lattice. It is shown
that local strain fields define a symmetry-breaking
axis in the squaric plane for the protonic order
parameter. This may lead to a first-order transition

to the experimentally observed ordered state. A
more detailed analysis must await the determination
of the ferroelastic constants, 2' as well as those ap-
pearing in the purely protonic terms of the Landau-
Ginzburg free energy. 6'

In a future work a dynamic version of the local
strain formalism will be used to describe the forma-
tion of clusters in connection with anomalous Bril-
louin scattering, and chemical shifts, '2 0 observed
recently in squaric acid.
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