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The dynamic form factor S(Q, co) of bcc solid He in the paramagnetic phase is calculated

using the self-consistent-phonon (SCP) theory for comparison with proposed neutron scattering

measurements. The magnitude of S(Q, co) is predicted to be 2—3 times smaller than that ob-

served in liquid He at saturated vapor pressure but comparable with that expected in liquid He

near the melting line. Longitudinal phonons should be observable at low scattering wave vec-
0

tors 0 & 0.8 A . Transverse phonons will be more difficult to observe since larger scattering

wave vectors outside the first Brillouin zone are usually required to observe transverse phonons.
0 aaat

At Q P 2.5 A ', S(Q, co) is dominated by scattering from multiphonons and bcc 3He responds

like a gas of weakly interacting particles. Collective spin excitations or critical scattering will be

observable only at very small neutron energy transfers (-0.1 pev) and at temperatures near

the spin-ordering temperature (-1 mK). Comparison with experiment will provide a test of
the SCP theory and of the assumption used here to separate the nuclear and spin dynamics.

I. INTRODUCTION

In spite of the large absorption cross section of 'He
for neutrons, recent neutron scattering studies at the
Institut Laue Langevin' and Argonne National Lab-
oratory' have demonstrated the existence of collec-
tive excitations in liquid 'He. These suggest that the
liquid supports the propagation of a zero sound'
mode having a lifetime —2 & 10 " sec for wave vec-
tors up to q = 1.2 A '. At q ) 1.2 A ' the zero
sound mode appears to be rapidly damped and the
liquid responds much like a weakly interacting Fermi
gas in which single quasiparticle-quasihole excitations
dominate. The Argonne neutron studies' also ob-
serve a peak in the scattering at low energy interpret-
ed as the paramagnon resonance in the 'He nuclear-
spin excitations. Several semiphenomenological
theories' ' now describe these observed excitations
in liquid 'He well.

Experiments on 'He under pressure are now pro-
posed both to observe the pressure dependence of
the scattering from liquid 'He and to observe the ex-
citations and spin structure in solid 'He. At p =30
atm and T 1 K, 'He solidifies into the bcc phase,
which is arguably the most highly anharmonic solid
known. The purpose of the present paper is to
predict the form of the dynamic form factor,
S(Q, ru), of solid 'He that will be observed in these
experiments. Since bcc 'He is highly anharmonic, a
direct comparison of the full S(Q, cu) with experi-
ment should be more meaningful than attempting to
compare approximate one-phonon properties. Also
constructing a pressure sample cell transparent to
neutrons is difficult, so we choose bcc 'He at V =24
cm'/mole formed at the lowest pressures just above

the melting line.
Briefly, at T & 10 mK, ~here solid 'He is entirely

paramagnetic, the inelastic scattering will be from
phonons in a highly anharmonic solid. At T near the
nuclear-spin ordering temperature ( T = 1 mK at
V =24 cm'/mole) scattering from spin correlations
and critical scattering should be observable in the
spin-dependent component of S(Q, co). However,
since the nuclear-spin excitations will have energies
of the order of the exchange energy, -0.1 p,eV, ex-
tremely small neutron energy transfers. to the solid
and high-energy resolution will be required to ob-
serve these spin excitations. The exchange constant
is largest in the bcc phase near melting. Below the
ordering temperature the nuclear spins order into
complicated antiferromagnetic structures" ' which

depend upon the applied field. " The precise nature
of the spin-ordered structures can be determined by
an elastic scattering measurement, ' and identifying
the spin structure below T =1 mK is one of the ulti-
mate goals in studying bcc 'He. There are, however,
formidable technical difficulties to maintaining these
low temperatures in a strong neutron absorber like
'He, so we limit ourselves here to a prediction of
scattering from the paramagnetic phase at higher
temperature as a first step.

All descriptions of the nuclear dynamics in solid
helium use the self-consistent phonon theory, "the
phonons constituting the long-range dynamic correla-
tions. This is a first-principle theory which has as in-
put only the bare He-He pair interaction potential
(represented here by the Beck'8 potential) and the
observed lattice parameter (here a0=4.3034 A). The
different descriptions of solid helium' differ in the
treatment of the short-range dynamic correlations in-
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duced by the hard core of the He-He potential. In
the present calculations we use the T-matrix treat-
ment of these correlations developed by Glyde and
Khanna. ' In the self-consistent phonon theory, solid
'He and He are treated on the same footing. This
means spin and statistics are ignored in solid 'He
when discussing the nuclear dynamics. This approxi-
mation is based on the small size of the exchange
constant ( & 1 mK) compared to the ground-state en-

ergy ( —1 K) and the phonon energies (—10—30 K).
Since the nuclear dynamics of solid 'He and 4He

are expected to be similar, the extensive neutron
studies of solid He in the hcp, "'"fcc,""and bcc"
structures carried out at the Brookhaven" ""and
Ames' ' ' laboratories can be used to infer the
essential features in solid 'He. The chief new feature
in solid 'He is the spin dependence of the 'He neu-
tron scattering length which adds a spin-dependent
scattering component to S(Q, cu). This makes up—20% of the scattering in 'He and has no analogy in
'He. The coherent component of S(Q, cu) in bcc 'He
( —80'/o of the scattering) should be very similar to
S(Q, rv) in bcc He, although 'He should be more
anharmonic. The essential features of bcc He are'
(1) highly anharmonic one-phonon scattering at small
momentum transfer Q & 1.5 A ', (2) strong interfer-
ence effects" "between the one-phonon and multi-
phonon scattering at intermediate momentum
transfer 1.5 A ' & Q & 3.0 A ', and scattering dom-
inated by multiphonon excitation at large momentum
transfer Q & 3 A '. The scattering from multipho-
non excitations at large Q is indistinguishable in form
from scattering from nearly free nuclei. Thus, at
Q )3 A ', solid 'He responds like a gas of weakly
interacting "single-particle" 'He atoms' and the
scattering can be well described by liquidlike
theories. "

In Sec. II the scattering cross section for solid 'He
is separated into its coherent and spin-dependent
parts, The calculation of the coherent and spin-
dependent S(Q, a&) is discussed in Sec. III and the
results are presented and discussed in Secs. IV and
V, respectively.

S(Q, co) = ' S,(Q, ru) + — St(Q, o)) (2)

For an unpolarized incoming neutron beam, the
dynamic form factor S(Q, co) separates into a
coherent, S,(Q, ~), and a spin-dependent, St(Q, ro),
part. In (1) /IQ =It(ko k—) and Itco are the momen-
tum and energy transferred from the neutron to the
sample, respectively, and the neutron -'He nucleus
interaction is represented by a Fermi s-wave pseudo-
potential, which is spin dependent. (All other in-

teractions are ignored. ) Here we use coherent and
incoherent bound nucleus scattering cross sections of
o, =4.9 b (Ref. 38) and o, =1.2 b, giving
o- = 0-, + o-/=6. 1 b. The 0-& is not well determined
but a careful analysis by Skold and Pelizzari suggests
o(/o, =0.25 +0.05.

In (2) S,(Q, cu) is the standard coherent dynamic
form factor'9

S,(Q, co) = — dt e'"'—(p(Q, t) p( —Q, O) ), (3)2n™"

p(Q, t) = /exp[ —IQ r (I, t)]
I

2m " M(I +1)

is the Qth Fourier component of the nuclear density
and r (I) is the position of nucleus / The S,.(Q, co)

satisfies the f-sum rule

faoo

dCU (OSq(Q, Ql) = = t0tt
& —oo 2 lit

where cog is the recoil frequency in the impulse ap-
proximation.

The St(Q, m) is the dynamic form factor describing
the scattering from the nuclear-spin density

II. SCATTERING CROSS SECTION

A. Coherent and spin-dependent parts

The basic expression for the cross section for
scattering of neutrons from condensed 'He is the
same in the liquid and solid phases. Following the
development for liquid 'He, the differential scattering
cross section per unit outgoing solid angle 0 and
outgoing energy E is"""

dndE /r 4~ [k, ~

is the Qth Fourier component of this density in the a
direction and T(/) is the spin of nucleus I. The
St(Q, ro) is the same as the sum of the diagonal com-
ponents of the dynamic form factor describing the
scattering of neutrons from the spin magnetic mo-
rnents of electrons. If there are correlations among
the spins, St(Q, ~) does not necessarily satisfy the
f-sum rule. From the point of view of solids, 'He
has two new features. Firstly, the 'He nucleus has a

large absorption cross section for neutrons
(o, =11000 b at X„=4A). Hence absorption will
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be most important and will limit the temperatures ob-
tainable and the accuracy obtainable in any scattering
measurement. In the case of liquid 'He the correc-
tions necessary for absorption"' were carefully ap-

plied and experimental results for scattering only
were presented. %e will assume similar absorption
corrections will be applied for solid 'He and have
considered only scattering in (1). Secondly, there is
the spin-dependent component Sg(Q, ~) not present
in spinless systems such as He.

B. Spin-dependent scattering

When Sr(Q, &o) in (6) describes the magnetic
scattering of neutrons from electrons it is usual to as-

sume that the electron spin and atomic position ex-
pectation values can be evaluated independently.
This is because the electron-spin states are largely in-

dependent of the position of the nuclei. When I (t)
refers to nuclear spins in solid 'He it is not so clear
that the nuclear-spin values are independent of the
nuclear positions. This is particularly true since the
origin of the exchange interaction between neighbors
in solid 'He arises from the overlap of the nuclear vi-

brational wave function of one nucleus onto that of
its neighbors. Hence, in principle and at some level
of detail, the dynamics of the spins and the nuclei are
interdependent. Ho~ever, in all treatments of the
dynamics of nuclear motions (phonons) in solid 'He

to date, ' any coupling with the spin dynamics has
been ignored. Similarly, most treatments of spin
dynamics and evaluations of exchange ' ignore the
phonon dynamics. An example of an exception is

the work of Nosanow and Varma ' who introduced
an exchange operator and evaluated the operator in

the crystal phonon states to predict exchange con-
stants and spin transitions.

To separate the spin and nuclear dynamics in

S~(Q, ru) we recognize that there are two quite
separate time and energy scales involved. The pho-
non frequencies are —10' sec ' while the spin ex-
change constant is —10' sec '. This means that the
spin dynamics and spin-flip processes take place
—105 times slower than the nuclear dynamics.
Hence to study spin motion, the time scale needed is

so long from the point of view of nuclear motion that
we can approximate t by t = ~ in the nuclear posi-
tions r (i, r) in Sr(Q, &o). This means we need keep
only the elastic component of the nuclear scattering
when discussing the spin dynamics.

The same argument may be made more precise us-

ing an energy scale basis. The phonon energies are
—10—30 K—1—3 meV while the exchange energy is
—1 mK-0. 1 p,eV. %e can then consider two quite
separate energy transfer regions (tro) in Sr(Q, co). If
we study phonons we must transfer enough energy
from the neutron to the crystal to create a phonon,
i.e., 1 —3 meV. On this energy scale any changes in

the spin system or contributions from the spin
dynamics will be unobservably small. For practical
purposes we can evaluate the nuclear dynamics in-

dependently. Similarly, at low enough energy
transfers ( & 1 peV) to study the spin dynamics there
is not enough energy transferred to create (or ab-

sorb) a phonon. The energy transfer is sufficiently
small that we are in the elastic region (Ira& =0) so far
as the nuclear dynamics is concerned.

To formalize this separation of the spin and nu-

clear dynamics on the basis of differing energy
transfer scales, we extract the elastic nuclear com-
ponent

Sr(Q, ru)„= '~ dt e'"' $e px[i q R(i0)]d (Q) X(I (i, t)I (0, 0))
I tx

(8)

from (6), where d(Q) is the Debye-Wailer factor and R (i0) =R (i) —R (0) are lattice point positions. The
remaining inelastic part will require neutron energy transfers hco —10 —10', the exchange energy to excite, and
on this energy scale any contributions from coupling with the spin system will be unobservable. Hence, when en-

ergy transfers large enough to excite and study phonons are used, the nuclear expectation values can be evaluat-
ed independently of the spin states for all practical purposes and

S&(Q, «&) = „dt e' ' g(exp[ —iQ r (it)]exp[iQ r (i', 0)])$(I (/r)I, (l', 0))
2m ~

This argument is not quite exact for multiphonon ex-
citations which can have contributions at ~ =0, but
again for practical purposes this will be unimportant.
This separation should be valid for all spin phases of
solid 'He and when we wish to study spin dynamics,
where the energy transfer will be —10 4—10 ' the
one-phonon energy, we can approximate the space

expectation value by its elastic part and use (8).
For paramagnetic 'He ( T & 2 mK)

(I (i, t)I (i', 0)) = 31(I+1)5„i (10)

That is, the expectation value is independent of time
and direction. In this simple case S~(Q, cu) reduces
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to the usual incoherent result for phonons

St(Q, cu) = J dt e'"'(exp[ —iQ r (t)]exp[iQ r (0)])2n.

This St(Q, cu) will be valid for all energy transfers ex-
cept for f~ &1 p,eV at Tnear 2 mK, where spin
correlations will become important and observable.
The St(Q, cu) in (11) now satisfies the f-sum rule.

present calculation we include only the interference
between the one- and two-phonon scattering
processes so that

S~(Q, cu) = St(Q, cu) + S)2(Q, cu)

III. DYNAMIC FORM FACTORS

A. Coherent part

S,(Q, cu) = d(Q —q) $[F(Q, pic)]'
2m

x [n(cu) +1]A (qic, c»)

To evaluate S,(Q, cu) we expand it in terms of
scattering from single phonons, pairs of phonons and
so on in the usual way, ""

is the pure one-phonon part and S~2(Q, cu) is the in-

terference term documented elsewhere. " '~ ""In
St(Q, cu),

Sc(Q, cu) =So(Q) +St,(Q, cu)

+Sp(Q, cu) +S3(Q, cu) +. . . . (12)
F(Q, qIc) =d(g)

2m cu

1/2

(Q e,D

Here So(Q) = Xd'( g) A(Q) 5(cu) is the elastic scatter-
ing component and S~(Q, cu) describes the scattering
in which one phonon is created or destroyed. This
includes possible interference processes between
one-phonon and multiphonon scattering. In the

is the structure factor, where co~& and ~~& are the fre-
quency and polarization of phonon having wave vec-
tor q and branch X created in the scattering, n (cu) is
the Bose function and m is the 'He atomic mass.
The A (q X, cu) is the one-phonon response function,

A(qic, cu) =gcu,'„I (qIc, )/cu[[ cu'+c—uq'), +2c», )d(qa, cu)]'+[ 2cu)I(qic, c»)']'} (16)

and 5 and I' are the phonon frequency shift and inverse lifetime due to anharmonic terms. The A (q X, cu) is ap-

proximately a Lorentzian function and the position of its peak is usually taken as the one-phonon frequency.
For harmoniclike phonons having infinite lifetime the two-phonon scatter1ng component is

S2(Q, ~) = X [~(Q, I ) ]'[F(Q, 2) ]'[n (~) +I]J(1,2, ~) &(Q —q t
—q2),

1,2

fOOO focs

cuq), = Jl dcu c»St(Q, c») l dc» Sc(Q, c») (18)

for each phonon q A, . This en~& represents the fre-

where J(1,2, cu) is the two-phonon density of states
and l = q1X1.

The expansion (12) implies a phonon model and to
evaluate S,(Q, c») we need a single phonon frequency
so~& which best represents the anharmonic phonons in
solid 3He. To obtain this frequency we first calculate

Sc(Q, cu) using the self-consistent harmonic (SCH)
frequencies of Glyde and Khanna2 with 4 and I in

(16) given by the cubic anharmonic term. The
resulting S~ ( and S~ and Sq) is shown in Fig. 1.
From St(Q, c») we define, following Horner, c3 a
mean one-phonon frequency,

quency of a harmoniclike approximation to the
anharmonic S~(Q, cu). This definition is identical to
imposing a harmoniclike form on A (q h. , cu),

A (qic, cu) =2m[8(cu —cu, ),) —5(cu+cu, g)]

at T =0 K [and at finite T if the integrations in (18)
are restricted to run from 0 to ~]. The c», & lie some-
what above the positions of the main peak in

S~(Q, cu) because the S~(Q, cu) usually has a tail ex-
tending up to high frequencies. The eo, & are com-
pared with the peak positions of S~(Q, cu), denoted
the SCH+C frequencies, in Fig. 2.

Having obtained the so~~ we use these frequencies
as the intermediate propagator frequencies
throughout the calculation of S,(Q, cu). We believe
these co~& are the frequencies most representative of
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solid 'He short of a fully iterative calculation includ-
the honon linewidths. %C do, however, want&ng e p

t a roxi-S~(Q, cu) calculated using the &o, & to peak at app
mately the original SCH+C frequency. This means
the 4(q X, cu) in (16), calculated using the co~~,

s ouhould be zero when cu = ~,&. To achieve this we
use

50(q X, ru) = h(q Z, co) —A(q X, cu, „)

in (16). This 40(qi, cu) will have zero net value
when co = so~&, but wi11 have the correct frequency

a ator nccdcddependence appropriate to the ~~& propaga or n
to preserve the Ambegaokar, Conway, anand Baym
(ACB) and f-sum rules in S,(Q, ~) (see below).

FIG. 1. Components of the coherent dynanamic form factor
for the longitudinal phonon at Q = {2m/a) (0.7, 0, 0): S~(Q, ~),

S (Q &) the two-phonon part, are calcu-terference terms, and $2'~, ~,
lated using t ethe SCH frequencies as intermediate propagator
frequencies. e arro. Th rrows show the position of the corre-

c an thed' SCH frequency, the SCH+C frequency an t e
frequency ~&& defined by (18).
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FIG. 4. The square of the Debye-%aller facto,or d2( )
and the harmonic one-phonon S~ (Q) [proportional to
Q2d2(Q) ] predicted for bcc 3He at V =24 cm3/mole.
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this shows that the one-phonon component S~(Q, ca)
takes up a fraction d (Q) of the f-sum rule. In Fig.
4 we have plotted our calculation of d2(Q) made in
Sec. IV. At Q = 2 A ', which is just beyond the
edge of the first Brillouin zone, d2(Q) =0.1 and
S~(Q, co) takes up only 10% of the f-sum rule.
Clearly S~(Q, ru) makes up only a small part of
S,(Q, co) and higher terms S„(Q, cu) n & 3 in (12) will

be important. To evaluate these we have made the
incoherent approximation

p( —Q, O) =p, (—Q, O) =exp[iQ r (i, 0)]

[in (3)] for n & 3 and used the incoherent expression
(25) developed in Sec. IV. With the simple expres-
sion (25) for S„(Q, co) we can include enough terms
S„(Q,co), n & 3 (say 10—30) to catch all of S,(Q, ~)
and exhaust the f-sum rule (5) exactly. The in-
coherent approximation conserves the f-sum rule.

S. Incoherent part

The traditional way to evaluate St(Q, ru) in (11) for
an anharmonic solid is to expand it in terms of
scattering from phonons as for S,(Q, cu). This ex-
pansion is simple in the incoherent case since there
are no interference terms between the scattering from
different numbers of phonons, e.g. , between the
scattering that creates a single phonon and that which
creates many phonons. The interference terms van-
ish because there is no phonon wave vector selection
which requires that the phonon wave vector q equals
the scattering wave vector Q in incoherent scattering
[compare Eq. (14)1. A sum over equal numbers of
+ q values remains and since the interference terms
are odd functions of q their total contribution to
St(Q, ru) vanishes. On writing r =R+u, the expec-
tation value in (11) is

(exp[ —iQ u(t)]exp[iQ u(0)]) =exp[—([Q ~ u(0)])'}exp[([Q u(t)][Q u(0)1)), (20)

which is the simple harmonic result. This also intro-
duces the harmonic like approximation for the
Debye-%aller factor

d(Q) = (exp(iQ u) )

where &os =tQ'/2m is the recoil frequency and co

the maximum frequency 0)q& of the crystal. For con-
venience we also introduce the inverse first moment
of g(co),

=exp( ——,
'

([Q u]')) —= e ~ (21)
g(~)

cut —= J d~

To proceed, we approximate the dynamics by the
harmoniclike phonons having frequencies defined in
(18). Using the ACB sum rule (19) in the numera-
tor and (14) in the denominator of (18), (18) becomes

qZ =
[n(a)) + l]A (qZ, ru)

and the normalized density function

G ru

The function G(co) is displayed in Fig. 5 and

(22)

The general expression for the expectation values ap-
pearing in (20) such as

2 W = ([Q u (0)]')

N q) 2m coq)

[n (co) +1]A (q X, cu)
2m'

then reduce to harmonic form
'I

2 W =—X — (Q Fqg)& q), 2mo)q„

Using the coq& we can construct a density-of-
frequency state g(co) so that

4
U
0)

E
1

C9

0
0 F 00 0 ' 20 0. 40

(1Hz)

0.60

i m g(cu)2W=a)g Jl dru

FIG. 5. The normalized density function G(v) =g(v)/v
and the Gaussian approximation to it (smooth line) given by

{24). For v=1 THz, e=hv=4. 135 meV.
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v~=2m««1=3. 172 THz ' giving an equivalent Debye-Wailer temperature of How=(3t/2k)/roi =22.7 K, In terms
of col and G (co), 2 W = «&a ~1 and

foo

Sr(Q, u) =e '~ dte'"'exp 2' l~ de'G(ao')e '"'
2m

We now expand the exponential in SI(Q, co) to ob-
tain the zero-phonon (elastic), the one-phonon, two-
phonon component and so on,

Sl«(Q) =e 2+8(o))

Sit�(Q,

co) = e 2 ~2 8'G (o))

SI2(Q, cu) =e
2

(2$') J d«a' G(ru')G(«) —au')

(23)

To check the validity of this approximation we calcu-
lated SI3(Q, co) using the actual G(«a) and the
Gaussian approximation to it (24). The two

S13(Q, ««) are compared in Fig. 6. The comparison
shows there is enough folding over frequencies that
both the SI3(Q, cu) are of Gaussian form, but that the
o. we selected is somewhat too large.

To compute SI(Q, co) we then used

Sl(Q, cu) =SJo(Q) +SIt(Q, ~)
0

This series does not converge well at 0 & 2 A ' be-
cause 2 IV becomes lar[[e. To describe the higher or-
ders we approximate G(ru) by a Gaussian function

G (a)) = (u/n ) '~'exp[ —u(co —cup)'] (24)

Here ru« fixes the center of G(~) and u its width. It
is straightforward to show that if S~(Q, ru) is to satis-
fy the f-sum rule we must choose cu«=col '. The n is
chosen to give a best fit to G (co) and this fit is
shown in Fig. 5. The f-sum rule is independent of u
and SI(0) is independent of both u and «««. The nth
term of SI(Q, co) is then

+SI2(Q, ~)+ x Si, (Q, ~)
N~3

keeping enough terms that the series converged.
This Sq(Q, cu) exhausts the f-sum rule and

Jl du) SI(Q, o)) = SI(Q) = 1

IV. NUMERICAL RESULTS

A. Longitudinal phonons

(26)

SI„(Q,co) =e 2 (2W)"„(u/n)
n! m'

&& exp[ —u/n (ro —n coo) 2] (25)

Figure 7 shows S(Q, o&) for scattering wave vectors
Q =2m/a((, 0, 0) along [1001 direction. Two lines
are plotted, the full S(Q, e) in (2) and the one- and
two-phonon parts of the coherent scattering com-
ponent

o,/o [S,(Q, e) +S2(Q, e) ]

0 F 30

0 ' 20

O

CO

0 ~ 10(3

0 ~ 00
0

I

8

6 (mev)

FIG. 6. Three-phonon scattering component S3(Q, ei in

the incoherent approximation calculated; A using the density

function G(v) and Busing Gaussian approximation in (24)
to G(v) both shown in Fig. 5.

in (12). Each S(Q, e) is folded with a Gaussian
function of full width at half maximum (FWHM)
=0.30 meV to simulate a finite experimental instru-
ment energy resolution width. At low-0 values we
see that S(Q, e) is dominated by the one- and two-
phonon scattering parts and S~(Q, «) is clearly well
described by a Lorentzian function. For

~ Q ~
& 0.8

A, ', S~(Q, e) becomes a broader, flatter, and more
irregular function and the incoherent and multipho-
non scattering contributions to S(Q, e) become rela-
tively more important. The wavey form of the total
S(Q, e) in the energy region e = I —3 MeV comes
from the density-of-phonon states appearing in the
incoherent component. The sharp increase at e =0
is the elastic, incoherent scattering. Clearly, well-
defined single-phonon energies are observable at
small wave vectors near the first Brillouin zone
center only.

Figures 8 and 9 show similar plots of S (Q, e) for Q



(o.z,o,o)
IQl=QPg

0 ~ l 8.
(0.4,0,o)

IQl=0.QB

0 ~ 12

0 ~ 06

0 ~ 00
0

0 ~ QQ

0

(0.6,0,0 )

IQI = 0.88
(os,o,o)

lQI= I. l7

0.06 Q. Q6

0.QQ

0
0 ~ 00.

0

0 ~ 06

0.00
0

(meV }

~~+~ ~

longitudinal phonons along thc lloyd d;r 3
' ~ ' 2 ~ ~~ of,t"c cob«cnt Part Gower linc) for

&&CCtlOI1 lIi bing Ht, gg +=24 g~3/mo( . ~g(



0 ~ 16.
(0.I,0.I,O)

I Q I =0.2 I

0 ~ 1 E.
(o.o,o.~,o)

IQ I =0.83

F 12 0 ~ 12

0.0 0 ~ OC.

0 ~ 0

I

o. o 0 ~ 8 1 ~ 6 2 ' 4
0 ' OC

o

0 ~ EG

(O.Z, O.2,0)

I Q I =0.4I
0 ' EE

(o.s,o.s,o)

IQI = I.O3

0 ~ 1 2. F 12

E

0 ~ 06 0 ~ OC

0 ~ OC

o. o 0 ~ 8 2 ~ 4 3 ~ 2
I

4. 0
0 ~ OC

0, 18.
(o.3,o.3,o)

I Q I = 0.62
0 ~ 1 h.

(o.6,o.e,o)

IQI = l, 23

0 ' l2 0. 12.

0 ~ 06. 0 ~ OC.

O. OC

o
0 ' OC

I

o



H. R. CyLYDE AND S. I. HERNADI

0 ~ 18.
(0.7,07,0)

IQ I
= I.45

0. 40.
(I.2, I.2,0)

IQI =2.48

0. 12

0 2C

(os,oe,o)

IQ I
= 1,86

0, 4

0 ~ 0

10 o

(I. I, I. I,O)

IQI =2.27

I

0 ~ 18
( I.O, I.4,O)

IQ I = 2.89

0 8
0. 12

0 ~ 4

0 ' 0
o

I

10
J-

8 12 16

6 (meV)

FIG. 9. As Fig. 8.



25 NEUTRON SCATTERING FROM PARAMAGNETIC bcc 3He 4797

re
II

(0
o

(0
II

(0

CO0
0

0
0

0 00
0

000
0

0
0

I I I I I I 0 00
0

CO0 0 00
0

CO

o
COo
o

0
II

0

0
OJ

II

OJ

C
O

~~
tD

e

CU

0 0
CO0
0

OO0
0 0 0

CO0
0

000
CO &D

0
000

\0

N

N

OJ

o

ct0 0
o
0

N

o
o

QO

0 0
0 00

I

CO

0
&D0

C0
0 00
0 0 0

CO0
0

0 00
0



4798 DE AND S. I. HERNADI

0 60-
(02, 1.0, 1.0)

Qi =P.OB O 18

0. 40

p. 12

p. 20
p. 06

p. 00
0 2

p. oo
0

0. 18

p. 12

p. 06

O. pp
0

(0810,1 0)
tot =~ ~4 p. lB

O. 12

p. 06

p. op
0

(08, 1.0, 1.0)

IQt =2.~7

0. 18

p. 12

0.06

0.00
0

(me~)

d t g ={2~/a)((, 1, 1), )=02-' .) f tragsvcrst: phFIQ, 11. T ~ g (g &) prcdN:ted»



NEUTRON SCATTERING FROM PARAMAGNETIC bcc 3He 4799

along the [110]direction. Again we see a well-

defined one-phonon scattering contribution for
IQ I

& 0.8 A ', but at higher I Q I the one-phonon
scattering becomes diffuse with no well-defined single
peak. In the region of the first Bragg point (1,1,0)
along this direction, ~here the one-phonon frequency
is small, the one-phonon scattering intensity again
dominates and S(Q, a) is collected into a sharply
peaked function. At IQI & 2.5 A ', multiphonon
scattering in both the coherent and incoherent parts
is beginning to dominate S(Q, e). Figure 10 shows a
similar plot of S(Q, e) for Q along the [111]direc-
tion. This displays clearly that for I Q I 3.0 A '

scattering from multiples of phonons dominates
S(Q, a) and the crystal responds much like a gas of
weakly interacting, classical He atoms.

8. Transverse phonons

Figure 11 displays S(Q, a) for scattering wave vec-
tors Q = (2rr/a) (f, 1, 1) in which the transverse pho-
non having reduced wave vector q =2m/a ($, 0, 0) is
excited. These calculations suggest that only for
g «0.4 will a well-defined one-phonon component be
observed in this region of scattering wave-vector
space. At Q=(2n/a)(0. 8, 1, 1) what iooks like a
well-defined one-phonon peak is actually a peak in

S2(Q, ~). Figure 12 shows similar plots of S(Q, a)
for scattering wave vectors Q = (2n/a) (2.f, (, 0) in
which the transverse phonon along the [110] direc-
tion (shown in the dispersion curves in Fig. 2) is ex-
cited. Again, only for small values of $ is a clearly
distinguishable one-phonon component apparent.
The limited study in Figs. 11 and 12 suggests that
scattering from transverse phonons may be difficult
to observe because multiphonon scattering dominates
at relatively small-Q values. There may, however, be
better places in reciprocal space to observe transverse
phonons than investigated here.

C. Single-particlelilt:e behavior

As noted, especially in Fig. 10, at
I Q I

) 2.5 A '

solid 3He responds like a gas of weakly interacting
"single particles. " The caiculated S(Q, a) shows a
broad Gaussian shape having a maximum at approxi-
mately the recoil energy es =t2Q2/2m, the form ex-
pected for scattering from nearly free nuclei. To
display this character we have plotted in Fig. 13, as a
solid line, the position of the maximum of S(Q, a)
and the position of one half the peak height on each
side of the maximum, for Q along the [111]direc-
tion. This shows that for Q )2.5 A ' the maximum
lies close to the recoil energy as =& Q'/2~. The os-
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FIG. 12. As Fig. 11 for transverse phonons along Q = (2m ja) (2.g, (, 0), (=0.2 —0.5.
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V. DISCUSSION

A. Interference and comparison
with solid ~He

FIG. 13. The three solid lines show the position of the
maximum (M} of S (Q, e) and the position at which
S(Q, ~) drops to one half its maximum value on each side

1of the maximum ( 2 M), as a function of Q. The upper

dashed line sho~s the recoil energy E& =0'2Q /2m awhile the
lower shows the one-phonon dispersion curve.

bcc He

([ [o]

! l l l I I

bcc 'He

0.5-

cillating dashed line sho~s the dispersion curve ex-
pected for scattering from single phonons only and
coincides with the maximum of S(Q, «) only for
0 ( 0.8 A '. Similar results are obtained for the
[100] and [110]directions.

For solid 4He, Horner obtained similar results at
high g using a self-consistent phonon theory as did
Scars" using a continued-fraction approach usually

applied to liquids. It is interesting that a multipho-
non scattering picture looks identical to a nearly-
free-particle scattering model.

In Fig. 14 we plot S,(Q) for the Q along the [110]
and [111]directions. The S(Q) along [110]has the
familiar divergence expected in crystals at the Bragg
point (110). However, along [ill] the first Bragi'
point does not occur until (222) where !g! = 5 A '.
At these large 0 values S(Q, «) is entirely dominated
by multiphonon or single-frce-particlelike scattering
and S(0) does not show a divergence at the Bragg
point (222) expected in crystals.

which includes the one- and two-phonon interference
contribution for the longitudinal phonon at
Q = (2n/a) (0.7, 0, 0). We see that including the in-
terference term makes S~(Q, «) peak at a much
higher frequency leading to an apparently much
higher one-phonon frequency. This effect can bc
seen in thc data of Osgood et a1., shown in Fig. 16.
They determined the apparent onc-phonon frequen-
cies from the peak position in the scattering intensity.
The peak positions for longitudinal phonons along
the [100] direction lie well above the values predicted
by the SCH+C theory and well above that expected
for one-phon. on frequencies from a comparison with
other symmetry directions. %e believe the apparent-
ly large values observed for the one-phonon frequen-
cies along the [100] direction is due to an interfer-
ence effect. A comparison of Fig. 16 and Fig. 2 also
shows the significant difference in S~(Q, «) computed
using the SCH frequencies ~~& as intermediate propa-
gator frequencies (Fig. 2) and the frequencies co, &

S, (a, e) Q= (—) (o.7, o,o)
LONG,

E
025-

Ol

fC

LL

4)

CO

C4

The S,(Q, «) presented in Sec. IV contains sub-
stantial contributions from interference between the
one- and two-phonon processes. These contributions
can be best illustrated in combination with a compar-
ison of the S(Q, «) for solid 'He and measurements'6
of neutron scattering from solid ~He. In Fig. 15 we
compare the pure one-phonon scattering component
S~(Q, «) with the full one-phonon term

S (Q, «) =S)(Q, «) +St2(Q, «)

0—
0

(l la}

a {k)
'o

(22P}

I I I I I

2 6
a {A')

FIG. 14. The coherent static structure factor along the
f1101 and t111) directions predicted for bcc He at V =24
cm3/mole.

FIG. 15. The components of the coherent dynamic form
factor (as in Fig. 2) calculated using the co&„ frequencies as
intermediate propagator frequencies,
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FIG. 16. The apparent one-phonon frequencies observed
by Osgood et al. and the predicted one-phonon frequencies
in the SCH and SCH+C approximations by Glyde and

Khanna for bcc 4He.
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given by the mean position of S~(Q, co) for each qX
as the intermediate propagator frequencies (Fig. 16).

The effect of interference is further displayed in

Figs. 17 and 18. The upper part of Fig. 17 shows the
coherent S,(Q, co) calculated for the longitudinal pho-
nons at Q = (2m/a) (0.5, 0, 0) and Q = (2m /a)

Q7

cF 0+
U)

0.2-

0.2 04 0.6 0.8
ENERGY {meV)

1.0

O.I5-
I I

bcc 'He

(1.5,o,o)
(o.s,o,o)

FIG. 18. The coherent S,(Q, e) of longitudinal phonons

predicted by bcc He (lower figure) and the scattering inten-

sity observed from bcc 4He by Minkiewicz et al.
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FIG. 17. The coherent S,(Q, ~) of longitudinal phonons

predicted for solid He (upper figure) compared with the

scattering intensity observed from solid 4He by Osgood et al.

x (1.5, 0, 0) in bcc 'He. Without interference these
two S,(Q, rv) would peak at the same frequency and
would be of approximately the same magnitude [see
plot of Q'd'(Q) in Fig. 4]. The lower part of Fig. 17
shows the scattering intensity observed by Osgood
et al. at the same two wave vectors in bcc He. The
observed intensity clearly shows the interference con-
tributions, as first pointed out by Horner. ' The pho-
non linewidths are marginally broader in solid 'He
than in solid 4He. Figure 18 shows a further intensi-
ty contribution from interference as calculated in bcc
He and observed by Minkiewicz et al. in bcc He.

Without interference we expect the one-phonon in-

tensity shown in Fig. 18 to be greater at point B than
at point A.

B. Comparison with liquid 3He

The magnitude of S(Q, e) predicted here for solid
'He at V =24 cm'/mole (Figs. 7—12) is between 2 to
4 times smaller than that observed in liquid 'He at
saturated vapor pressure (SVP). ' If the present cal-
culations are correct this means neutron scattering
from solid 3He will be even more difficult to observe
than from liquid 3He at SVP. The smaller size of
S(Q, e) in the solid can be understood on the basis
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of the f-sum rule. The longitudinal phonon energies
predicted here are two to three times greater than the
zero sound mode energy at SVP. '2 The f-sum rule
will therefore require the coherent part of S(Q, co) to
be two to three times smaller at a given scattering
vector Q. Only the coherent part of the scattering sa-

tisfies the f-sum rule in the liquid.
A calculation of S(Q, e) in the liquid using the

Landau parameters to describe the effective He
quasiparticle-quasihole interaction suggests the zero
sound mode energy in liquid 'He under 30-atm pres-
sure is comparable to the longitudinal phonon energy
in solid He shown in Fig. 3. If these calculations are
correct the collective excitation energies in the liquid
and solid are roughly the same near the melting line.

The S(Q, e) for liquid 'He near the solidification
curve is also predicted to fall to the magnitude
predicted here for solid He near melting. Thus,
although the models used to describe the solid and
the liquid are quite different, S(Q, e) is predicted to
be very similar in each near melting with the phonon
groups being predicted to be somewhat sharper than
the zero sound mode peak.
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