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With the inclusion of the effects of interface capillary waves, the lower critical dimen-

sion has recently been shown to be 3. This paper contains a detailed derivation of the in-

terface model, with the use of the replica method. Based on this model we then present a

detailed discussion of a renormalization-group calculation in d =3+@dimensions.

I. INTRODUCTION

Critical behavior of systems with random impur-
ities has been a subject of considerable interest in
recent years. In certain cases the presence of im-

purities may result in a random field which is cou-
pled linearly to the order parameter. Such a cou-
pling is present in charge-density-wave systems,
where impurities introduce a pinning potential. It
has also been shown that by applying a magnetic
field to antiferromagnetic systems with (magnetic
as well as nonmagnetic) impurities, one induces a
random field. ' Such a field affects the critical
behavior of the system rather drastically. It
changes the upper critical dimension from d„=4
for the pure system to d„=6. Moreover, the criti-
cal behavior of the pure system in d =4—e dimen-
sions is expected to be the same as that of the ran-
dom system in d =6—e dimensions. This corre-
spondence has been demonstrated to all orders in
pertubation theory, first by carrying out a di-

agramatic expansion and then by exploiting the
supersymmetry of the model. Using domain-wall

energy arguments, it has been shown by Imry and
Maz that for isotropic systems with m & 2-

component order parameter, the random field de-

stroys long-range order for d & 4, while for Ising-
like systems, long-range order is destroyed for
d & 2. It is therefore clear from this argument that

the lower critical dimension di satisfies di (m & 2)
&4, and di (I =1) &2. Renormalization-group
studies show that di (m & 2) is, in fact, equal to 4.
The critical behavior in d =4+ e dimensions was

found to be the same as that of the pure system in

d =2+a dimensions. This result suggests that the
dimensionality shift by 2, obtained by perturbation

expansion near d =6, may hold down to the lower

critical dimension. In this case the lower critical

dimension of the Ising model should be di (m =1)
=3 and not 2, as suggested by the Imry-Ma argu-

ment.
Unfortunately, one cannot extend the renor-

malization-group (RG) studies near the lower criti-
cal dimension for m )2 model to include the Ising
case. These studies use the continuous symmetry
of the m & 2-component models and the spin-wave

excitations associated with it. Such excitations do
not exist in the Ising model. In a recent letter
Wallace and Zia have argued that capillary waves

which describe large-distance deviations from the
planar of an essentially sharp interface can be in-

terpreted as the Goldstone modes whose fluctua-

tions lower the critical temperature to zero as
d —+1+. The capillary interface waves therefore

play the same role for a system with discrete sym-

metry as spin waves for a system with continuous
internal symmetry. A RG calculation was carried
out in d =1+@with T, -e, showing that the lower
critical dimension is 1 for the discrete Ising model.

Using these ideas, Pytte, Imry, and Mukamel
have constructed an interface model associated
with the Ising model in a random field. RG stu-
dies of this model show that the lower critical di-

mension is indeed di (m =1)=3. It was also
found that the critical exponent v in d =3+@di-

mensions is equal, to first order in e, to that of the
pure Ising model in d =1+@dimensions, suggest-
ing that the dimensionality shift by 2 holds even
for the Ising model. An important assumption in
this analysis is that the interface model is invariant
under both translations and rotations. This study
may therefore be applied for an Ising model on a
discrete lattice only if the interface associated with
this model is rough, at low temperatures. For the
pure Ising model the roughening transition occurs
at T~ ——0 for d & 2 dimensions. It has been shown6
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that a random field results in a dimensionality
shift by 2 for the roughening transition, and hence
one expects that T& ——0 for d &4. This makes it
possible to carry out the e expansion calculations
in d =3+@dimensions.

In a recent paper, Binder, Imry, and Pytte
presented qualitative arguments which also support
the idea that the lower critical dimension is 3.
They expanded the domain argument of Imry and
Ma by considering the domain-wall free energy and
exploiting the fact that the domain mall is rough in
three dimensions in the presence of the random
field.

In this paper we present a detailed study of the
interface model associated with the Ising model in
a random field. %e first use symmetry arguments
to construct the model. The critical behavior of
this model is then studied using an e expansion
calculation in d =3+@dimensions.

II. THE INTERFACE MODEI.

In this section we derive the interface Hamil-
tonian associated with the Ising model in a random
field. For clarity and completeness we first consid-
er the Hamiltonian corresponding to the pure Ising
model.

Let Mo(z) be a function which describes an in-

terface perpendicular to the z axis. It satisfies

M, (z=+~)=+1.
This function may, for example, be obtained by
solving an n =1-component Landau-Ginxburg-
Wilson (LGW) model with the appropriate boun-

dary conditions. Consider now an interface, M(F)
defined by

M(r)=MD(a. (r —t )),
where a and t are constant vectors, with a a=1.
The interface M(r ) is obtained from Mo(z) by ap-

plying a translation and a rotation, defined by the
vectors t and a, respectively. Since the Ising
model under consideration is assumed to be invari-
ant under both translations and rotations, the two
interfaces M( r ) and Ms(z) have the same energy
per unit area. The low-lying excitations associated
with Mo(z) may therefore be obtained by consider-

ing interfaces M(r) with a and t being slowly
varying functions of r.

Let F[M ( r ) } be the energy density associated
with the interface M(r ). In general, F may
depend on M(r ) and its derivatives. Rotational

and translational invariance ensure that F does not
depend explicitly on a and t . The interface ener-

gy is given by

E= J d~rF[M(r)} .

%e now derive the interface Hamiltoni3n by
rewriting Eq. (3) as

E=Jd 'xA(a, t),
8 (a, t )=J dzFtMO(a. (r t ))}—,

and evaluating the integral in Eq. (5). Here
r =(x,, . . . , x~ „z). In the following we assume
that a and t are independent of r. Only at the
end of the calculation do we allow a and t to be
slowly varying functions of r. It is clear, since F
is not an explicit function of t, that the integral in
Eq. (5) is independent of t . We may therefore
take t =0 in Eq. (4), which is equivalent to shift-
ing the origin of the coordinate system to r = t .
Hence, we consider the energy

E=Jd' 'x J-dzF[M, (a r)}.

a =z cosO —a&sin0,

where z and a& are two unit vectors parallel and
perpendicular to the z axis, respectively. %e now
introduce a new coordinate system ro (see Fig. 1)
whose zp axis is parallel to a. Let R be a rotation
which transforms r into rp, namely

rp ——~r
This transformation satisfies

zp ——Ra .

In this coordinate system the energy Eq. (6) takes
the form

FIG. 1. Coordinate systems used to derive the inter-
face model for the pure Ising model.
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(10)E =f d xp f dzpF[Mp(zp)J.

The integral dzpE Mp zp is a constant =c,
independent of a and t. We therefore have

E=cf d' 'x-,

field. By replicating the partition function and

averaging over the random field one obtains the

following effective Hamiltonian:

0 J " e a0 0'

or equivalently,

E =c d~-'x dZ

dZp

To calculate dz/dzp we note that

zp =a r =z cos8 —(a i
.r ) sin8 .

Hence,

cos0

and therefore,

E=cf d' 'x-
cosH

(12)

(14)

(15)

CT CT

aP=1 i
(21)

where as usual, a and P are replica indices and

b o: {b;). This Hamiltonian consists of a sum of
n,d-dimensional Ising models coupled via the 6
term. The coupling between different replicas re-

sults from the randomness. The interface model

associated with Eq. (21) may therefore be derived

by considering the energy associated with n inter-

faces M~(r), a= 1, . . . , n corresponding to the n

replicas. We consider first the energy associated
with two interacting interfaces M ( r } and Mp(r ).
By analogy with the previous derivation we take

To complete our derivation we introduce the inter-

face variable f(x), which gives the position of the

center of the interface along the z axis. Here x is

a (d —1)-dimensional vector, perpendicular to z.

Using Eq. (7) we find

M(r)=Mp(a r)

(22)

(23)

M~(r) =Mp(a .(r —t, )),
Mp(r)=Mp(b (r —ts)),

—+

where a, t ~, b, and t ~ are vectors, and where a
and b satisfy a a=b .b= l. .The energy associated
with the two interfaces can be written in the form

= Mp( cos8(z —a i
' r tang) ) (16) E=f d 'x f dzF[M~(r);M&(r)], (24)

f(x)=(ai r) tan8.

We therefore have

(17)

This enables us to identify the interface variable

f(x) as

where again, due to rotational and translational in-

variance the energy density F does not depend ex-

plicitly on a, 6, t„and t b. For simplicitly, we

present the derivation of the interface model for
d =2. The model may then be generalized to an

arbitrary dimension. Let

Vf ( x ) = a i tan8, (18} a =z cos8 —x sin8 (25)

ol'

(19)1

[1+(Vf) ]

Equation (19) together with (15) yields the follow-

ing effective interface Hamiltonian:

(26)b =z cos0p —x sin8~ .

Assuming that a and b are not parallel to each
other, the two interfaces intersect at some point in

the xz plane. Taking this point at the origin of the
coordinate system, the vectors t, and t ~ are
eliminated fmm Eq. (24) and the energy is given

by

E=f dx f dzF[Mp(a r);Mp(b r) j . (27)

which is the model studied by Wallace and Zia.
Although this result can be obtained more simply,

this derivation can be readily generalized to treat
random systems.

We now consider the Ising model in a random

Following the derivation for the Pure Ising model
we introduce a rotation R along an axis perpendic-
ular to the xz plane, to a new coordinate system rp
whose zp axis is parallel to a [see Eqs. (8) and (9)
and Fig 2]. The transformation 8 satisfies
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Rb =zocos(Hp —8 ) —xesin (Hp —8~) .

In this coordinate system, the energy takes the form

{28)

(30)

E =I dxo JdzeEIMo(zo);Me(cos(Hp —8~)[zo —xotan(Hp —8~)]}J . (29

The integral Idzo~ is a function of the two arguments which appear in M namely cos(Hp —Ha) and

xo tan(Hp —HN). The energy E may therefore be written in the form

E =I dxogIcos(Hp —8 );xotan(Hp —8 )J,
where g is an arbitrary function. I.et f (xo) and fp(xo) be the a- and P-interface variables, respectively, in
the Ro coordinate system. They give the position of the center of the interface along the zo axis. It is clear
(see Fig. 2) that

f p(xo)=f (xo)—fp(xo)=xotan(Hp —8 ) . (31)

E=I dxog Icos(Hp 8);f—p(xe)( . (32)

(33)

To complete the derivation we rewrite Eq. (32} in terms of x and f~p(x) rather than xo and f~p. It is easy
to verify (see Fig. 2) that f p(x) is related to f p(xo) via

f p(x)cosHp ——fap(xo)cos(Hp —8 ) .

Equation (33), together with the fact that dxe ——dx/cosH, finally yields
r

cosHpE=I dx g cos(Hp —8 );f,p(x)
COSH~ cos Hp —8~

(34)

E=I dx gIcos(Hp —8 );f p(x)cosHp],
COSO

(35)

where cosH, p= II[I+(Vf p) ]'~ . The function g is defined by Bqs. (34) and (35). It ts easy to generalize

this derivation for arbitrary d. The result is

E=Jd" 'x gI(a b);f p{x)(b z)I .(o.z)

TO COIP1CtC OQr dCAVRtlOQ %'C CXPICSS Q RQd & IQ
terms of the interface variables f ( x) and fp(x).
We have

o =(o i~ ~ ~ ~ ~ &d 1&~s)—
, I)

[I + ( Vf )2]1/2

b=(b), . . . , bg i,b~)

=(V, l
1

[I (V )']'" (38)

l+Vf 'Vfp

Il+(Vf ) ][I+{Vfp)]I
(39) FIG. 2. Coordinate systems used to derive the inter-

face energy for two domain walls n and P for the
random-field Ising mcKiel.
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1

[ 1 +(Vf )2]1/2
(40)

However, this is not necessary since in the end we
sum over a and P.

The energy Eq. (36) may be simplified by noting
that Eq. (33) which relates f~p(x) to f~p(xo) is
correct only for planar interfaces, namely, if a and
b are r independent. In deriving this equation
terms of the order of [(d/dx) tan8~]f~p or
[(d/dx) tan8p]f~p have been neglected. This is
equivalent to neglecting all terms of the form

I1(Vf +Vfp,f p)(Vf Vfp),—

where h is an arbitrary function of (Vf~+Vfp)
and f~p. These terms (see Sec. III) turn out to be
irrelevant under RG transformations.

Since [see Eqs. (39) and (40)]

a b =1+0(Vf Vfp)— (41)

and

(42)

Xg
[1 + (Vf )2]1/2

(43)

where g(u) is an arbitrary function of u. Expand-
ing g(u) in powers of u, we find that the interac-
tion between the two interfaces a and P is
governed by the Hamiltonian,

H;„,(f,fp)=—g I d

m [1+(Vf )2]1/2 —m

4 T'

t

b .z =a .z+0(Vf Vfp), —

we may replace a b by 1 and b z by a z in the en-

ergy expression Eq. (36). Hence,

E —I d —x[1+(Vf )2] /

T

III. RENORMALIZATION-GROUP
CALCULATIONS

In this section we study the critical behavior of
the model (45) with (44) using RG calculations in
d =3+a dimensions. In order to carry out this
study, we expand the terms [1+(Vf~) ]'/ and

[I+(Vf~) ] ' in powers of (Vf~) . The qua-
dratic term in Eq. (45),

(46)

6 p(q)= 5 p+ (47)

We may then use a diagramatic expansion in T
and 5 to renormalize the Hamiltonian in
d =3+@dimensions. Since the model described
has certain symmetry properties (namely, it is in-
variant under translations and rotations) one ex-
pects the renormalized Hamiltonian to be of the
same form as the original one, but with renormal-
ized T and 6 . We may thus study the recursion
relations of T, 6&, h2, etc., by renormalizing the
terms (Vf ), f~p, and f~p, respectively In con-.

structing the recursion relations we notice that the
following two rules are satisfied: (a) b does not
contribute to the recursion relations of 5 ~ with
m' & m to leading order in e, and (b) b,m contri-
butes to the recursion relation of 6 t via the
product (6 P. The parameters which enter into
the recursion relations are therefore (b,m

Tm ')
rather than A~. The recursion relations take the
foHI1

2T ~(Vf-)". ~f-''
a T a,p

yields the following propagator in the limit n~0:

2m
Xf~p . (44)

In deriving Eq. (44) we have used the fact that
g(u) is an even function u. Am are arbitrary
parameters satisfying bm —(b; }. The effective in-
terface Hamiltonian associated with the replica
model Eq. (21) is finally given by

n

H= —g I d '
[x1

—
+( fV~) ]'2/

T T

dT
dl

dA

dl

Tm —1)

dl

Fb.1+ , E251+12—K2(b 2—T),

= —( —,m —1)e(h T™1)

+O((& ~1T );(& T ')'),

1= —(d —1)T + , K261T, — (48)

(49)

1+ g TH.1(f fp).
n, P=1

(45)

Equations (35) and (44) should, strictly speaking,
have been written in a form symmetric in a and P.

(50)
for m )2 where Eq ——1/2m. is a phase-space in-
tegration constant. In order to verify that the re-
normalized Hamiltonian is of the same form as the
original model we derived the recursion relations
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for T and h, 1 also by renormalizing the terms
(Vf ) and (Vf~) f~p, respectively. We find the
same recursion relations (48) and (49) as obtained

by renormalizing (Vf~) and f p. These recursion

relations have two fixed points, (a),

T*=O, (a T -')*=0, (51)

and (b),

~a=
E2

(Q T~ ')~=0, m)2. (52)

For d & 3 the fixed point (a) has the relevant opera-

The fixed point (a) is a fully stable one, w»1«he
fixed point (b) has one relevant operator, b, i, whose

critical exponent satisfies A, =e. Identifying 1/A,

with the critical exponent v for the correlation

length we finally obtain

1v= —+0(1)

1—H=h—(Vf +Vfp,f p)(Vf V'fp)'—, (54)

where h is a function of its two arguments and
I & 1. In the following we show that these terms
are strongly irrelevant and that they do not contri-
bute to the recursion relations of T and 5 . Ex-
panding h in powers of (V'f +Vfp) and f p, one
has

tor with a critical exponent v= 1/(3 —d).
the correlation length of the interface model
behaves as g=(1/b )'~, g= 1/b„and g=e'~ in
one, two, and three dimensions, respectively.

This calculation on the random-field interface
model demonstrates that if it is assumed that the
Ising model disorders by breaking up into domains,
then the lower critical dimension for the Ising
model is 3. In any case, it is a lower bound on the
lower critical dimension, di & 3.

By renormalizing the Hamiltonian one generates
terms which have been neglected in the derivation
of the model Eq. (45). These terms have the form,

1 — 1

p ~0, 1(Vf Vf p )'+, &0,2—(Vf Vfp)"+ —;60 3[(V'f—,)' —(Vfp)']'+
1+ T, ~i, i(Vf Vfp)'fop+—, ~i,2(Vf Vfp)'f'p+—

hence, these terms are strongly irrelevant. It is

also easy to verify that the recursion relations for
b,k ~ satisfy similar rules to those obeyed by b,

namely, (a) b,k~ does not contribute to b,i, z with
k') k, and (b) bk,z contributes to b,k, z only via
the product (b,k~T). The parameters which appear
in the recursion relations are therefore (5k &

Tk)

(rather than hk&). We find that to leading order
ln 6,

(hk p T )= —2(hk—~ T ), k ) 1 (57)

demonstrating that all the parameters 6k~ are
strongly irrelevant. %e have also checked that the

where the parameter 6k~ is associated with a term
which contains f~p. The various b,k~ terms are
generated by renormalizing the Hamiltonian (45).
Consider now the recursion relations for ho&. It is

easy to verify that to leading order in e,

dip p'= —za,

parameters 5k~ do not contribute to the recursion
relations of 6 . These terms may therefore be
neglected.

The results presented in Ref. 6 were based on
a Hamiltonian of the form given by Eq. (45).
However, for m =1 the higher-order terms in
(V'f )2, obtained by expanding the square root
[1+(Vf )2]'~2 in Eq. (44) were, incorrectly, as-

sumed to be irrelevant as noted in Ref. 9. +s a
consequence some of the coefficients of the recur-
sion relations in Eqs. (48) and (49) for T and b, i

differed by a numerical factor from the recursion
relations given above. The critical exponent v ob-
tained remains unchanged as does, of course, the
conclusion that 3 is the lower critical dimension.
The suggestions tha, t the replica method may not
be reliable, and that our Hamiltonian is not con-
sistently renormalizable are not correct.

Recently an effective interface energy for the Is-
ing model in a random field has been obtained by
Kogon and %allace by exploiting the supersym-
metry of the model to obtain a form of the inter-
face energy. This form leads immediately to the
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dimensional shift by 2, as compared to the pure Is-
ing model, with 6 playing the role of T.

With fluctuations included, again as usual,

kBTX(q) =
z

~ (qg, ),1
(65)

IV. CONCLUDING REMARKS

kB TXI(q }=~( & &ff; ) (f; & &
—fj & & h ),

or in terms of replicas

kBTXf(q) =~(&fPfj & &fPfj &—u~p) (59)

In Eq. (58) the inner bracket denotes the thermal
average and the outer heavy bracket (
denotes the average with respect to the random
field and W represents the Fourier transform.
Note that the second term in the propagator Eq.
(47) does not contribute to X~(q). Thus, in the
harmonic approximation,

2Xf (60)

Including fluctuations Xf(q) can be written in the
OA11

Xf '(q) =q'& (qgf ) . (61)

That is, the interface-model correlation length
determines the crossover from the hydrodynamic
regime qgf « 1 to the critical regime qgf )& 1.
P (qgf) is expected to approach a (different) con-
stant both for qgf « 1 and qgf )& 1 as i)

—=0 for
this model.

The spin susceptibility is similarly defined by

In Sec. III we calculated the critical exponent v
of the correlation length g of the interface model.
To understand the meaning of this correlation
length consider the susceptibility of the interface
model defined by

where for d & 3 when a magnetic transition takes

place,

1, qg, »1
P(qg, )= '

(qg, )' ", qg, « I
(66}

where g, is the spin-correlation length. At the
lower critical dimension d =3, one expects by anal-

ogy to the pure Ising model,

W(qg, )= z and i)=1 .
1+q'0'

(67)

We note that the functional dependence of Xf(q}
on gf is very different from that of X,(q) on g, .
The correlation length gf can be identified with

the surface-tension length or phase-coherence

length discussed by Fisher, Barber, and Jasnow. '

If this length is assumed to be proportional to g,
this leads immediately' to the Widom scaling rela-

tion (Ref. 11), p =(d —1)v, where p, is the ex-

ponent for the surface tension and v is the critical
exponent of g, . This relation is known to be exact
for the two-dimensional Ising model' and appears

to be well satisfied also for three-dimensional sys-
tems. " However, for the pure Ising model in one
dimension gf = T'~ e' [1+0(T)], while exactly

g, =e' . Thus, the interface-model correlation
length has logarithmic corrections at the lower
critical dimension which are not present in the Is-
ing model.

Finally it should be noted that in random sys-
tems the structure factor is generally very different
from the susceptibility even in the disordered
phase. ' The structure factor is defined by

k TX,(q)=W(((S S )—(S;)(S.))„)
=~((s, s, ) —(s, s,").~,) .

For the spin model Eq. (21) the propagator by
analogy with Eq. (47) takes the form

(62)

S(q)=W(« SS,) &„)=W((S;S,. )) . (68)

Thus, in the harmonic approximation the structure
factor (for T & T, ) is just given by the diagonal (in

replica space) part of the propogator Eq. (63),

(63)
1

2'-B+
K+q (K+q )

where K cc (T T,). Again the b,—term in the pro-
pagator does not contribute to the susceptibility,
and we obtain the usual result in the harmonic ap-
proximation,

S(q)= +1

K+q (K+q )
(69)

Including fluctuations the structure factor is ex-

pected to take the form

kB TX,(q) = 1

Ic +q
(64) +b

q
P B(qg, ),1

(70)
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where the exponent g~ has been introduced. ' For
d & 3 the limiting values of ~ (qg, ) are given by
Eq. (66), while for a ~(qg, ), we expect (73)

which corresponds in Eq. (70) to q=gz ——l, and

(qg, )'
~dvk. ) =

( l+q'g)'
1, qg, » 1

~a(ek. )= 4-~,
(ek. )

' ek. «i (7i)
with P (qg, ) given by Eq. (67).

In an a=6—d expansion, g =n~ to all order in e. '

For d =3 one might expect

S(q)= 2 +
2/2 ( l +q 2(2 )2

ACKNOWLEDGMENTS

Discussions with Y. Imry, G. Grinstein, A.
Aharony, and R. J. Birgeneau and correspondence

with H. S. Kogon and D. J. Wallace are gratefully
acknowledged.

'S. Fishman and A. Aharony, J. Phys. C 12, L729
(1979).

Y. Imry and S.-K. Ma. Phys. Rev. Lett. 35, 1399
(1975).

G. Grinstein, Phys. Rev. Lett. 37, 944 (1976); A.
Aharony, Y. Imry, and S.-K. Ma, Phys. Rev. Lett.
37, 1367 (1976); A. P. Young, J. Phys. C 10, L257
(1977).

4G. Parisi and N. Sourlas, Phys. Rev. Lett. 3S, 1399
(1975).

5D. J. Wallace and R. K. P. Zia, Phys. Rev. Lett. 43,
808 (1979).

E. Pytte, Y. Imry, and D. Mukamel, Phys. Rev. Lett.
46, 1173 (1981).

7For a review of the roughening transition for the pure
Ising model see, for example, J. D. Weeks, in Order-

ing in Strongly Fluctuating Condensed Matter Systems,
edited by T. Riste (Plenum, New York, 1980), p. 293,
and references listed therein.

SK. Binder, Y. Imry, and E. Pytte, Phys. Rev. B 24,
6736 (1981).

H. S. Kogon and D. J. Wallace, J. Phys. A 14, LS27

(1981).
~0M. E. Fisher, N. M. Barber, and D. Jasnow, Phys.

Rev. B 8, 1111 (1973).
~'B. Widom, in Phase Transitions and Critical Phenome-

na, edited by C. Domb and M. S. Green (Academic,
New York, 1972)., Vol. 2, p. 79.

~ L. Onsager, Phys. Rev. 65, 117 (1944).
~3See also Ref. 9.
~4Discussions with A. Aharony are acknowledged.
'~G. Grinstein, Phys. Rev. Lett. 37, 944 (1976).


