
PHYSICAL REVIEW B VOLUME 25, NUMBER 7 1 APRIL 19S2

Molecular-dynamics study of melting in two dimensions. Inverse-twelfth-power interaction
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Results of a molecular-dynamics computer simulation of the solid-fluid transition in two

dimensions for a system of 780 particles interacting with a purely repulsive r pair potential

are presented. The pressure as a function of density along the T =1 isotherm has a narro~
nonrnonotonic region with a symmetric loop, indicative of a weak first-order melting transition.
This identification and the location of the transition is in good agreement with that obtained
from an analysis of the free energies of the fluid and solid phases. Equilibration problems are
found in the solid phase and the melting of a defective solid is also investigated. The behavior
of the pair distribution function, angular correlation function, diffusion constant, arid the defect
structure uncovered by an analysis of nearest-neighbor polygons is generally consistent with a
first-order mechanism. Evidence for direct fluid-solid coexistence is presented. However, a

very small fluid-solid interface tension is indicated, and there is a rapid growth in the range of
correlations in the fluid near freezing, The behavior of the elastic constants at melting is in fair-

ly good agreement with the Halperin-Nelson melting criterion.

1. INTRODUCTION

Recently there has been a great deal of experimen-
tal and theoretical effort devoted to the study of the
melting transition in two dimensions (2D). Experi-
mental systems studied include the melting of mono-
layers of rare-gas atoms on graphite, 2 electrons on He
films, polystyrene spheres on ~ater, and thin
liquid-crystal films. ' Furthermore the melting of a
3D crystal is often initiated by the disordering of
layers of atoms adjacent to free surfaces or grain
boundaries ~here the crystalline order is less stable
than in the bulk. 6

Early computer-simulation work on hard disks' and
the Lennard-Jones (LJ) solid' suggested that 2D
melting, like 3D melting, is a first-order transition,
dominated by geometric packing considerations. The
2D system thus seemed to offer a simpler and more
easily visualized testing ground for uncovering the
basic n1cchan1sms and p1'opcl'tlcs of n1cltlng that
would also apply to 3D systems.

However fluctuations become more important in
systems of low dimensionality and can often affect
the nature of phase transitions. Long ago Peierls'0
and Landau ' pointed out that a 2D solid does not
possess the conventional long-ranged order of the 3D
solid. The mean-squared displacement of a particle
from its ideal lattice site will diverge as in%, where N
18 thc nun1bcl' of particles, bccausc of long-
wavelength phonon fluctuations. This in% behavior
has been observed even for the small values of N
possible in computer simulations. ' ' While these
Auctuations have only a very small effect on the
mean-squared displacement for realistic values of X,

they affect other important properties of the 2D solid
such as the structure factor S(k) much more strong-
ly. '" These effects have also been seen in computer
81IYlulatlons.

It is natural to ask whether long-wavelength fluc-
tuations could also play a role in the melting transi-
tion for some 2D solids. The first quantitative ef-
forts along these lines were made by Kosterlitz and
Thouless (KT).'6 They suggested that 2D melting
could arise from the thermally driven unbinding of
dislocation pairs. In the KT theory of melting the
important physics occurs at long wavelengths deter-
mined by the separation of the largest dislocation
pair. At the melting temperature T there is a con-
tinuous (conventionally called second order) transi-
tion as the separation of the largest dislocation pair
tends to infinity and the solid loses its resistance to
shear because of the free dislocations that result.

Halperin and Nelson" (HN) and Young" have
worked out the detailed consequences of the KT
mechanism. HN sho~ed that if the dislocation un-
binding mechanism of KT is correct, then at constant
density the solid melts first by a continuous transition
at a temperature T into an intermediate hexatic
phase characterized by exponentially decaying posi-
tional correlations but (quasi-) long-ranged angular
order. This will be discussed in more detail later. At
a temperature T2 they show that a similar mechanism
involving the unbinding of disclination pairs would
cause a continuous transition into the ordinary fluid,
which has both exponentially decaying positional and
angular correlations.

Since the theory focuses on long-wavelength prop-
erties, HN used renormalization-group methods to
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make a number of specific, and in principle testable,
predictions about the melting transition which should
be independent of the details of the microscopic in-
teractions. If the dislocation unbinding mechanism is
correct, these predictions should be exact.

However, as HN point out, the dislocation unbind-

ing mechanism assumed in the theory need not be
correct for all (or any!) systems. A first-order transi-
tion at a temperature T & T could intervene be-
fore the solid becomes unstable to dislocation-pair
separation and the solid could melt directly into the
ordinary fluid. Chui' has recently developed a
theory of 2D melting which predicts a first-order
transition driven by the formation of grain boun-
daries at such a T

Indeed a first-order transition is what is suggested
by the early computer-simulation data and traditional
ideas about melting. The geometric packing ideas as-
sert that the important physics for melting is occur-
ring not at long wavelengths but at short wave-
lengths, e.g., those appropriate for describing the
"caging" of a particle by its nearest neighbors. How-
ever in 2D we can imagine a competition between the
short- and long-wavelength fluctuations leading to
the melting transition. Different potentials, or dif-
ferent thermodynamic states, might favor one over
the other.

Even if the details of the dislocation or disclination
unbinding mechanisms are incorrect for some (or all)
systems, one should not rule out the possibility of an
intermediate hexatic phase separated from the ordi-
nary fluid or solid by a weak first-order transition.

Stimulated by these different possibilities, there
have been several recent computer-simulation studies
of melting for a number of different 2D sys-
tems. ""'0" The most studied system, the LJ
solid, has also produced the greatest difference of
opinion. Frenkel and McTague' and Tobochnick
and Chester"" have found some evidence favoring
the HN theory for states near the triple point. How-
ever, Abraham and co-workers, ""Toxvaerd, and
van Swol, Woodcock, and Cape" believe their data
strongly favors a conventional first-order transition.
At very high densities, Tobochnick and Chester" 2'

also find evidence for a first-order transition. They
point out that it is very difficult to distinguish
between the properties of an ordinary two-phase re-
gion and those of the hexatic phase; for this reason
they make no definite statements about the nature of
the transition for the low-density LJ solid. However
the constant pressure method of Abraham" should,
in principle, avoid some of the difficulties associated
with a two-phase region.

This disagreement raises the question of whether
computer-simulation methods are capable of resolv-
ing basic questions about melting in 2D. Indeed
there are severe problems associated with all such
simulations. Most of these arise from the fact that

even the longest computer-simulation run corre-
sponds to a very short time on a laboratory scale.
While equilibrium can be readily achieved in the ordi-
nary fluid state with relatively short simulation runs
it is much less likely that the same holds true for the
solid near melting. This problem is particularly acute
for dislocation climb, which requires vacancies or in-
terstitials. '2~ Yet access to all dislocation configura-
tions is needed to provide an adequate test of the KT
ideas. Further difficulties arise in attempting to
describe the transition from the solid to the fluid.
Achieving equilibrium in the intermediate hexatic
phase, if such exists, is hampered by "critical slowing
down" of the angular correlations which should oc-
cur, in principle, in the entire hexatic phase. Anoth-
er complication is the possibility that the finite-
system size and periodic-boundary conditions could
modify the apparent nature of the phase transition.

Of course if the conventional ideas about melting
are correct, long-wavelength fluctuations are not im-
portant and we do not have to worry about most of
these problems. A computer simulation of 2D melt-
ing should then be a relatively straightforward pro-
cedure and we can draw on the previous experience
of workers studying 3D melting. Ho~ever, to pro-
vide an adequate test of the KT and HN ideas, and
indeed to see if any interesting behavior at all arises
from the long-wavelength fluctuations, we must try
to deal with the above complications.

We believe this is not an impossible task. Workers
simulating phase transitions of the KT type in lattice
models have been able to deal successfully with many
of the problems involving critical slo~ing down and
the influence of boundary conditions on phase transi-
tions. ' " Furthermore the effects of long-
~avelength fluctuations on the positional order in the
2D solid are observed in simulations"" despite the
fact that here too there is critical slo~ing down of the
positional correlations.

Problems involving the very slow dynamics of
dislocation climb and production of other defects in
the solid2~ appear to us more serious, but we can
check whether systems with extra vacancies or inter-
stitials have different properties. In general, if we are
aware of the likely pitfalls in straightforward simula-
tions and make efforts to surmount them, it seems to
us possible to gain useful information about the na-
ture of the melting transition from computer simula-
tions. In this we are aided by the fact that the HN
theory" is a self-consistent approach which makes a
number of different quantitative predictions. Some
will be easier to check than others but all must hold
true if the theory is correct.

This optimistic viewpoint led us to undertake a sys-
tematic study 2D melting for different systems in-
teracting with a repulsive inverse power r ' potential.
There are several reasons for. studying such systems,
Because there is no characteristic length in the poten-
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tial, inverse power systems have a useful scaling
property ' which allows the entire equation of state
to be determined from that of a single isotherm.
Thus for fixed n there can be only one kind of melt-
ing transition.

However the nature of the transition could change
as n is varied. While the melting transition is gen-
erally believed to be first order for the hard-disk
(n = ~) system, ' it is possible that the softer in-

teractions occurring for small n might enhance the
possibility of a continuous melting transition. The
system is far from the very anharmonic hard-disk
limit and geometric packing considerations may be
less important. The KT picture' of harmonic pho-
nons interacting with bound dislocation pairs also
seems more appropriate for these soft potentials.

There have already been several simulation studies
for inverse power systems in 2D. As mentioned
above the hard-disk (n = ~) system is generally be-
lieved to have a first-order melting transition, '"
though further work seems called for. At the other
extreme, the n =1 system, studied experimentally by
Grimes and Adams, ' has been examined in computer
simulations by Gann et al. "and by Morf. ~' Gann
et al. suggest that their data favor a weak first-order
transition while Morf finds the behavior of the shear
modulus can be explained very well using the HN
theory. Very recently Kalia et al. ,

"b have studied
the n =1 and 3 systems and have concluded that the
transition in both cases is first order. McTague
et al. "have begun Monte Carlo simulations on the
n =6 system and find some features in accord with
the HN theory, but because of very sluggish behavior
near the transition they can reach no definite con-
clusions. Finally, van Swol et al. "have studied the
n =12 system and analyzed their data under the as-
sumption that there is a first-order transition.
Although they treated a very large system, the short
runs they made were probably not sufficient to per-
mit equilibration in the phase-transition region.

In this paper we report results of a MD simulation
of the n = 12 system with particular attention paid to
the region near the melting transition. The second
paper in this series will describe a truncated version
of the n = 3 system and discuss the changes arising
from "softening" the interaction potential as well as
the general trends found in the simulations done to
date.

After describing in Sec. II some details of the
molecular dynamics (MD) method and the systems
studied, we examine in Sec. III the equation of state
near the phase-transition region. These data suggest
a conventional first-order transition. This identifica-
tion is strengthened in Sec. IV by a calculation of the
free energies of the solid and fluid phases which
gives a first-order transition whose location is in good
agreement with that found in Sec. III. After a discus-
sion of trajectory plots in Sec. V, we report in Sec. VI

an attempt to observe two-phase coexistence directly.
Section VII discusses the defect properties of the

solid and fluid phases uncovered by the nearest-
neighbor analysis using the Voronoi polyhedra. Sec-
tions VIII and IX contain discussions of positional
and angular correlation functions, Sec. X velocity au-
tocorrelation functions and diffusion constants, and
Sec. XI the behavior of the elastic constants near the
melting transition. Concluding remarks are found in
Sec. XII.

II. GENERAL CONSIDERATIONS

A. Systems studied

We performed MD calculations" for a system with
780 (26 & 30) particles of mass m interacting with the
pair potential

u(r) =e(cr/r)", (2.1)

truncated at r =2.50.. Here 0. has dimensions of
length and e energy. Assuming periodic-boundary
conditions we confine the particles to a rectangular
(very nearly square) unit cell whose ratio of height to
width is (26/30) (2/&3) = 1.000 74; this cell accom-
modates a section of a perfect unstrained hexagonal
lattice. We generally used a time step 4t =0.005
x (e/ma') '~'. (In the following we use reduced
units where a = e = m =1.) A typical (Einstein) vi-
brational period in the solid near the melting density
is (80—100)ht. To check whether the boundary con-
ditions and fixed particle number Ã artificially stabi-
lized the solid phase we also studied the melting of a
solid with a single vacancy, i.e., 779 particles in the
same unit cell. (As might be expected for this rela-
tively "hard" system, the energy of a vacancy at
T =0 is much less than that of an interstitial„ )

%e studied the melting and freezing transitions
along the T =1 isotherm. The scaling property of in-
verse power potentials discussed in Appendix A al-
lows us to determine from this data properties along
any other isotherm. We traversed the isotherm near
the phase-transition region in both directions. That
is, we started from a high-density perfect solid or
solid with a single vacancy and considered states with
successively lower density (referred to as the S or Sv
traverse. ) Starting from a state in the ordinary fluid
region, we also considered states of successively
higher density (referred to as the F traverse). The
density was varied by a uniform rescaling of the final
position coordinates from the previous state of that
traverse and velocities were rescaled and sometimes
randomized during an initial equilibration run until a
stable temperature T = 1 (determined by the average
kinetic energy) was achieved. If necessary, additional
very small and infrequent rescalings of the velocity
were made to maintain an essentially constant tem-
perature. '
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S. Run times

Away from the phase-transition region only rela-
tively short runs were required to achieve consistent
results. We generally made an equilibration run of
12000ht before taking statistics over the next
1200051. Much shorter runs gave stable thermo-
dynamic properties but some structural properties
very sensitive to long-wavelength fluctuations such as
the angular correlation function required the longer
equilibration period.

In the vicinity of the melting'transition
(0.97 & p & 1.02) much longer runs were made, par-
ticularly in the middle of this region where we at-
tempted to distinguish between hexatic and two-
phase behavior. A typical equilibration run time was
48000ht with statistics taken over the next 240004t
and even then, as discussed in detail later, we ob-
served differences in results from the F and S
traverse. (The Sy traverse produces results in close
agreement with those from the F traverse. )

III. EQUATION OF STATE

In this section we examine the behavior of the
pressure along the T = 1 isotherm to try to determine
the nature of the phase transition. There are some
practical advantages in analyzing thermodynamic
functions along an isotherm rather than an isochore
since distinctions between behavior expected for first-
and higher-order transitions are more apparent. In
an infinite system the constant pressure in the two-
phase region along an isotherm implies a very large
change in slope of the P-p curve. This change is less
noticeable along an isochore and is more easily con-
fused with the behavior expected for a continuous
transition.

These advantages persist for finite systems. Mayer
and Wood" have analyzed the behavior to be expect-
ed along an isotherm at a first-order transition for a
finite system at equilibrium with periodic-boundary
conditions. They find there should be a symmetric
loop in the I'-p curve in the two-phase region. Be-
cause of the nonzero interface tension between the
fluid and solid phases, the finite system initially
overshoots the infinite system's coexistence pressure
in the F traverse to avoid forming a "droplet" of the
solid phase. Similar arguments apply to the S
traverse. The size of the overshoot is an increasing
function of r/N'~' where r is the interface tension,
and it vanishes in the limit N ~. There can be re-
gions in the loop where (dP/dp) r & 0, which of
course violates stability for an infinite system. Such
a region in the P-p plane seems very hard to explain
except by assuming a nonzero interface tension
between two phases. The analysis of Mayer and
Wood' ignores fluctuations and hence probably
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FIG. 1. T =1 pressure vs density isotherm. Squares
represent the F traverse, crosses represent the S traverse.

overestimates the size of the overshoot and is by no
means rigorous, but does give a reasonable first ap-
proximation to the behavior that might be expected
at a classical first-order transition for a finite system.

Figure 1 shows the pressure as a function of densi-
ty near the phase-transition region. The crosses
denote the S traverse and the squares the reverse I'
traverse. The F traverse started at a density p =0.9'70

(obtained by densification of a p =0.930 Auid) which
we identified by several criteria to be discussed later
as a stable ordinary fluid state. We do not observe
large fluctuations in the angular order or other prop-
erties at this density.

We note that the F traverse agrees well with the S
data until about p =0.985 ~here noticeably different
behavior is seen. Both curves have loops which we
would be tempted to associate with a first-order tran-
sition. Ho~ever since the loops do not coincide the
system must not be in equilibrium in this region for
one (or both!) of the traverses.

We believe the major equilibration problem is asso-
ciated with the S traverse. The boundary conditions
stabilize the perfect solid and inhibit the formation of
interstitials and vacancies, which at fixed N must
form in pairs. Although these defects are not impor-
tant at low temperature, near melting they aid in
dislocation climb and may also serve as nucleation
centers for "droplets" of the fluid phase. The very
large loop and nearly vertical jump on the S traverse
are consistent with the melting of a metastable solid
with an artifically large kinetic barrier to melting, pos-
sibly resulting from the problems with forming inter-
stitials and vacancies. The nearly vertical jump in P
occurs at a density in the range 0.993 & p & 0.995;
and at the same time the diffusion constant increased
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dramatically.
In the fluid phase there is more rapid diffusion and

the system is much more likely to be in equilibrium.
Indeed the F and S traverse give the same result
here. As we argue in detail later the fluid near freez-
ing is by 3D standards very well ordered with large
patches of local crystalline-like order. This suggests
there is a small fluid-solid interface tension and little
nucleation barrier to freezing. The small and sym-
metric loop we find in the F traverse is in accord with
these expectations (and corresponds to case C dis-
cussed by Mayer and Wood" ).

In the solid phase the F and S pressures do not
coincide even at the highest density. Inspection of
the configurations (discussed later) shows that the
fluid had crystallized into a defective solid misorient-
ed with respect to the boundaries. This misoriented
state seems stable indefinitely, again showing the
problems in equilibrating defects in the solid near
melting. It seems likely that an excessive number of
defects are frozen in by this process and the true
equilibrium pressure in the solid lies between the S
and F values.

To check the effects of defects on the melting of
the solid phase we show in Fig. 2 the F traverse and
the S~ traverse together with the S data for the solid.
The melting of the solid with a single vacancy gives a
much smaller loop than did the S traverse and now
produces very good agreement with the F traverse.
This is strong evidence that the equilibration problem
indeed is associated with the boundary stabilized per-
fect solid. Stillinger and Weber' also found reprodu-
cible freezing and melting behavior for the 2D

Gaussian core model if a slightly defective solid was
used.

If the Sy and F loops are indeed in equilibrium, the
theory of Mayer and Wood' justifies an "equal
areas" construction. This analysis suggests that there
is a conventional first-order transition with a pressure
at melting of about P =14.34 and freezing density

PI =0.987 and melting density p, =1.006. ' Errors in
these densities of about +0.001 arise from problems
in graphically determining equal areas using the data
in Fig. 2. This 2% change in density on melting should
be compared to the 4.8% change found in 3D."

IV. FREE-ENERGY CALCULATION

We can also locate the phase-transition region by a
calculation of the free energies in the two phases. To
do this we continue the equation of state in the fluid
phase to very low densities where the virial expansion
is accurate. The free energy can then be calculated
relative to that of the ideal gas. In the solid phase we
calculate the free energy relative to that of the har-
monic solid, whose free energy can be calculated
analytically using lattice dynamics. We assume that
corrections to the harmonic energy at constant densi-
ty can be expressed as a perturbation expansion with
T2, T3, . . . terms. In scaling form this implies an
expansion using terms p», p ', . . . , where p» is
the scaled density-temperature variable defined in
Appendix A.

In the flisid phase we have calculated the equation
of state for 60 points varying from p =0.050 to 0.991
along the T =1 isotherm. We fit the data to a poly-
nomial of eight terms, in which the first two are the
exact second and third virial coefficients for this po-
tential,

CQ

real

T = 1.00
i Xg

0

PAP
=- 1.773 06p» +2.362 41p» + 1.798 198p»

2 3

p
—5.648 177p» +78.657 12p» —197.572 41p»

+212.374 17p» —79.574 56p» (4.1)

bg 0
0

Here AP is the excess pressure over the ideal gas.
The rms er&or was 2.4 &10 '. Van Swol et al. "have
used a simiIIar expression which is in good agreement
with Eq. (4.1) except near the phase-transition region.

The cherl&ical potential is then given by integration
from p =0 of the thermodynamic expression
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f
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Thus we find

(4.2)

FIG. 2. T 1 hysteresis region. Squares represent the I'

traverse, crosses represent the S traverse and diamonds
represent the Sq traverse. Letters a —g locate states whose
properties wi11 be discussed later.

P6p =3.546 12pa +3.543 61pk +2.397 598p+

—7,060 217p»+ 94.388 54p» —230.501 14p»

+242.7133p7g —89.52138p» . (4.3)
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In the solid phase to connect with the harmonic
solid we studied 30 points along the p =1.0 isochore
from T =0.01 to 0.996. %e found that this data and
the rest of our solid phase data on the T = 1 isotherm
could be accurately fit with an rms error of 1.6 x 10 3

using only two terms in the perturbation expansion
discussed above. Using scaling the pressure can then
be expressed as

p» P»~
——1.25946p.-'+0.597 61p.-" .

P P

In Appendix A we give expressions for P»Hlp
[These anharmonic corrections in Eq. (4.4) were
determined using pressure data for the perfect 780
particle solid which might have artificially low pres-
sure because of the difficulty of defect formation.
EI'I'oI's lndUccd by this assumption will bc dlscusscd
later. ] Again we find good agreement with the simi-
lar expression of van Swol er al. 15 Eq. (4.4) implies
that the anharmonic corrections reduce the potential
energy of the solid near melting by about 50/o below
that of the harmonic solid. As the exponent n gets
larger this reduction must be even more dramatic—
there is Qo potential energy at all in the hard, anhar-
monic, n ~ limit.

Integrating the difference 4I' —AI'~ down from

p ~ where the difference vanishes, we find from
Eq. (4.2)

Pb II, —Php, H = —1.049 55p~6+0. 547 81pe'2

Again Pd, p, H, which requires a lattice dynamics calcu-
lation, is given in Appendix A.

Using these we can determine the coexistence pres-
sure and densities by requiring equality of pressure
and chemical potential in the two phases, or
cqUlvalcntly, by using thc Maxwell double tangent
construction. Figure 3 shows this construction. Note
thc very small vertical scale. Thc slopes of the free-
energy curves are very nearly equal and it is only by
removing the dominant term linear in p

' that any
curvature at all can be seen on the scale of the graph.

The coexistence densities pI =0.991 and p, = 1.011
and pressure I' =14.64 so determined are in fairly

good agreement with those found before using the
equal areas construction on the loop from thc I'

traverse. However thc coexistence pressure,
P =14.64 so determined is slightly higher than that
of point c ln Flg. 2 which is thc highest pressure ln

the hysteresis region. %C note that the free-energy
calculations of Barker eI: u/. , "for the 20 LJ system
also gave a coexistence pressure higher than that con-
tained in the hysteresis region determined from
Abraham's MC calculations. 22 %e discuss below a
possible reason for this behavior.

Since the slopes are so nearly equal it is clear that
we must have very accurate data to obtain accurate
coexistence densitics and pressure. In the 780 parti-
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FIG. 3. Double tangent construction.

cle solid near melting we have suggested there may
be a systematic underestimation of the pressure be-
cause of the difficulty of defect formation. This
might be expected to cause a non-negligible error in
thc cocxlstcncc pI'opcl'tlcs. In Appcndlx B wc give an
analysis of the sensitivity of the coexistence proper-
ties to small variations (due to systematic errors) in

the pressure. %e find the situation is not as bad as it
might seem, since errors in the pressure are partially
canceled by compensating errors in the chemical po-
tential.

As an example let us recalculate the pressure in the
solid phase using data near thc melting transition tak-

en from the system with a single vacancy. The pres-
sure of thc vacancy system differs from the perfect
system at the same density by about 0.05 near melt-

ing and we believe this is likely to be closer to the
(unknown) exact result.

Since at very high dcnsitics the perfect system
must be more stable, we kept the harmonic terms in
Eq. (4.4) unchanged slid ref lt t11c anharmonlc

coeffic-

ientss to give the vacancy system pressure near melt-
ing. Instead of Eq. (4.4) we now find

p»''1 p»H——1.240 44p~6 +0.646 63p+'1 (4.6)
P P

with a similar expression for Phys~. Using the same
fluid data as before and this new solid data we now

find coexistence at pi =0.986 and p, =1.005 with
I' =14.29. These values now agree very well with

those given by the equal areas construction and
represent our best estimates.

The change in molar entropy on melting can be
computed from the formula, 3 valid for all inverse
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po~er potentials with n & 2,

)+ 2 /3~

P( Pl Pg

where (/3P/p, ) is the compressibility factor at melting
and hp/p, is the fractional change in density. Using
the coexistence data above for the vacancy system we
find b,s =0.32, whereas the perfect solid data give
As =0.34. It is interesting to note this value agrees
closely with that obtained by Stillinger and Weber'
from thc superficially very different Gaussian core
model.

In the following sections we examine various struc-
tural and dynamic properties of the system near the
phase transition and find results generally consistent
with the above thermodynamic results, though equili-
bration problems and effects of finite system size
show up more clearly here.

V. PARTICLE TRAJECTORIES

In order to obtain a feeling for the amount of dif-
fusion and particle exchange going on during a MD
run it is convenient to make a "trajectory plot. "
This plot connects by straight lines the positions of
each particle at equal time intervals AT for m inter-
vals during a molecular dynamics run. Usually we
took hT =600ht and m =10. Thus we have a record
of particle positions over many vibrational periods.
In thc fluid phase there is considerable particle dif-
fusion and thc plots appear quite disordered. In the
stable solid phase there is little diffusion and a well-

ordcred structure is found. Wc note a very good
correlation with thc amount of disorder sho~n by the
trajectory plots and the defect fractions and other
meaures of disorder discussed below.

In the intermediate region, areas of order and dis-
order are found and it seems natural to identify them
with solid and fluid regions. However this identifica-
tion by itself is ambiguous and cannot be convincing-
ly distinguished from thc behavior that might be ex-
pected in an intermediate hexatic phase because of
critical fluctuations. Further, as stressed by Tobo-
chnick and Chester, "the amount of apparent disor-
der varies with the time interval and thc number of
points m considered.

While it is very likely true that this behavior can be
understood (assuming a first-order transition) as the
wandering of "droplets" of one phase in the other it
may take a very long time for these droplets formed
by nucleation to aggregate and form a macroscopic
region of one phase in the other. If the interface ten-
sion is small there will be large fluctuations at the
boundaries of the droplet as well as a slower overall
diffusion of thc center of mass of thc droplet and
thermal fluctuations may even cause the droplet to

break apart. These effects must all be carefully
analyzed to distinguish between droplet fluctuations
and critical Auctuations. A reasonable procedure
~ould be to take trajectories over a time long com-
pared to diffusion times ln thc fluid, but not so long
that the (presumably much slower) motion of the
droplet as a whole could confuse the interpretation.

Rather than attempt this procedure for an arbitrary
fluid-solid configuration, we show in the next section
that by setting up in advance well-defined regions of
fluid and solid we cari observe rather stable fluid-
solid coexistence at precisely the prcssure and densi-
ties found before from thermodynamic arguments.

VI. DIRECT OBSERVATION OF
TAO-PHASE COEXISTENCE

To examine the stability of fluid-solid coexistence,
we placed two equilibrated solid and fluid systems of
the appropriate density together and fo1lowed the pro-
gress of the composite 2 x 780 particle system. That
is, we considered a rectangular unit cell containing
1560 particles, Thc length was about twice the width
and consistent with an overall density p =0.999 ap-
proximately in the middle of the two-phase region as
determined in Secs. III and IV. Thc initial coordi-
nates of 780 particles in an essentially square slab in
the middle of the box were taken from those of an
equilibrated solid at its melting density. These parti-
cles were held fixed during an initial equilibration run
while the remaining 780 particles, whose initial coor-
dinates were chosen from the equilibrated fluid state,
accommodated themselves at T =1 to the static solid.
Thc velocities for all particles werc then chosen at
random from thc appropriate Boltzmann distribution
at T =1 and an ordinary MD run was made with al}
particles free to move.

We found this phase-separated state was rather
stable. The regions of "fluid" and "solid" indicated
by the trajectory plots in Fig. 4 corresponded to those
created by our initial starting configuration for run
times of at least 360004t and a stable pressure
P =14.4 was maintained. However, the boundaries
between the phases are "rough" and ~ould be ex-
pected to have transverse fluctuations proportional to
the square root of their length. Furthermore, we
have not stabilized the absolute locations of the fluid
or solid slabs by boundary conditions at the sides of
the box.

Thus it is perhaps not surprising that. eventually
fluctuations appeared to change our initial slab loca-
tions. After an elapsed time of 3600041 the disor-
dered regions appeared to coalesce in the center as
shown in Fig. 5. This was accompanied by a slight
rise in the prcssure. After an additional 120003 t
times the regions of fluid and solid appeared to re-
verse themselves, as shown in Fig. 6, and the pres-
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FIG. 4. Trajectory plots of two-phase coexistence. (a)
represents 1 —6000ht, (b) represents 18001—24000ht, (c)
represents 30 001—36 0004 t.

FIG. 6. Trajectory plots of two-phase coexistence. This
series folows on from Fig. 5. Each plot represents an

elapsed time of 60004t. (a) —(c) follow on contiguously

from one another and represent the period 48001—66000ht.
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sure restabilized at a value 14.4 consistent with two-

phase coexistence.
This behavior could be interpreted as arising from

critical fluctuations at a continuous phase transition.
In this case there is no interface tension between the
"fluid" and "solid" slabs at the appropriate critical

density and fluctuations would be expected to destroy
thc initial configuration we set up. However, we be-
lieve the behavior we observed is better interpreted
as that arising from a two-phase region with a small
but nonzcro interface tension between the phases.
After the destruction of the initial slabs the system
eventually returned to a slablike arrangement favored

by surface tension arguments, and seemed to main-

tain essentially the same fraction of solid and fluid

that would be appropriate for two-phase coexistence.
Furthermore, thc solid phase maintained its orienta-
tion with respect to the boundaries. However, it is

clear that this evidence is somewhat ambiguous and
provides incontrovertible support for neither possibil-

ity. It would be interesting to repeat this experiment
using a longer rectangle where the transverse fluctua-
tions in the boundaries could not so easily bring the
disordered regions together.

A

FIG. 5. Trajectory plots of two-phase coexistence. (a)
represents 36001—420006 t and (b) represents 42001
—48 000k t.

As was pointed out by McTaguc et aI., "an

analysis of the coordination numbers of each atom

using the signer-Seitz or Voronoi construction gives

a very useful characterization of the defect structure
of a 20 system. In a given configuration each parti-

cle is enclosed by a convex polygon having m sides
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defined as the set of points closer to particle i than to
any other particle. Pairs of particles whose polygons
share a common side are defined as "nearest neigh-
bors"; hence atom i has m; neighbors. It is a re-
markable property of a 20 system that the average
coordination number defined in this manner is 6, re-
gardless of the state of disorder. "

For states in the dense fluid phase near freezing
and in the solid this definition of nearest neighbors is

in good agreement with the traditional method of
counting the number of particles within a certain cut-
off radius r, [approximately equal to the first
minimum in the radial distribution function g (r) ]
around a given particle. If we choose r, to be 1.37ao,
i.e., midway between nearest and next-nearest lattice
positions, we find the average number of m-

coordinated atoms determined by this method differs
generally by less than one percent from that given by
the Voronoi analysis,

In a perfect solid each atom has six neighbors. A
particle with any other coordination represents a dis-
clination. " A dislocation can be thought of as a
closely bound disclination pair'; thus a 5-'7 pair con-
stitutes a dislocation ~hose Burger's vector is prepen-
dicular to the pair axis. In the solid phase only
bound dislocation pairs can occur; these usually show

up as 5-7, 7-5 quadrupoles with opposite Burger's
vectors, though dislocation triplets with zero net
Burgers's vector are also found. Defects such as in-

terstitials and vacancies also produce their own
characteristic patterns, or can be thought of as special
cases of dislocation pairs. Finally grain boundaries
are characterized by closed loops of 5-7 pairs. "
Weber and Stillinger have given a more complete
discussion and examples of the characteristic defect
patterns.

In Fig. 7 we give the Voroni analysis of a typical
configuration at state f in Fig. 2 of the solid phase
very near (p =1.008) the melting density. Wa notice
only a few clusters of tightly bound dislocation pairs,
Neither in this or any other stable solid configuration
that we have examined have we found any disloca-
tion pairs separated by more than two lattice con-
stants. The same statement holds true for the imper-
fect solid with a vacancy, where one might have ex-
pected dislocation climb to be aided by the vacancy.
The individual closely bound 5-'7, 7-5 quadrupoles
are very short-lived, and can annihilate and reform in
a time that is less than 5b, t.

In the pure fluid very near freezing at a density of
0.986 (state b in Fig. 2) we see in Fig. 8 a significant
increase in the overall disorder as indicated by the
large number of five- and seven-coordinated atoms.
In addition to ihe quadrupoles we see some separated
"dislocation pairs" and even some individual "dis-
clinations. " However there are surprisingly large
patches of six-fold order in various orientations
separated by "grain boundaries, "which of course
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FIG. 7. Voronoi analysis of an instantaneous equilibrium
configuration at p 1.008 (state f). Asterisks represent six-
coordinated atoms.

fluctuate as the simulation proceeds. These results
seem in accord with the physical picture used by
Chui'~ in his grain-boundary theory of melting,

Since the average coordination number in the fluid
(6) is consistent with the most efficient global (crys-
talline) packing, this overall rather ordered structure
is easy to understand. As the density is increased,
packing considerations force larger local regions of
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FIG. 8. Voronoi analysis of an instantaneous equilibrium
configuration at p-0.986 (state b). Asterisks represent six-
coordinated atoms.



essentially perfect sixfold order. In the Auid state
these different regions are misoriented and uncorre-
lated %'ith each other and Auctuate sufficiently that
the time averaged Structure 18 8 disordered Auid.
This picture suggests that 8 microcrystallite model of
the deQse 20 Auid ls IQUch moi'e likely to be useful
than is the case in 30 and helps rationalize the large
correlation length in the 20 Auid discussed in tbe
next sections.

Figures 9 and 10 give the radial distribution func-
tions at the five states g, f, d, b, and a shown in Fig.
2 in the phase-transition region. There is consider-
able change in these functions as the density is re-
duced from that of the solid to the Auid. Particularly
instructive is the behavior of the third peak. In the
solid phase it is higher than the second peak and has
8 shoulder, consistent ~ith the hexagonal lattice
structure. At states d, b and a in the t~o-phase and
Auid regions the third peak is lo~er than the second
as is Usual in a Auid, However the fluid Rt state b ap-
pears very ordered @hen compared to typical 30
fluids. The height of the first peak and the per-
sistence of oscillations at rather large f sho~s the ex-
tensive positional order that charactenzes the dense
20 fluid. %e estimate from the exponential decay of

g (&) in state b a posjtjonai correlation length 0 =3 I
%'hich coIDparcs to 8 value neai' Umty foi' 8 typical
dense 30 Auid near freezing.

In the two-phase region at state d, g {r) has even
IDore persistent oscillations but is siimlar to that of
the AUld. Apparently tlM disorder and Auctuations in
this region are sufficient to obscure the characteristics
of the solid distribution function which might be ex-
pected from 8 linear combination of pure Auid and
solid functions. Since the solid has only quasi-
long-ranged order thi5 is perhaps Qot sui'pl'ising.
SOQM evidence suggesting the pi'esence of solid order
in the two-phase region sho~s up in the angular
correlation function Gr,{r) discussed below and from
direct observation of the configurations,

%e give in Figs. 11 and 12 the structure factor

S(q)

=I+pal

[g(r) —I]e"' ' dr (8.1)

for states u and b in the stable fiuid region. Hansen
and Verlet"0 found that the height of the first peak in
S(q) varied by only a few percent for many 3D fluids
at freezing and it vrill be interesting to see if this
holds true for 2D systems. S(q) also plays an essen-
tial role in the theory of freezing of Ramakrishnan
and Yussouff, and their prediction foi' the height of
the first peak of S(q) at freezing is in good tlualita-
tive agreement with that found in Fig. 12. Note the
rapid growth of the height of the first peak in S(q)

0.0 Z. Q 4. 0 8.0
1 I

10.0 12.0
(
f t

0.0 2.0 4.0 b, 0 8.0 10.0 1Z. O

FIG. 9. Radial distribution function at p 1,016 (state g)
and 1.008 (state f). The latter curve is displaced upward for
clarity.

FIG. 10. Radial distribution function at p 0.993 (near
state d), p-0.986 (state b), and p-0.971 (state a). The
latter curves are displaced upward for clarity.
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p = 0.9706 structural order than is apparent in the g (r) curve of
Fig. 10. This also suggests that the correlation
lengths we estimated using g (r) may underestimate
the actual range of correlations in the fluid.

IX. LOCAL ORDER AND ANGULAR CORRELATIONS

As a measure of the local order we associate with
each particle i at its instantaneous position r i the
quantity n; defined as the number of particles
("neighbors") found within a radius r, = 1.37ao of
particle i (as discussed before this is essentially ident-
ical to that given by a Voronoi analysis). In analogy
to the definition of the microscopic particle density

5 10 15 20 25 30 35 40
p(r) = $&(r —r;) (9.1)

FIG. 11. Structure factor at p =0.971 (state a).

where (p( r ) ) =p we define the microscopic density
of m —coordinated atoms as

(9.2)

and the development of a split second peak as the
density is changed from p =0.971 (state a) to 0.986
(state b). The splitting becomes even more pro-
nounced as the density is further increased. The split
peak maxima occur at the second- and third-neighbor
spacing of the reciprocal hexagonal lattice. Thus
there is a rapid increase in the range of correlations
in the dense 2D fluid near freezing. This again
shows that in two dimensions a dense fluid has more
order than conventional wisdom based upon experi-
ence in three dimensions would at first suggest. It is
interesting that the Fourier transform reveals greater

p = 0.9858

or

F =p '(p. (r-)-) . (9A)

Since every atom that is not six coordinated can be
thought of as part of some defect, the defect fraction
Fp =1 —F6 gives an overall measure of the disorder
in the system. If there is a continuous melting tran-
sition Fp would be expected to vary smoothly across
the transition. In Fig. 13 we plot F6 along the T =1
isotherm. %e note a significant decrease in F6 in the
transition region, 0.986 & p & 1.006. This rapid
change is consistent with a first-order melting transi-
tion between states with very different defect struc-
tures. The fluctuations in F6 are much greater in the
two-phase region than on either side.

To measure the angular order we associate with
each particle i a complex order parameter4'

Then F, the average fraction of particles with m

neighbors, is given by

(9.3)

6i8~Ii

Pfi J~1
(9.5)

I I I I I I I

0 5 10 15 20 25 30 35 40

FIG. 12. Structure factor at p =0.986 (state b).

where 8~ is the angle of the line or "bond" joining
neighboring particles i and j relative to some fixed
axis. In a grain with perfect crystalline order

~ IiI;~ = 1

but grains with different orientations will have dif-
ferent phase factors. To compare angular order in dif-
ferent regions we consider pair correlations involving
the P~. Since P~ itself is defined using pairs of parti-
cles, these involve four-particle correlations.

As in EII. (9.2) we define a microscopic order-
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FIG. 13. Fraction of six-coordinated atoms along T =1
isotherm as a function of density. Asterisks represent the S
traverse. Squares represent the F traverse. Vertical lines

represent error limits.

parameter density

N

j6( r ) = XS( r —r, )y, . (9.6)

The distinction between the ordinary and hexatic
fluid then shows up in the angular correlation func-
tion, G6(r), defined as

(p( r ~) p( r 2))G6( r ~, r 2) = (Q6( r ~) Q6( r 2))

(9.7)

In the (ordinary or hexatic) fluid G6 is a function of
r~2-

~
r ~

—r 2~ and in the solid we consider the angle
averaged quantity. Clearly Gq(r) « I. In the soHd

G6(r) will reach a finite value as r ~ indicating
long-ranged angular order. The HN theory'7 predicts
that G6(r) should decay to zero in the hexatic phase
as r "with q «0.25, awhile it decays exponentially in
the ordinary fluid state.

In Fig. 14 we show G6(r) for state f in the solid
phase. Long-ranged angular order is clearly seen.
The various oscillations in 66 are meaningful and
give information about detailed positional correlations
in the hexagonal lattice. Much of this information is
lost in g (r), because all pairs are assigned equai
~eight in the average, without regard to their orienta-
tion.

Figure 15 shows G6(r) at state a (p =0.971) in the
stable fluid region. We find that G6(r) tends rapidly

to zero and the result is well fit by an exponential
with a correlation length (=2 5cr Figure .16 s. hows

G6(r) at state 6 (p =0.986) which we have identified

as a stable fluid at freezing; the decay is much slower

FIG. 14. Angular correlation function at p =1.008 (state f).

p = 0.9706

0.0 2. 0 4. 0 6.0
I I I

8. 0 10.0 12.0

FIG. 15. Angular correlation function at p =0.971 (state a).

and there is a nonzero tail even at r =13.0. The
correlation length is sufficiently long that finite-size
effects on G6(r) may be significant. A larger system
size seems necessary to establish conclusively that
G6(r) will eventually decay to zero as it should for a
pure (ordinary or hexatic) fluid state and to provide
definitive evidence for exponential versus algebraic
decay. As we have noted before the fluid at this den-
sity is very well ordered with large "grains" with
rather well-defined angular order. In order for G6 to
decay to zero we must have a system size large
enough to contain several such grains and perform
runs of sufficient length to permit averaging over
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p = 0.9858
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FIG. 16. Angular correlation function at p =0.986 (state b).

large fluctuations in the grain structure. These re-
quirements may not be satisfied for the system we
studied here.

The value of the tail of G6(r) at r =13 increases
essentially monotonically as the density is increased
toward the stable solid at state fwith p =1.008. This
is consistent with the picture of a two-phase region
with a nonzero solid fraction but finite-size effects
make this conclusion less definite. In no case howev-
er could our data at densities less than 0.99 be fit as-
suming an algebraic decay with an exponent
q «0.25. Since it seems likely that errors due to
small system size and finite run times would increase
the apparent angular order, we believe this is good
evidence that states with densities less than 0.986 are
indeed ordinary fluids. %e emphasize that in the
two-phase region very long runs with equilibrium
times of at least 4800041 were necessary to reach
these conclusions. Over shorter times large varia-
tions in G6(r) were found. This quantity, and the
defect fraction I'D discussed before, show much
larger fluctuations than the positional correlation
function g(r) or the thermodynamic properties.

where V;(0) is the velocity of particle i at some in-
stant of time, and V;(t) is the velocity after an
elapsed time t. This function normalized to unity at
t =0 is shown in Fig. 17 for states f and b. We note
that at least three oscillations are observed for the
stable solid in Fig. 17 before the function is essential-
ly damped out. As should be expected the damping
for the fluid is greater and only two oscillations are
observed. This second oscillation is also observed for
high-density 3D liquids but is much less pronounced,
being present as a negative tail following the first
minimum. '

The diffusion coefficient, proportional to zero-
frequency value of the Fourier transform of the velo-
city autocorrelation function, is essentially zero for
the solid but has finite value in the fluid. This
behavior is more directly seen from plots of the
mean-squared displacement ((Ax') ) versus time, the
limiting slope of which (ignoring long-wavelength
fluctuations in this finite system) gives twice the dif-
fusion coefficient. These are shown in Fig. 18 for
states f and b. At a density of 0.971 the diffusion
coefficient of the fluid is 0.038. It is interesting that
this value is close to the diffusion coefficient for the
3D LJ fluid at its triple point, which has a value of
0.033.44 The diffusion coefficient decreases rapidly as
the fluid is compressed into the two-phase region,
and at a density of 0.996 it is 0.011. This decreasing
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X. VELOCITY AUTOCORRELATION FUNCTIONS
AND DIFFUSION CONSTANTS

(10.1)

We have seen from S(q), G6(r), and the Voronoi
plots that the dense 2D fluid is highly ordered. Fur-
ther evidence may be seen in the velocity autocorre-
lation functions of the crystal and fluid states. This
function is defined as

N

( v(o) v(t) ) = —g v, (o) v, (t)
N; i

I I I I t I

0.0 0.4 0.8 1.Z 1.6 Z. O Z. 4 Z. 8

FIG. 17. Uelocity autocorrelation function at p =1.008
(state f), and p =0.986 (state b). The insert represents the
latter; both functions are to the same scale.
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FIG. 18. Mean-squared displacement in x direction for

p =1.008 {state f}and for p =0.986 (state b).

FIG. 19. Elastic constant ratio Jf' [see Eq. (11,1)] vs den-

sity for the crystalline region of the T =1 isotherm. The
solid line represents the fit to the data given in Eq. (11.2).

mobility normally prevents the fluid from rearranging
to form a perfect solid in an F traverse.

XI. ELASTIC CONSTANTS

One of the most important predictions of the HN
theory' is that at the melting temperature a certain
combination of elastic constants, E, takes on the
universal value 16m. Here

I.
p

p, +X

where II,
L and ll are the Lame (elastic) coefficients.

The density and temperature dependence of the
denominator is relatively small and the variation in E
near melting is dominated by the behavior of
(p|I /p). 1ll Appclldlx C wc discuss a ncw Illct11od

for determining p, by the application of a finite shear
to the system. Far from T~ we find that the statisti-
cal crrol' ill tllls dctcfllllnatioI1 of (pp /p) ls abollt
30/0. Near T fluctuations are greater and the statisti-
cal error is as much as 5'/0.

Figure 19 shows the variation of E with density
near melting along the T =1 isotherm. Over this
limited density region the data are fitted with an rms
error of 1.12 by

K = -497.203 +553.16p

%e find that at the melting density p =1.006 deter-
mined earlier, E =59.3, about 18'/0 greater than 16m.
This is consistent with the idea that a first-order tran-

sition intervenes before the KT instability takes place.

This value for E is fairly close to 16m, though the
difference is outside our statistical error estimates.
However, one could argue that our values for p,

near melting are probably too large since we do not
properly include the reduction in p, brought about by
dislocation climb.

It is difficult to reach any firm conclusions as to
the accuracy of our determination of K Our present
belief is that the small differences we see are mean-

ingful but we are struck by the rather close agree-
ment with the HN prediction for E at a melting tran-

sition that appears first order by every thermodynam-
ic criterion. %e must in some sense be close to the
dislocation unbinding instability when the first-order
transition takes place. A melting criterion based on
Eq. (11.1) may be generally quite accurate. Workers
studying other systems have also found good agree-
ment with the HN melting criterion. ""

XII. FINAL REMARKS

The thermodynamic data presented here seems to
give a consistent description of ihe nature of phase
transition for the r ' system. The observation of a

loop in the P-p isotherm and direct calculations of
the free energy for the solid and fluid phases both
suggest a conventional first-order transition. The lo-

cation of the two-phase region and the coexistence
pressure we find from both methods are in good
agreement with each other. These thermodynamic
data, which involve averages over fluctuations of all

wavelengths, seem to be little affected by equilibra-
tion problems involving long-wavelength fluctuations.
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In addition, trajectory plots of the elongated system
showed the apparent coexistence of fluid and solid
regions at a density corresponding to the center of
the loop in the P-p isotherm. The fraction of fluid
and solid remained essentially constant during a

lengthy simulation, and the two phases persisted as
singly-connected regions for long periods of time.
However, very large fluctuations in the positions of
the boundaries were observed, and this effect sug-

gests a very small interface tension.
The change in the defect structure during the tran-

sition seems to be consistent with a first-order
mechanism of melting with grain boundaries as the
primary defect in the fluid. ' Seldom are dislocations
observed in the crystal, except in the form of oppo-
site pairs separated by less than two atomic diame-
ters. But the fluid contains linear arrays of disloca-
tions that separate regions of fairly well-defined hex-
agonal order.

First-order melting is also suggested by significant
changes in the properties of the system during the
phase transition. A large increase in the mobility of
the particles on melting is indicated both from the
trajectory plots and measurements of the mean-
squared displacements versus time. The Voronoi po-
lyhedron analysis shows a large increase in the
number of atoms that deviate from the sixfold coor-
dination of the perfect crystal. In addition, the corre-
lation functions exhibit significant changes during the
transition.

We do observe large fluctuations in angular order
and a rapid growth of correlations in the ordinary
fluid phase as we approach the two-phase region
identified by thermodynamic arguments. The fluid
near freezing is certainly very well ordered by 3D
standards as is made particularly evident in the struc-
ture factor S(q). A system size larger than that we

have used and still longer run times seem necessary
to characterize the angular correlations in this fluid
and to distinguish unequivocally between exponential
decay with a large correlation length and power-law
behavior. However, we doubt that a larger system
size would have much effect on the thermodynamic
properties, which appear quite stable and reproduci-
ble.

Thus the picture most consistent with all our data
is that of a weak first-order transition which inter-
venes just before the solid becomes unstable to dislo-
cation pair separation. The KT melting criterion
predicts a melting density close to, but slightly below
our estimate on the T =1 isotherm. The interface
tension between the two phases is quite small, as in-
dicated by the small amount of hysteresis found on
entering the two-phase region on the T = 1 isotherm
from the fluid side.

The fluid region very near freezing displays some
very interesting and unusual properties and deserves
further investigation using a larger system size.

There is still enough diffusion that we can reasonably

hope to achieve equilibrium even for long-wave-

length modes with a finite amount of computer time.
Such a study would help resolve the remaining ambi-

guities in the characterization of angular correlations
in the fluid caused by the system size we have used
here.
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APPENDIX A: SCALING AND
THE HARMONIC SOLID

The temperature combines with the pair potential
in the partition function for an inverse power system
only in the combination

pu(r) =pe(a/r)', (Al)

p» po» =—p'a(p=e)"' . (A2)

Systems with the same p have the same dimension-
less excess thermodynamic properties and the melting
or freezing curve is determined by the criterion
p+ =—const. In particular the dimensionless excess
Helmholtz free energy phA /N is a function of p»
only. From the thermodynamic equations

phA

BP N
(A3)

P/tP g PEA

p ap, N
, p

=P

it follows using Eq. (A2) that

P/tP pg PEE
p 2

(AS)

Other dimensionless thermodynamic properties can
be related in a similar way. In what follows we spe-
cialize to n =12.

These scaling laws also apply to the harmonic solid
since the reduced length o-+ can be introduced before
the harmonic approximation is carried out. The ex-

where P= (ksT) ' and the parameters o and e have
dimensions of length and energy. We can eliminate
the explicit temperature dependence by defining o-+

=(Pe)' "o. and rewriting Eq. (l) as Pu(r) =(o»/r)".
The dimensionless excess (over the ideal gas) ther-
modynamic properties then depend only on the single
dimensionless state variable
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cess (i.e., potential) energy of a harmonic system at a
particular density has the form

can also be simply determined. We find

wg2 —157.91p (A14)
AEH AEO

N
(A6)

where Eo is the energy at T =0. The dimensionless
quantity P/((, EH/W must be a function of p» only and
hence has the form

P/t, E
N

=cp, +1=Pep +1 (A7)

/3AH= gln[Pta((k, s)]
k, s

(Ag)

where the sum is over wave vectors in the first zone
and the two polarizations. The excess free energy is
independent of f and the particle mass m as it should
be in classical statistical mechanics since we subtract
from Eq. (Ag) the ideal gas free energy

/3A(/X = In(2rrP pl'/m) —1 (A9)

We have evaluated the harmonic free energy, Eq.
(Ag), using 780 and 3120 points in the first zone and
found the differences where smaller than 10 . Scal-

ing is also very accurately obeyed though not as-
sumed in our program. From this we can determine
the chemical potential, conveniently expressed in

scaling form as

/3d ~H P~PH
P/(pH= +

p

=9.9105 +6 lnp»+ 8.873 69p» (A10)

Wallace ' also gives computationally convenient ex-
pressions for the T =0 elastic constants. Using these
we find

((, (T =0) =15cp7=19.015p

h. (T =0) =27cp7=34.227p7

Finally the Einstein frequency, defined by

(Al 1)

(A12)

wg —— g w'(k, s)
k,s

(A13)

where cis the energy at T=0 and p=1. Evaluation
of the lattice sum gives c =1.26767. The harmonic
pressure is obtained immediately from Eq. (AS).

To obtain the chemical potential for the harmonic
system we must also determine the free energy.
Hence a calculation of the normal mode frequencies
is required. The frequencies w (k, s) for wave vector
k and polarization s(=1,2) are the eigenvalues of
the 2 & 2 dynamical matrix D&(k), which has been
given in convenient computational form by Wallace4'

for central potentials and will not be reproduced here.
The (classical) harmonic free energy is then given by

APPENDIX 8: ERRORS IN THE FREE-ENERGY
ANALYSIS

SP =P(p, ) P(p.-),
Sg = p, (p() —p, (p, )

(81)

(82)

where P(p) and p(p) are our approximate expres-
sions for the pressure and chemical potential. If we
used the exact expressions for P and p, in Eqs. (81)
and (82) then by definition SP and Sp, vanish. To
determine our apparent coexistence densities p+ Sp
we use our approximate expressions and satisfy in-
stead

P(p(+Sp() =P(p, +S,),
( (p(+Sp() =( (p. +Sp.) .

We assume Sp (& p and find to lowest order

P(p() +SC(Sp(=P(p, )+rC, Sp, ,

p, (p, ) +z(- = p, (p, ) +z, Sps

pr ps

(84)

where I(' —= (BP/Bp) r and we have used the thermo-
dynamic identity (8(t(/8 p) r = (1/p) (SP/Bp) r. Using
Eqs. (81) and (82) and solving Eqs. (85) and (86)
for Spi and Sp, we find

'(

Sp, SP (Sp, )p, —
E,(p, —p()

(87)
, ps

Sp)

, p!

SP —(Sp, )p,
&((p* p()—

For the I "system we have K, =—50 and

p, —p, =0.02 so the denominators in Eq. (87) and

(88) are near unity.
Equations (87) and (88) show we must determine

I' and p, accurately if we want an accurate location of
the melting and freezing densities. The situation be-
comes much worse for potentials r "with smaller
values of n where the change in density is even
smaller. Indeed this change must tend to zero as
n 2, even if the transition remains first order.

In order to locate the coexisting densities pi and p,
of the fluid and solid phases by thermodynamics we
require equality of the pressure and chemical poten-
tial in the two phases. Here we determine the errors
in the coexistence densities introduced by small er-
rors in our determination of P and p, . If pi and p, are
the exact fluid and solid coexistence densities we de-
fine
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However, we determine p, from integration of the
pressure. If there are systematic errors in P then 5P
and Sp, will be of the same sign and the final error in

Sp from Eqs. (87) and (88) will not be as large as

might have been expected. For example, as argued
in this paper, let us assume that the fluid branch of
the T =1 isotherm has been determined accurately,
but that as we approach the melting density on the
solid branch the pressure is systematically low be-
cause of difficulties in obtaining the proper number
of defects. To get an order of magnitude estimate as-
sume that for densities smaller than some p~, K,
differs from the correct value by an amount SK.
Then 8P =—M'(p, —pt) and &p =—5&(p, pt)lp&. —
Thus, from Eq. (87), assuming the denominator is
unity,

ps

pi=|Pi——
p&,

(89)

A conservative estimate for pi is 1.08; this corre-
sponds by scaling to a temperature T =0.63T at

p =1 and it is hard to believe an incorrect treatment
of defects could make significant contributions to the
pressure at temperatures lo~er than this. Thus the
error in Sp/p, from Eq. (89) is only about 0.1 of the
error in BP at melting.

APPENDIX C: CALCULATION
OF ELASTIC CONSTANTS

Squire et al. have derived expressions for the
elastic constants by considering the change in free en-

ergy arising from an infinitesinal change in shape of
the crystal. The resulting equations contain fluctua-
tion terms and the final result is expressed as the
difference of two rather large and fluctuating quanti-
ties. Similar difficulties arise when considering the
usual fluctuation formula for the specific heat. In the
latter case more accurate results can often be ob-
tained by calculating the energy for a series of nearby
temperatures and numerically differentiating the
result. %e decided to apply a similar approach to the
determination of the elastic constants. These can be
determined from the linear terms relating the varia-
tion of the stress (pressure) tensor to a given finite
strain. This method has the advantage of avoiding
the fluctuation terms and also allo~s us to study such
interesting questions as shear induced dislocation
motion. On the other hand there is the danger of a
very nonlinear response (plastic flow) in the strained
crystal, particularly near the melting transition. How-
ever it is easy to determine from the data if plastic
flow has occurred. %e found for the r "system that
as long as we limited ourselves to small strain (2'/o or
less) we were not troubled by plastic flow even very
near the melting transition.

(R„+L„,Ry+Ly) ~(R„,Ry) (C2)

where I.„and I.~ are the lengths of the rectangular
periodic box in the x and y directions, are now modi-
fied to accomodate a system with uniform shear'.

(r~+ u~Ly, fy + Ly) ~ (fg, fp)

The resulting stress under the given strain u~ can be
determined from the (x,y) component of the stress
(pressure) tensor P~(u~) (Ref. 49)

f0
p + ]&),

(C4)

where ( ) „ is a normalized ensemble average in the

modified system with the given strain u~. The Lame
coefficient (shear modulus) p, is then determined
from the linear term in the stress-strain relation

P~(u~) = ,
'p~uO+(u~2)

%e find the statistical errors in our determination
of p,

~ to be about 3% at a state about half the melting
temperature. %e observe somewhat larger fluctua-
tions near 1 but have made much longer runs there
also. If plastic flow has occurred there will be a sud-
den drop in p, during the course of the MD run.
Using values of u~ of 29o or less we saw no evidence
for plastic flow even at the melting density p =1.006.

To test the HN prediction in Eq. (11.1) we must
also obtain the combination A. + u~. It is simplest to
obtain this assuming that the bulk modulus satisfies .

p
— =) +p,' .BP
Bp

(c6)

One should note that the unstrained repulsive force
system is not at zero pressure as is assumed in many
textbooks. Thus the relation between the effective
Lame coefficients A. and p, used in the HN theory
and the usual elastic constants C&jkI contains extra
terms involving the pressure. This point has been
discussed in detail by Stewart48 and by Wallace45 and
should not be forgotten when using the method of
Squire et al.

In our method we obtain the shear modulus p,
~

directly by considering the stress tensor in a system
with modified boundary conditions and a given
(shear) strain. Thus if R„and R» are the x and y
coordinates of a particle in an equilibrated unstrained
state we apply a coordinate transformation
(R„,R~) (r„,r~) where

f~ =Rg+ Q~Ry & fy =Ry

This produces a system with uniform shear measured
by u~ and the same area as the original system. The
periodic boundary conditions, originally of the form
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Actually there are corrections due to vacancies and
interstitials which in principle cause Eq. (C6) to be
slightly inaccurate at finite temperatures, 50 but these
should be very small for our system. Furthermore
the KT criterion depends much more critically on

determining an accurate value for p,
~ near melting

than it does on X+ p, ~. :%e believe the errors en-
tailed from the use of Eq. (C6) are small compared
to the inherent errors in determining p, as described
above.
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