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Monte Carlo simulations and renormalization-group ideas are used to analyze the behavior of
the antiferromagnetic Potts model and the Ashkin-Teller model in three dimensions. A variety

of continuous transitions, observed in the Monte Carlo data on the antiferromagnetic Potts
model for simple cubic and body-centered-cubic lattices, are found to be consistent with ~-

expansion analyses of these models. A glassy "plastic crystal" phase is observed, along with the

analog of the glass transition in the four-state antiferromagnetic Potts model. An ~-expansion

analysis of the Ashkin-Teller model is found to yield results consistent with those obtained by

Ditzian et al. using series analysis and Monte Carlo simulations.

I. INTRODUCTION

There has been considerable recent work on the
phase transition of the Potts model. ' The ferromag-
netic (F) case has been well studied' ' and it is now
believed that the q-state F Potts model in d =3 for
q «3 exhibits a first-order transition. 4 More recent-
ly, there has been a flurry of activity in the study of
antiferromagnetic (AF) Potts models. Following the
study of the phase diagram of the Ashkin-Teller
model5 in three dimensions by Ditzian et al. , 6 the
four-state AF Potts model being a special case of the
Ashkin-Teller model, Berker and Kadanoff' studied
the AF Potts model using the Migdal approximation
and suggested the possibility of a novel low-

temperature phase characterized by no ordering, but

by algebraic decay of correlations. Subsequently, we
presented the results of Monte Carlo simulations and
e-expansion calculations of the AF Potts model in
three dimensions. More recently, further work for
the AF Potts model in two dimensions has been car-
ried out by Grest and Banavar using Monte Carlo
simulations, by Cardy' using an approximate renor-
malization group approach and by Nightingale and
Schick" using finite size renormalization group ideas,
However, the results obtained in two dimensions are
not clear-cut. Studies of AF Potts models on frus-
trated lattices in two and three dimensions have also
been reported by Grest. "

In this paper, we present a detailed description of
results obtained by Monte Carlo and ~-expansion
studies of AF Potts model and the Ashkin-Teller
model in three dimensions. In addition to details of

the results published in our earlier letter, s results for
the q-state AF Potts model on a bcc lattice are
presented for the first time.

%e find that the Monte Carlo technique and the
e-expansion method, awhile each having their own
weaknesses and strengths can be effectively used in
combination to obtain a reliable picture of the phase
transitions in both the AF Potts model and the
Ashkin-Teller model. Our analyses suggest that the
q-state AF Potts model on a simple cubic lattice with

q =3 and 4 order ai low temperatures and are in the
xy and Heisenberg universality classes, respectively,
~hereas the AF Potts model on a bcc lattice orders
for q =3, 4, and 5. The e-expansion results suggest
that if the q =5 AF Potts model has a continuous
transition, it is characterized by cubic exponents. It
is also shown that a glassy "plastic crystal" phase'3
can be realized in the four-state AF Potts model at
low temperatures. Such a phase is characterized by
lack of long-range order and a lower entropy (hence
higher free energy at finite temperatures) than the
ordered phase. An analog of the "glass transition" is
observed on heating the glassy "plastic crystal"
phase. Results of e-expansion studies of the
Ashkin-Teller model are found to be consistent with
those found using series analysis and Monte Carlo
simulations by Ditzian et al. Further, our analysis
clarifies the nature of the various transitions,

In Sec. II we describe the results of Monte Carlo
simulations of the AF Potts model on a simple cubic
and body-centered-cubic lattice. Section III describes
the reahzation of a glassy "plastic crystal" phase'3 in
the AshklQ-Teller model ln d =3 at its four-state AF
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Potts point, while Sec. IV has a detailed description
of the renormalization-group analysis of the AF Potts
model for q =3, 4, and 5 and for the Ashkin-Teller
model.

II. MONTE CARLO

Our Monte Carlo (MC) calculations have been car-
ried out on finite lattices (typically 14 x 14 x 14) with
periodic boundary conditions. The MC results are
subject to the usual qualifications of finite sizes
smearing out the transition and finite times of the
simulation perhaps not leading to true equilibration.
We have, however, carried out a number of runs
starting from widely different starting configurations
and have confirmed the equilibrium nature of the fi-
nal states. All our simulations have made use of a
single spin-flip sequence with both the trial spin and
the final possible state of the spin being chosen at
random. We also carried out simulations in which
the final state of the spin was chosen at random, but
where we moved sequentially through the system to
locate the trial spin. Both methods gave the same
results. Simulation times are measured in units of
MCS/spin where 1 MCS/spin refers to each spin in
the system on an average having 1 spin-flip trial (re-
gardless of the outcome of the trial).

A. Simple cubic lattice

The AF Potts models are described by the Hamil-
tonian

0 J
&v&

T kTX (2.1)

where Si=a, b, c, . . . is in one of q states, Sg. g is the

Kronecker 8 function and the sum is over pairs of
nearest-neighbor spins. The hypercubic lattice can be
divided into two sublattices so that a site on one sub-
lattice has its nearest-neighbor sites on the other sub-
lattice. To determine the ground state, we started
with the q states of the Potts spins assigned randomly
on the lattice sites (corresponding to T = ~) and
lowered the temperature in small steps allowing the
system to equilibriate at each temperature. The sys-
tem acquired a spontaneous staggered magnetization
below T, and ordered "antiferromagnetically. " For
the four-state Potts model, the ordering can be visu-
alized as having two of the four states distributed
randomly on one sublattice and the other two states
distributed randomly on the other sublattice. This
type of ordering leads to a ground-state entropy per
site of ln2. Similarly, for the three-state Potts model,
a simplified view of the ordering has one of the states
on the first sublattice and the other two states distri-
buted randomly on the other sublattice leading to a

I
ground-state entropy per site of —, ln2.

(2.2)

where a, b, and t. are the q states of the Potts spin, I
and II are the two sublattices, and N is the total
number of spins. The dependence of the order
parameter on the temperature is shown in Fig. 1.
Figures 2 and 3 show plots of the internal energy and
the specific heat for both the q =3 and 4 cases.
The cusps in the specific heat near the critical point
suggest small negative values for the exponent o..
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FIG. 1. The order parameter of the three- and four-state
AF Potts model on a simple cubic lattice plotted as a func-
tion of the reduced temperature T/~ J( for a 14 x 14 x 14 lat-

tice.

We find, however, that the system does not com-
pletely order in the above fashion. On occasion,
states of the Potts spins are on the "wrong" sublat-
tice if the surrounding neighbors permit it. This
leads to an unsaturated magnetic ordering even at
zero temperature. Our results indicate that the order-
ing, while having a very high degeneracy, does not
seem to have the high degree of complexity needed
for the arguments of Berker and Kadanoff. 7 The
algebraic order in the low-temperature phase suggest-
ed by them may not be realized in AF Potts models
in three dimensions, but the Monte Carlo results
cannot rule it out categorically.

Monte Carlo simulations suggest continuous transi-
tions for both the q = 3 and 4 cases in three
dimensions. However, the possibility of very weak
first-order transitions cannot be excluded.

The order parameter of the q-state AF Potts model
may be defined to be~
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FIG. 2. Average energy vs reduced temperature for q
equal to three- and four-state Potts model on a simple cubic
lattice for a 14 x14 X14 lattice.

We have also done MC simulation of the five-state
AF Potts model in three dimensions. At zero tem-
perature on a 18 x 18 & 18 lattice, the order parameter
M acquires a value of approximately 0.5. An analysis
of the internal energy as a function of temperature,
however, does not show any signal of a phase transi-
tion at finite temperatures. It seems likely, therefore,
that the five-state AF Potts model on a simple cubic
lattice is paramagnetic at all temperatures with the 0.5
value of the order parameter caused by finite size ef-
fects.

Figure 4 shows a plot of the order parameter M at
T =0 as a function of q in two, three, and four
dimensions. The data were taken on a 60 x 60,

18 x 18 & 18, and 8 x 8 x 8 x 8 lattice in two, three,
and four dimensions, respectively. The results were
obtained by starting from an ordered state (corre-
sponding to M =1) and running for 400 MCS/spin
and averaging over the last 300. However, longer
runs for q = 3, 4, and 5 in d = 3 were made and the
results were unchanged. It is interesting to note that
essentially the same results were obtained for the
cases (d = 3, q =4) and (d = 2, q = 3) for smaller
lattices (10 x 10 x 10 and 36 x 36, respectively), both
by cooling slowly from T & T, and by starting in a
perfectly ordered state at T =0 suggesting that the
ordering is not a finite-size effect. Figure 4 shows
that the magnetization is unsaturated even at zero
temperature, as states of the Potts spins are on the
"wrong" sublattice if the surrounding neighbors per-
mit it. This becomes less likely as d increases and
therefore M approaches unity as d increases. From
these results, we also see that as d increases T, A 0
for larger values of q. For d =2, q =2 is the only
case where low-temperature order is possible, howev-
er for d =3, q = 3 and 4 are also ordered. For d = 5,
q =3, 4, 5, and 6 appear to have T, &0, while T,
probably vanishes for q ~7.

We also studied the Ashkin-Teller model, for
which the four-state Potts model is a special case.
The Ashkin-Teller model can be considered to be a
simple cubic lattice with two Ising spins o- and s sit-
ting on each lattice site coupled by the Hamiltonian

8 JgX(~&~J+ I J)+ g a;a JS;SJkT kT (~) kT (IJ)

(2.3a)

=K2 X(a,a J+SSJ) +K4 Xp, ;IJJ (2.3b)
(~J& (sJ)
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FIG. 3. Specific heats of the three- and four-state AF
Potts model as a function of reduced temperature.
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FIG. 4. The order parameter M at T =0 vs q for dimen-
sion d 2, 3, and 4. Note that for a given q, M increases
with increasing d.
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FIG. 6. The order parameter of q equal to three-, four-,
and five-state AF Potts models on a bcc lattice plotted as a
function of reduced temperature Tli Ji for a 2000-site iat-
tice.
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FIG. 5. Phase diagram of the Ashkin-Teller model in

three dimensions obtained from series analysis and Monte
Carlo simulations (from Ref. 6). The Baxter phase has

(o), (S), and (o.S) nonzero. The (oS) and (oS)„F
phases have the (aS) product ordered ferromagnetically
and antiferromagnetically, respectively, whereas the a- and S
spins are disordered. In the (o ) phase, the symmetry
between the o and S spins is broken spontaneously and only
one of them is ordered ferromagnetically. The product
(oS) is disordered in the (o) phase. G is a tricritical point,
F is a critical end point, and P is the four-state FPotts point
(see Ref, 6). The line HI is believed to be first order.

simple cubic lattices with each site having eight nn

sites. Unlike the fcc lattice' and the triangular lat-
tice' in two dimensions, there is no frustration in the
bcc lattice. This combined with a larger coordination
number than the sc lattice leads to much fewer de-
fects in the bcc q-state AF Potts model at T =0 than
in the corresponding sc lattice. For example, the or-
der parameter M at T =0 for both the q = 3 and
4 models on a bcc lattice is around 0.99. Another
consequence of the larger coordination number in the
bcc case is that the q =5 model clearly has a phase
transition at a nonzero temperature. In this case, the
low-temperature ordering may be visualized as having
two of the five states distributed randomly on one of
the simple cubic lattices and the other three states
distributed randomly on the other simple cubic lat-
tice.

Figures 6 and 7 show the order parameter M and
the internal energy as a function of temperature for a

where p, ; = 0-;SI can take on the values + 1 and the
interaction J2)0 is chosen to be ferromagnetic. The
phase diagram of the Ashkin-Teller model was re-
cently determined with use of series analysis and
Monte Carlo simulations by Ditzian et al. ' and their
results are presented in Fig. 5. The case E2=E4 cor-
responds to the four-state F Potts model and
E2 = —E4 corresponds to the four-state AF Potts
model.

E(T)
tJl

0.8-

0 g

B. Body-centered-cubic lattice
0.0 0.5 l.o l.5 2.0 2.5

%e have also investigated the q-state AF Potts
model (with nn interactions only) on a bcc lattice.
The bcc lattice may be viewed as two interpenetrating

FIG. 7. Average energy vs reduced temperature for q

equal to three-, four-, and five-state AF Potts models on a
bcc lattice for a 2000-site lattice.
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2000-site lattice for various values of q. The magnet-
ization curve was reproducible both on heating and
cooling. The q =6 model develops a "magnetiza-
tion" of -0.5 on slow cooling to zero temperature.
It is unclear whether this implies a nonzero transition
temperature or whether it is a finite-size effect. %e
find no signal of a phase transition in the internal en-
ergy and heat-capacity data, which suggests that the
finite lattice is the more likely possibility. Figures 6
and 7 suggest the three-, four-, and five-state Potts
models all undergo continuous transitions at a finite
temperature. A weak first-order transition cannot be
ruled out, however.

III. GLASSY "PLASTIC CRYSTAL" PHASE

A plastic crystal' is a material which is translation-
ally ordered and rotationally disordered at high tem-
peratures. On cooling slowly, the molecules compris-
ing the plastic crystal undergo rotational ordering
below a characteristic melting temperature T . How-
ever, on quenching a plastic crystal suddenly from a
temperature above T, it is possible to obtain a glassy
plastic crystal phase in which the molecules are
frozen in a state with no long-range rotational order.
On heating such a glassy plastic crystal, a transition
analogous to the glass transition is observed. The
glassy phase is a state with higher internal energy
than the equilibrium ordered phase but can be stuck
in a metastable situation for very long periods of time
because of internal energy barriers inhibiting rotation
ordering.

The three- and four-state AF Potts models on a sc
lattice order in the low-temperature phase. It is pos-
sible, however, to realize a glassy "plastic crystal"
phase' in the four-state AF Potts model or its
Ashkin-Teller analog (E4= —E2) by quenching sud-
denly to zero temperature from the paramagnetic
phase. It is convenient to consider the Ashkin-Teller
model since the order parameter M is unambiguous
and is given by either (o), (S), or (oS)~p. The
Ashkin-Teller model (E4=E2) was quenched from a
random state (corresponding to T = ~) to
T =0(kT,/12=2. 9). We then did a random search
and attempted to flip either S, o-, or 0-S at each site
to lower the internal energy. In most cases, the sys-
tem reached a ground state with energy E = —3J2
after about 40 MCS/spin. It was possible, however,
to continue flipping some of the spins even after
reaching the ground state without changing the inter-
nal energy. Attempts at flipping only S and cr after
quenching from the random state resulted in the sys-
tem being unable to reach a ground state after hun-
dreds of passes through the lattice.

A number of such glassy ground states were con-
structed starting each time with a different random
configuration at high temperature ( T » T, ) and a
different random number sequence. In a few cases,
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FIG. 8. Time evolution of the order parameter M on
heating one of the zero-temperature glassy states (Sample 1)
from T =0 to (a) T/Jz=2. 0, (b) 1.5, (c) 1.0, (d) 0.8, and

(e) 0.7 on a 14 x14 X14 lattice. For these temperatures, M
quickly reached its equilibrium value obtained from slow
cooling.

the system was found to acquire a nonzero value
(above the noise level) of (o ), (S), or (crS) ~q in
the first 40—50 MCS/spin after the quench, while ap-
proaching the ground state. These runs were not
used in our studies of the time dependence of the or-
der parameter as equilibrium was approached. In-
stead, we used only those glassy states in which all of
the three order parameters had a value less than 0.15.
The glassy "plastic crystal" states at T =0 were then
raised to various temperatures T ( T, (kT, =2.9J2)
in order to study the "plastic crystal" glass transition
and the time dependence of the decay to the ordered
state.

Figures 8 and 9 show the time evolution of the or-
der parameter M in two typical cases on heating to
various temperatures belo~ T,. The order parameter
Mcorresponds to either (o.), (S), or (o.S)Ap
depending on which one happens to grow fastest. It
is not necessary to specify which one of the three or-
ders, since a simple change of variable maps one into
the other. On raising the temperature of the zero
temperature glassy phase to T & 0.8J2, the system
becomes ordered after only approximately 300
MCS/spin. This time is substantially 1'ndependent of
temperature for T &0.8J2. However, when Tis
raised only to 0.7J2, the time necessary to obtain or-
der increases to approximately 1000 MCS/spin, as
seen in curve (e) of Fig. 8 and curve (c) of Fig. 9.
%hen the final temperature is raised to just 0.6 J2,
the system takes —1500—2000 MCS/spin to obtain
order. For a lower final temperature T & 0.5J2, the
system does not order in our observation time
( —3000 MCS/spin). Curve (d) of Fig. 9 shows the
time evolution of (o), (S), and (aS)At on heating
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FIG, 9. Time evolution of the order parameter M on
heating a second glassy state (Sample 2) from T =0 to (a)
T/J2=1.0, (b) 0.8, (c) 0.7, and (d) 0.5 on a 14 X14X14 lat-

tice. For case (d), all three order parameters (o ), (S), and

(oS)„Fare shown. Though these fluctuate significantly,

ordering does not occur, even for runs up to 3000
MCS/spin.

IV. RENORMALIZATION-GROUP ANALYSIS

A. Antiferromagnetic Potts models

The first step in a conventional renormalization-

group analysis is the construction of an appropriate

to 0.5 J2. Even though each one sometimes acquires

an instantaneous value of up to 0.3, significant order-

ing does not set in. For all of the glassy states stud-

ied, raising to T & 0.5J2 left the system in a glassy

state. However, raising T & 0.6J2 always produced
ordering within our maximum observation time of
—3000 MCS/spin.

These unusual properties of AF Potts models may

be related to the fact that domain walls in such
models do not cost any internal energy. However,
their construction entails a loss of entropy propor-

tional to the area of the domain walls. It seems likely

that, in the Ashkin-Teller model at E4= —E2, the

nature of the glassy phase is not associated with any

topological disorder but with internal energy barriers

leading to very long equilibration times at very low

temperatures. In particular, it is possible that a

multi-spin-flip MC sequence will lead to a more rapid

decay of metastable states facilitated by the motion of
domain walls.

The three-state Potts model is not a good glass

former in d =3. %hen the system was quenched
from T = ~ to 0, after only a few hundred passes

through the lattice, the system always acquired a

mell-defined "antiferromagnetic ordering" of the type

described in Sec. II.

dy exp( ——p8 p +xy) . (4.1)

For compactness the quadratic forms have been ex-
pressed in scalar form. In applications x and y are nX
component vectors with components x; and y; where
1 ~ i ~ N labels the lattice sites and
xi =(x;i, . . . , x;„).In that space 8 is a symmetric
positive definite matrix.

As is well known' the three-state Potts model

(q =3) can be described in "spin language" in which

case the spin vector s at each site can point from the
center of an equilateral triangle to one of the three
vertices. Kith that constraint the reduced Hamiltoni-
an for the q = 3 Potts model can be written

00=——= QES; Sg,
(v)

(4.2)

it is easy to see that this model is equivalent to the
one given earlier.

The partition function for the q =3 Potts model
can be expressed as

Z cc d"crexp( ——'o"K a. ) ]gTr'exp(a; S;) .
oo 2

i 1

(4.3)

The trace in Etl. (4.3) is over the allowed values of S,
according to the constraint described above. Hence
the transformation has taken the system described by
a discrete degree of freedom S; and replaced it by a
continuous tmo-component vector 0-; controlled by a
new weight function. ' The effective reduced Hamil-
tonian becomes

- —10=——, a"E o. — u (a;) (4 4)

e
—'4r( VP) Trre VP (4.5)

For a renormalization-group calculation near four
dimensions one expands to fourth order in o- and
finds

—w(a) =-(a) + a ——o a ——(a. ) +—1 ~ 2 1 3 1 2 1

4 24 X 8 X

(4.6)

as general symmetry arguments suggest. For the fer
romagnetic model the third-order terms are responsi-
ble for driving the transition first order. "

Landau-Ginzburg-Wilson Hamiltonian. This can be
done using symmetry arguments or systematically
through the use of the Kac-Baker-Hubbard transfor-
mation, ' which is useful in transforming a model
with discrete degrees of freedom to one with continu-
ous degrees of freedom. The transformation relies
on the identity

exp( —,'x8x) = [det(2m8)] ti'
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The same analysis goes through for the q =4 state
Potts model. In this case the original s degrees of
freedom are restricted to the vertices of a regular
tetrahedron. The weight function for the three-

component 0- spins is then

—w(a) =
2

a' —a„aya —,) (o„+ay+a ) +

where

or. (R) =—$o t.(k)e'" ", 'L =I, II . (4.10)
k

In this last relation N is the number of sites, R is one
of the sites, and k runs over the Brillouin zone of the
I sublattice. The eigenvalues are just

X+(k) = Eo + E (k) (4.11)
(4.7)

where terms higher than fourth order have been
dropped. Once again this general structure follows
from symmetry arguments, and the third-order term
drives the ferromagnetic transition first order.

The new feature of the antiferromagnetic models is
the additional symmetry imposed by the sublattice
structure. When that is included the third order
terms become "harmless" and one must examine the
nature of the transition. To carry out the Kac-
Baker-Hubbard transformation' in this case, it is
necessary to add to the interaction matrix K an
amount KpI, where Kp is a suitable positive constant
and I is the unit matrix and subtract a compensating
constant from H. This is to ensure that

where E(k) is the Fourier transform of the original
interaction matrix Ett in (4.2). Instead of having one
mode for each wave vector in the original Brillouin
zone with the peak in the quadratic interactions oc-
curring at the zone edge, the new description has two
modes for each wave vector in the new zone with ex-
trema moved to the zone center.

The three-state Potts model reduced Hamiltonian
then becomes

X[V+(k) I
a +(k) I'+ u (k) I

o. (k) I']
2N k

„$[aL(&)]'
R,L

Kp=K+Kpi (4.8) P3a,„(~)aL,(~) —a' (R)]+
R,L

(4.12)

+a (k) = (a&(q) + an(q)],
2

(4.9)

is a positive definite matrix.
We consider a hypercubic system of two sublattices

I and II. We formally consider this to be a lattice
(say the I sites) with a basis. The quadratic form

—,( a"Eo o ) is then easily diagonalized essentially by

transformation to the coordinates

where

v+(k) = 1 1

) +(k) 2

= c++e+(ka) 2, k 0 (4.13)

a being the lattice spacing. The terms involving
o L(A) are easily expressed in terms of the normal
coordinates 0. . The three-state Potts Hamiltonian
then becomes

$~~+(k) I a+(k) I'+~-«)
I
a (k) I']

k

/[3 o'+(o'y+) 2+ 3 a+(a y )2+6a„ay+a'y (o +) 3 —2a'+(o „—) ]242 a

XI[(a' )2] +[(a ) ] +6(a+) (o ) +6(oy) (oy) +2(a'+) (oy) +2(o )2(o'y+)2
R

+ 8 az o'z ay ay ] + (4.14)

where it should be recalled that there are two spins
a and a associated with each lattice site R (or
wave vector k). The analysis to this point is exact;
the dots in (4.14) indicate terms higher than fourth
order.

The standard treatment of this system near four

dimensions would proceed as follows. For K (0 in
(4.2), the antiferromagnetic case, one observes that
the "mass" c in (4.13) is smaller than c+ so that, as
expected, the staggered mode cr is the critical mode.
The noncritical mode cr is stablized and in the
paramagnetic phase which we consider, it can be
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imagined to be integrated out. This will generate new
terms involving the ordering mode c7 . The crucial
point to notice is that no third-order terms of the
type (a„)or a„(a~)' are generated. If they were
generated the conventional analysis ~ould strongly
suggest a first-order transition. Higher-order terms
symbolized by the dots in (4.14) also do not generate
such dangerous terms.

Hence for the purpose of studying the universal
features of a reduced Hamiltonian like H3 one would
be faced with a general n =2 model with fourth-order
anisotropy. The familiar flow diagram corresponding
to the model reduced Hamiltonian

H = — [-, [(Va )'+r(a )']

+u(a„+a ) +u(a„)(o- )'I (4.15)

is shown in Ref. 16. To 0(a) in d =4 —a dimen-
sions" an isotropic fixed point v'=2u'= Q(a) ex-

ists, but for v/u & 6 the transition goes first order.
Hence conventional analysis suggests that if the
phase transition is continuous one expects xy-like
behavior, with associated cusp in the specific heat,
i.e., C —t with" —0.2 & 0. & —0.01. This is in
rough accord with the Monte Carlo data reported in
Sec. II. Of course the possibility of a first-order tran-
sition exists; a complete analysis of irrelevant vari-
ables would be required. If one simply ignores all the
nonordering components o. in (4.14) the resulting
Hamiltonian H3 is isotronic. The isotropic fixed point
has a domain of attraction; one would hope that in-
tegration over the nonordering fields and inclusion of
irrelevant variables perturbatively does not move the
Hamiltonian far from isotropy.

The situation with the four-state Potts model is
similar. The same sublattice decomposition diagonal-
izes the quadratic part, and for E (0 the staggered
mode is again the ordering mode. The third-order
term a„o.ro., in (4.7) becomes

Xo't„(R)atr(R) a) (8) + Xau„(R)auy(AR) an (8) =—$(o +ar+a++ a+ar a, + or+a„a + g +g „g)
1

R

(4.16)
Once again there are no terms of the form (o„)'or (o„aro.„).The fourth-order part becomes

--, y(( )'+(, )'+(, )'+6[( +)'( )'+''+''l+( ')'+( ;)'+(,+)'j
R

(4.17)

In this case if all nonordering '+' variables are sim-

ply ignored one finds that the starting effective
three-component Hamiltonian is of the form

H= —
J [ —[('7a)2+r a 1+u(a4+ar4+a4) Ix

The flows take the starting Hamiltonian to the Ising-
like tricritical point. ' ' In this case irrelevant vari-
ables and the general class of nonordering com-
ponents must be considered carefully to determine
whether the transition goes first order or to the iso-
tropic Heisenberg (n =3) fixed point. The Monte
Carlo data suggest the latter, from the cusplike
specific heat in Fig. 3. This is a case where extreme
caution is necessary; a naive lowest-order integration
of the nonordering modes would suggest that the
transition goes first order.

A similar analysis of the five-state Potts model
leads to a n =4 continuous spin Hamiltonian with
isotropic quadratic terms and anisotropic quartic
terms. The antiferromagnetic symmetry, as in the
previous cases, leads to the third-order terms becom-
ing "harmless. " The lowest order in e for n =4, the

Heisenberg and cubic fixed points coincide with each
other. An analysis suggests that the cubic fixed
point, in this case, has a domain of attraction and
that if the transition in continuous, it is characterized
by cubic exponents. It is, of course, possible that, as
in the simple cubic lattice in d =3, there is no phase
transition at any temperature, i.e., the system can be
paramagnetic at all temperatures.

S. Ashkin-Teller model

The Ashkin-Teller model, described by Hamiltoni-
an (2.3), has exceptionally rich behavior. The phase
boundaries in d = 3 arising from Monte Carlo and
high-temperature series6 analysis are shown in Fig. 5.
One may again construct a Landau-Ginzburg-Wilson
Hamiltonian from symmetry arguments or proceed
systematically using the Kac-Baker transformation. "
Let us first assume that K2 and E4 are both positive
(ferromagnetic) so that in reciprocal space, for small
wave vector k, E2(k) & 0 and K4(k) ~0. We will

modify the arguments for &4 (0 (antiferromagnetic
p, interaction) below. The Kac-Baker transformation
yields
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ZAr~ „~ d"Xd"Yd Zexp[ —3(XK2'X) ——,(YK2'Y) —3(ZK4'Z)] ffTrs, exp(SIX&+Oi Y;+p&ZI)
I

(4.19)

Hence for each site of the lattice three new continu-
ous variables X;, Yl, and Z& are introduced; the trace
over the original o.l and S& variables yields a new
weight function

Z.—w (X,, Y,,Z, ) = ln 3 [e ' cosh(XI + YI)

tonian combine, yielding

$»«) [Ig+k) I'+
I g-(k) I']

2N k

Xo,(k) lz(k) I'+ —,
' Xz(g,'- g2)

k i

+ e 'cosh(X; —Y&) ]

For convenience redefining

J2Q+=X+ Y

for each site i, one finds to fourth order

(4.20)

(4.21)

——,', X(g,'+ Q'+2Z4+6Q,'Q'),
I

where

v2(k) = —1 + e2(ka )',T
TO

j

v4(k) =
0

—1 +e4(ka)3
T4

Here we have defined

(4.23)

(4.24)

—-'g'g'+ —'z(g,' —Q') + (4.22)

—w =-,' (g+'+ g' + Z') ——„(Q+'+Q') ——„Z' ks T3 = 2dJ3 = 2d (ke TK3)

ksT4 =2dJ4=2d(ksTK4)
(4.25)

Note the appearance of a third-order term. The gen-
eral structure of (4.22) could also be determined by
various qualitative arguments.

The quadratic parts of the effective reduced Hamil-

so that T2 and T4 are reference or mean-field transi-
tion temperatures. Furthermore e2 and e4 are of or-
der unity and positive. We now discuss the qualita-
tive behavior of a model described by (4.23), which
we rescale, rename variables, and write in standard
form

H = —
J [('7(r„—)3+ ( V o y )3+ (V 0', ) 2 + r (0'„+0'y2) + r ( 0,) ]

[C](0»+0'y) +C30'»Oy + C30'g C40'»(0'» Oy2) ] +4 x
(4.26)

where the initial values are c2=6ci, c3=2ci, and
c4 =—12ci.

(i) Ferromagnetic case, K2 » K4 & 0

ci =c& —
2 c4 ( la'»I )

cr -C2+C4 (I~*I') ~

where

(I~.l') = J"
2
",(I~.«)l')

(4.27)

(4.28)

In this case the Z variable (or 0,) is noncritical
( T40 « T20) and can be integrated out. In (4.26) r,
is considered O(1). When K4=0 the transition is
Ising-like and this is consistent with the ratio
c3/c3 =6. After simple integration over the o, vari-
able one finds

After integration c2/ct ) 6, which suggests the tran-
sition has gone first order. The usual qualifications
about the necessity for considering irrelevant vari-
ables should be made. For sufficiently small E4
there is some confidence since @4=0 is an Ising
symmetry point.

(ii) K4 » K2 & 0

Suppose, now, that K4 is very large. Then the Q+
(or 0, O.y) modes will be noncritical and can be in-
tegrated out. The main effect of such integration will
be the renormalization of r, occurring at O(c42);
there will also be a renormalization of c3 at O(c4 )
yielding c3 =c3—c4I, where I is positive. Hence for
large K4 the first transition is expected to be Ising-
like as suggested in Fig. 5. The transition involves
ordering of u„which traced back to the original
Ashkin-Teller variables, implies ordering of the prod-



uct variables p, =So.. The reduction of c3 suggests
the possibility of a classical tricritical point, we shall
return to this below.

Maintaining the situation E4 && K2 & 0 we go into
the p, -ordered phase at least moderately far from the
Ising line FB in Fig. 5. We shall then determine
whether at lower temperatures s and 0- ordering can
sct in. Wc stabilize thc 0 phase by writing
a, = m, + o „with (o,) =0 and introduce this shift
back into (4.26). If we are mode~rately far from the
Ising line FB the c, fluctuations are not too impor-
tant, however, the ordering breaks the rotational
symmetry of the 0.„,Oy system. One finds the qua-
dratic terms modified to read in part

[(r +2c4m, ) or2+ (r —2c4m, ) o 2] . (4.29)

This suggests the possibility of ordering in the oy
system, leading to the presence of a second Ising line
at large E4/E1. This is the line GC in Fig. 5. In the
original variables the line corresponds to s and 0 or-
dering.

cza„a~coupling). This suggests the possibility of a
classical tricritical point, which presumably corre-
sponds to point 6 in the phase diagram.

A similar analysis applies to the line FB separating
the paramagnetic phase from the o-,-ordered phase.
As has been noted above, integration of the o-„and
0 y degr ccs of freedom reduces the effective coupling
c3 in the effective H(o, ). There could, in principle,
appear a tricritical point on the line B in which case
the merging of boundaries at Fwould be an ordinary
triple point. The numerical results suggest that the
line FB remains Ising-like all the way to F making the
latter a critical end point. Since the reduction of c3
appears at 0(c4 ), one might expect that the appear-
ance of a tricritical point on line FB is less likely than
on FC as discussed above. Although the results
would not be conclusive it is possible to make esti-
Inates, within the framework of an e expansion, of
the locations of the special points F and G.

(iv) Antjferromagnetie case, E4 & 0

(II/) RadNClllg A g/E2

%c now consider the possibilities Rs E4 is de-
creased (but remains positive). Consider the second
transition line Gc correspondi, ng to cry ordering.
Near the phase boundary we have

H rr(ar) = J' ( [(Va'r)2+(r+2cgm )ayz]

+C1a,'), (4.30)

where c» arises from renormalization by integration
of the stabilized o-, modes. To lowest order one has

c 1
= c1 ——cg — - - —,,—, (4.3l)d'k 1

(2a) (r +12c m'+k')

and a further reduction of c» occurs because of the
noncritical a, modes (i.e., by integrating out the

X+=X»+XII (4.32)

For positive E2 and negative E4, the potentially or-
dering components are X+, F+, and Z . Prior to
elimination of nonoI'dcI'Ing modes but aftcl' some rc-
scaling and renaming, the Hamiltoman becomes
schematically

We now turn to the case E2 & 0 and E4 & 0. We
have already noted that the point A (E4=0), is an
IS111g (decoupled) polIlt.

For negative E4 we must add a constant to make
the matrix Eq with elements positive definite [see
(4.8) above]. Henceforth we consider E4 to be a
positive-definite matrix. The analysis proceeds exact-
ly as in the Potts models: the lattice must be divided
into two sublattices and each of the transformed de-

grees of freedom X, F, and Z will have normal and
staggered components, e.g. ,

J3-[ o( +y )+ o( -+y-)+ o( +x +y y )+ Oz + Oz +c oz+z ]
k, e,p

+x[c70x+y+z++csoz-(x+y-+x-y+) +c90z+x y ] (4.33)

where e =x, y, z, and p =: +. The complexity of the
interaction term arises from subjecting the weight
function (4.20) to the appropriate sublattice decom-

position. Note there are no third-order terms of the
sort x+y+z which contains three ordering corn-

ponents.

Now we imagine integrating out nonordering com-
ponents. Terms of the form x+x generate new x+
couplings as well as modifying the propagator. More
interestingly the third-order terms generate new quar-
tic couplings: c70x+y+ and cso(x+z' +y+z'). Hence
we are led to a study of the following three-
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component Hamiltonian written in standard form

H = ——Jl' [( 7o„)2+(7(ry)2+r((r2+trr2)]

——,
'

J [(Vtr, )'+r,o2].

J [ct( 0'g + try ) + c20'g c)cr~trr
X

—c~tr 2(a 2+ t2r)r] (4.34)

fi) 1K&I ))K2

fit) )K4[ «K,
Recall that @4=0 is a decoupled Ising transition

(point A on Fig. S). If E4 is small and antiferromag
netic analysis of (4.34) suggests that o, is noncritical
and cr„and o-„arethe ordering modes. Integration
over the a, degrees of freedom yields a two-
component effective Hamiltonian of the form (4.15).
This n =2 Hamiltonian has been studied in great de-
tail. ' There is a domain of stability of the isotropic
fixed point v'=2u' at which point XF-like exponents
are found. ' This suggests that the critical line AH is
an XY-like line having appropriate n =2 exponents.

(iii) Increasing ( Ks(

The effective Hamiltonian (4.1S) technically
speaking has a bicritical point corresponding to the
symmetry v=2u. ' Changing from v & 2u to v & 2u
the nature of the ordered phase changes: in the
former case the easy axes are the diagonals in spin
space, while in the latter the ordering occurs along
the x and y axes in spin space. This bicritical point
appears even in mean-field theory where a first-order
line must separate the two types of ordering. This is
a somewhat uninteresting bicritical point even within
the framework of renormalization group: both criti-

Tracing back to the original model the suggestion is
that the product variables p, = s o- order antiferromag-
netically; this corresponds to o., ordering in (4.34),
where o„and 0-„remain noncritical. Here at large

~K4~ one expects an Ising line separating disordered
and p,-ordered states. Presumably this corresponds to
line DE in the phase diagram of Fig. 5.

cal lines and the bicritical point itself have XY-like
(n =2) exponents, and the phase boundary passes
smoothly through the bicritical point itself. This is a

prototype example of the way in which irrelevant
variables (u, when u = 2u ) influence the nature of
the ordered phases and the phase diagram.

This discussion leads to the identification of the
point H in Fig. 5 as the bicritical point discussed
above.

Continuing to increase ~E4~ we reach the point E
at E4= —E2. This is known from alternative analysis
to be completely equivalent to the antiferromagnetic
four-state (q =4) Potts model. From our analysis on
the q =4 model above we expect that the point E
corresponds to an isotropic Heisenberg (n =3) point.
From the Ashkin-Teller model viewpoint E becomes
a bicritical point at the meeting of XFand Ising critical
lines. Returning to our effective Ashkin-Teller re-
duced Hamiltonian (4.34) one sees that n =3
behavior is possible (when the o „or,and o, com-
ponents all order simultaneously). Apparently the
coupling coefficients c~, etc. , put the system in the
domain of attraction of the isotropic fixed point.
Note the cusplike shape of the critical lines meeting
at E. The scaling predictions of Fisher and Nelson'
are expected to hold in the vicinity of E.

This concludes our analysis of the multicritical
points and phase boundaries of the Ashkin-Teller
model as originally determined by Monte Carlo and
series expansion methods. Our aim here has been
to show how the general structure determined by
these techniques is consistent with that of a
renormalization-group analysis. Renormalization-
group ideas have allowed the identification of the
multicritical points and the nature of the phase boun-
daries. No attempt has been made to make numeri-
cal estimates of the locations of various points and
boundaries. The reverse problem of determining the
specific Ashkin-Teller phase diagram from the
renormalization-group analysis probably cannot be
done completely unambiguously; the analysis here
shows the general necessity of having the interplay
between the various techniques.
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