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X-ray scattering from liquid 3He-4He mixtures
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Structure factor of liquid He mixtures of 3He concentration x =0.11, 0.20, 0.24, 0.26, 0,31,
0.35, and 0.40 at T =1.7 K have been obtained experimentally by x-ray scattering. The struc-

ture factor shows a lowering of the peak height and a shift to smaller momenta in its position

for the increasing He concentration. Furthermore, it presents some fixed points of scattering

momentum at which the values of the structure factors are not influenced by the variation of
He concentration. In order to aid the understanding of the origin of these fixed points, a sim-

ple model which is an extension of the Bogoliubov theory to the mixture has been constructed.
The structure factor calculated on this model shows a good agreement with the experiment.

The fixed points in the model turn out to be at interaction-free momenta.

I. INTRODUCTION

A liquid He mixture provides us with an interest-
ing boson-fermion system both as a Bose system
which exhibits superfluidity in the presence of fer-
mions and as a Fermi system with variable Fermi
temperature, It forms an actual stage on which the
validity of the many-body theories of strongly in-

teracting bosons and fermions are tested. Various
thermodynamical and hydrodynamical experiments
have been made on this system, but we are still miss-

ing some basic information such as the dispersion re-
lation or the structure factor of the system. As for
the dispersion, there has been a discrepancy in the
experimental evidences between that derived from
indirect measurements, such as the velocity of fourth
sound, ' the normal fluid density, ' and the ion mobili-

ty, ' and that observed by a more direct one, such as
Raman scattering ' and neutron scattering. ' The
indirect measurements suggested a shift' of the He
roton energy by mixing 'He atoms while the latter
denied such a shift. Theoretical work has attributed
the erroneous roton energy shift to the unsuitable as-
sumed shape of the He excitation spectrum "used
in the analysis and/or to the hybridization effect of
'He and He excitations. " Recently Lucke and
Szprynger' have constructed a semiphenomenologi-
cal theory concerned with the density fluctuatjon
spectrum of a dilute mixture of 'He in He II in which

they stressed the significance of the change in the
structure caused by mixing. By using our experimen-
tal S(k) data" as an input, they succeeded in the
quantitative explanation of the neutron result on the
energy shift of the excitation spectrum from that of
pure He. Structure factor of the liquid He mixture,
therefore, can be partly an important quantity which
gives us useful information on the excitations of the
system.

In a previous paper" we reported on our study of
the x-ray scattering from the 6.3 at. '/0 and 13.2 at. '/0

liquid He mixtures. The study has been developed to
a wider range of He concentrations and we will re-
port on its details in this paper. In Sec. II we
describe our experimental setup and measuring pro-
cedures. Results obtained are discussed in Sec. III.
In order to understand the behavior of the obtained
structure factors we carry out a model calculation and
it is compared to the experimental result in Sec. IV.

II. APPARATUS

The apparatus is basically the same as that used in
our previous study" except for several refinements
such as a sample cell or a data storage system.

In Fig. 1 we show the cryostat and the gas handling
system. The stainless-steel metal Dewar contains
about 2 1 of liquid helium and the temperature of the
sample cell can be lowered to about 1.6 K by pump-
ing the sma11 pot just above the cell. The beryllium
x-ray windows of thickness 0.2 mm were attached to
the Dewar with epoxy resin. The sample cell (Fig. 2)
is constructed with a beryllium cylinder (thickness
0.3 mm, 15 mm o.d.) which was attached to the
oxygen-free highly-conductivity copper (OFHC) lids
with supertight epoxy resin. '

The x-ray beam was derived from the line source
of a Rigaku-denki D-9C (copper) x-ray tube. Its
automatic-voltage regulator (AVR) has a stability of
output voltage and current fluctuation within +0.1'/0

against the 10'/0 deviation of the input voltage and
output fluctuation within +0.1'/0 during the continu-
ous operation of 24 h. The incident x-ray beam was
Cu Ea (A. =1.54 A) produced by the tube operation
at 35 kV, 14 mA and was detected by a scintillation
counter after passing a 15-p.m nickel filter with which
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FIG. 1. Cryostat assembly.
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the E/3 contribution was reduced to 1% of the Kcx

contribution. Collimation was accomplished by
means of a 4.9' Soller slit, "a 1' divergence slit, a 1'
scatter slit, and a 0.4-mm receiving slit. The angular
resolution was measured to be 0.17 A ' at q =0.6
A ', 0.10 A ' at q =2.0 A ', and 0.08 A ' at q = 3.7
A '.
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FIG. 3. Data collection system.

The data collection system is shown in Fig. 3. The
scattered beam detected by a scintillation counter
(SC) was converted to voltage pulses, which were
then amplified to enter the pulse-height analyzer
(PHA). The following dual counter/timer has two

operating modes: fixed time mode (FTM) and fixed
counts mode (FCM). We made use of the FCM and
the data were collected four times at each angle. Col-
lected data were sent to a Canberra PDP-11 mini-

computer and were stored in its core-memory. After
this the scattering angle was changed by use of a
stepping motor where the scattering angles were pro-
grammed previously.

III. RESULTS AND DISCUSSION

The liquid structure factor is related to the mea-
sured x-ray scattering intensity I through the expres-
sion

SOLDER
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CVLINDER

FIG, 2. Sample cell. A beryllium cylinder (thickness
0.3 mm, 15-mm o.d.) is attached to the OFHC lids with

super-tight epoxy resin.
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where p and T are the number density and the
transmission coefficient of the liquid under study,
and o-, and 0-I are the elastic and inelastic scattering
cross sections. Ib p~, and T~ are the same respective
quantities for pure liquid He whose structure factor
Sq is known to us. In Eq. (1) the scattering cross
sections are assumed to be equal both for He and
'He atoms, and they are obtained from the work of
Kim and Inokuti. ' Transmission coefficients T and
T~ are calculated from the x-ray mass absorption
coefficient (p, /p =0.383 12 cm'/g) of He atoms and
the number density of the sample liquid.
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One experiment consists of three stages:
(a) empty-cell scattering, (b) liquid "He scattering,
and (c) sample liquid scattering. These three steps
were followed for every sample liquid, and for the
first two, not only their relative differences but also
each of their absolute values appeared reproducibly
within statistical errors. In Fig. 4 we show the ob-
tained net intensity, (c)—(a), of the liquid He mixture
(open circles). The height of the peak is lowered and
its position is shifted to the smaller momentum
transfer for increasing He concentrations. The
dashed and solid lines represent the smoothed value
for each liquid He mixture and liquid "He, respective-
ly. In order to obtain a good approximation to the
functions, the data were classified into three regions
regarding momentum, i.e., a low-momentum, a
middle-momentum around the peak, and a high-
momentum region. In each region, a fifth-order po-
lynomial was computed to fit the data using the
least-square method. As we can see in the figure the
mismatching of the neighboring functions was within
statistical errors, and they are negligible.

The smoothed values are then put into the I and I~
in Eq. (I) to give us the structure factor in Fig. 5,
where the obtained structure factors are shown for
three representative He concentrations. For the
values of S~ we adopted the neutron data by Cowley
and Woods. Error bars on the plot of x =0.?1
structure factor were estimated from the statistical
deviation with each of the (c)—(a) intensities
described above and do not contain the systematic
ones propagated from the S~ data. Because the ine-
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FIG. 4. Net scattered intensity from liquid He mixture.
The dashed and solid line represent the smoothed value of
the intensity for each liquid He mixture and each liquid 4He,
respectively.
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FIG. 5. S(q) for liquid He mixture. S(q) value for x =0 (solid line) is normalized to the neutron result for pure liquid 4He

by Cowley and Woods (Ref. 20).
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(2a)

(21)

lastic scattering becomes dominant in the total inten-
sity for q & 3.0 A ', the structure factor had to be
calculated from the small difference between large
quantities which resulted in an increase of errors. As
pointed out at Fig. 4, effects of the 3He atoms can be
characterized as the lowered peak and the shift to-
wards the smaHer momentum transfer of the peak
position. The former can be understood by the larger
zero-point energy of the He atoms while the latter
by the increase of the interatomic spacing due to the
extended volume of He atoms. In Fig. 6 we show
the x dependence of the peak height Sm,„and its po-
sition q,„. The solid line represents the calculated
results of the uniform dilation (UD) approximation
in which the system is assumed to be enlarged uni-
formly by a factor of [p(0)/p(x) ]' in length. In
this approximation a replacement of q with a new
scaled momentum transfer q'= (p'/p) '~

q will give us
a new structure factor for the dilated system, S'(q')
=S(q). It follows that

Smax Smax

q ',„=(p'/p) t~'q,„.

As can be seen from the figure, however, the experi-
mental results of not only q,„but also S~,„turned
out to be decreasing with respect to x. In addition,
the experimental results of q,„seem less dependent
on x than that of the UD theory. These tendencies
of S~,„and q,„are quite analogous to those in pres-
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FIG. 6. S(q) peak height (a) and its position (b) as a
function of x. Experiment (open circles) sho~ed a notable
decrease in peak height and a slight shift to the smaBer mo-
menta in its position. The solid lines represent the calculat-
ed results of the uniform dilation approximation (UDA) in

which the system is assumed to be enlarged uniformly by a
factor of [p(0)/p(x) j ~~3 in length.

O.3
X

FIG. 7. R(q~x) for liquid He mixture. (a) R(q)x) vs q.
One can see an oscillatory behavior about the nodes of fixed
points. (b) R(q ~x) vs x. Solid lines are drawn by linear ap-

proximation of the data.
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surized liquid 'He in an opposite sense. Henshaw"
has studied the pressure dependence of the structure
factor of liquid He by means of a neutron scattering.
In this case S,„and q,„increased with the increas-
ing pressure and the latter was less dependent on the
pressure (or density) than that of the UD theory.
The increase and decrease in S,„correspond to the
localization (pressurized liquid 4He) and delocaliza-
tion (liquid He mixture) of the atoms in the liquid,
respectively. This effect also explains the rather
small deviation of q,„ in both experiments. There-
fore effects of pressurizing and mixing 'He atoms on
liquid "He stand opposite to each other with respect
to the localization and delocalization of the atoms in
the system.

One of the other features of the structure factor in
Fig. 5 is the fact that the curves seem to cross each
other at several "fixed points. " To see the behavior
of the structure factor more explicitly, we have calcu-
lated the ratio

8 (qix) =S(qix)/S(q i0) (3)

shown in Fig. 7(a). The 8 (q ~x) possesses several
features as follows:

(I) There exist two characteristic moments q~ and

q2, and 8 (q) presents an oscillation as

R(q) «1 for q ~q~
R(q) ~1 for qt~q ~q2,
8 (q) «1 for q «q2 .

(2) The values of q~ and q2 are nearly independent
of x.

(3) The amplitude of the oscillation is an increas-
ing function of x. The third feature can more clearly
be seen in Fig. 7(b) where the x dependence of
8 (q ~x) for various values of q is given. The solid
lines in the figure were drawn by linear approxima-
tion of the data.

The values of S(q ~x) and R (q ~x) are listed in

Table I.
In Sec. IV we present our model calculation with

an aim to explain the above-mentioned features of
our experimental result.

IV. ELEMENTARY EXCITATION MODEL
CALCULATION FOR A

BOSE-FERMI MIXTURE

o)x (q, o)) =x (q, cu)

x (q, ~) = $[~.(p+q) —~.(p)lxg(q, ~), (Sb)

where e (p) =tt2p2/2m . In the derivation of Eq. (5)
we used the random-phase approximation (RPA) in

which only the terms associated with k = q in the in-

teraction summation are left to survive awhile the
product of two parameters in a commutator is re-
placed by its expectation value.

In order to close the set of equations, we again
consider an equation of motion of the new Green's
function

Although various theroretical work has been
focused on the static and dynamic structure of this
system, no prediction has ever been made concerning
our observed fixed points of the structure factor. In
this section we construct a simple model called
binary-boson approximation (BBA) which is basically
an extension of the Bogoliubov" theory to the mix-
ture case. It is often pointed out that the Bogoliubov
theory corresponds to the lowest-order calculation of
dynamical" or variational" theory. %e show that
our model well explains the experimental result in
spite of its simplicity.

%e adopt the same Hamiltonian that we used in
our previous paper [Eqs. (4a) —(4d) in Ref. 15]. Next
we consider a partial-density Green's function
representing the correlation between the partial-
density fluctuation of 'He or He atoms and the
total-density fluctuation defined by

x4(t) = —tO(t)([p4(t), p, (0)]) (~=3,4), (4)

where O(t) is the unit function [O(t) =1 for t )0,
8(t) =0 for t (0]. The angle brackets represent a
ground-state average for T =0 and a statistical en-
semble average for T ~0. This partial Green's func-
tion satisfies an equation of motion which is Fourier
transformed to be

&ox (q, cv) = $[e (p+q) —e„(p)]coxg(q, s&)

1 1

+ W
=2e.(q)1V„+ $ e (q)'+a4p'q p q q xg(q. ~)+2m. (q)- v(q)x(q, t0)

P m~ 0 (6)

where W represents the total number of He atoms.
The term t (p q/m ) (p + q) q/m on the right-
hand side is considered to have the order of t'q2/m
x (average kinetic energy of He atoms). For bosons
(a =4) we can neglect this term on account of the
Bose-Einstein condensation. In fact, for pure bosons

[

this neglect corresponds to the Bogoliubov approxi-
mation and the resulting solution has a pole at the
bogolon energy. For fermions (a=3) no condensa-
tion in momentum space can be expected. But even
in this situation a comparison with other terms allows
us to neglect this term up to x =0.4 in a relatively
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low-temperature region.
This approximation consequently squeezes the fer-

mions' particle-hole continuum into a discrete single
mode as if it were a boson branch. In this sense we
call this a binary-boson approximation (BBA).

The final equations obtained are

30

X(q, Cd) = X'(q, Cd) + X'(q, Cd),

Cd X'(q, ~) = X" (q, m),
I

cd X (q, cd) =2e4(q) N4+ a4(q ) X (q, cd)

+2e4(q) v(q) X(q, cd)
N4'

0
~X'(q, Cd) = X' (q, Cd),

cd X' (q, cd) = 2&3(q)N3+ ~3(q) 'X'(q, cd)

+2«3(q) v(q) X(q, cd)
N3

0
They are easily solved to show

(7a)

(7b)

(7c)

(7d)

Be)

20
c9
lX
LU

hl

10

1.0
q(A )

2.0

X( q, cd ) = X"( q, cd) + X'( q, cd)

X'(q, cd) =2&4(q) N4 2 2 2, (gb)
Cd f3(q)

Cd Cd+ Cd Cd—

X'(q, cd) =2~3(q)N3
2 2, (8c)

Cd —64( q)

Cd Cd+ Cd
—

Cd

where

cd'+ =-,' (E4(q)'+E3(q)'

+ ([E4(q) —E3(q)] +4V3 V4j' ), (9a)

E ( q) = [a (q) '+ V' ] '~' (9b)

V.' =2«.(q) v(q) (9c)

S(q) = —JtS(q, cd) dcd,=1 (10)

S(q, cd) =—— Imx(q, cd)
1 1

m 1 —e-"/'

On introducing small imaginaries in the denominators
of Eqs. (8b) and (8c), the Green's functions are
found to have a 8-function singularity in its ima-
ginary part. Hence, the integration in Eq. (10) for

If we put cc. =4 in Eq. (9b), the bogolon expression
reappears. In Fig. 8 dispersions that are obtained tell
us that these two modes are a consequence of mutual
interactions between mass 4 and mass 3 bogolons.
The excess kinetic energy of mass 3 atoms inhibits
the formation of a rotonlike minimum in its disper-
sion at x =1.

The structure factor is connected with the density
Green's function through

FIG. 8. Dispersions of a Bose-Fermi mixture obtained
from BBA calculation.

absolute zero is easily carried out to give the result

As a check, if we put x =0, Eq. (12) is reduced to
C ' —]./2

S(q[0) =Sp(q) = I+4m4 v(q)/Ir'q'
N4

0

(12)

(13)

This is the simplest theoretical expression for the
structure factor of a Bose system which is produced
by connecting the Bogoliubov excitation spectrum
with the Bijl"-Feynman' relation. Therefore the ex-
pression obtained in Eq. (12) is associated with the
extension of both theories to the mixture case. In
order to calculate the structure factor we have to set-
tle the interaction potential v(q). Here we adopt the
soft-core-square-well potential

V„O&r &a
v(r)= Vb a(r(&

0, r&b
C

(14)

which appeared in the theory of Sunakawa et al. ' Its
comparison with the Lennard-Jones 6-12 potential is
shown in Fig. 9 for a =2.5 A, b =4.5 A, V, =40 K,

S(q ~x) = [xe3(q) + (1 —x) «4(q) ]
1

OJ++ GJ

+-«3(q) ~4(q)
[xs4(q)+ (1—x) «'3(q)] .
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60- —Lennard-Jones
15-

4,0

e

IX
UJz 20-
LU

soft-core-
gquare-welt

0-

-20

2'.O

&.0
1.0 2.0

a(A-')
40

FIG. 11. BBA calculation of S(q ~x) for a Bose-Fermi
mixture. One can see the fixed points of scattering momen-
tum at which S(q ~x) values are independent of x.

FIG. 9. Interaction potentials of He atoms.

and Vb =4.S8 K. This choice of the values of the
parameters of the potential gives us the pure boson
structure factor of the form shown in Fig. 10 which is
in good agreement with the neutron data by Cowley
and Woods. Figure 11 shows the calculated struc-
ture factors for several values of the fermion concen-
tration. The most characteristic feature of the result
is the fixed points below and behind the peak at
which the values of the structure factors are all exact-
ly equal to unity.

In Fig. 12 the ratio R (q ~x) which is defined by
Eq. (3) is shown for this model. Curves are seen to
oscillate about the nodes of the fixed points from
8 & 1 to R ( 1 and again to 8 & 1 with its ampli-
tude being an increasing function of the fermion con-
centration. When we compare Fig. 7(a) with Fig. 11,
we can conclude that this simple BBA model repro-

duces quite well the qualitative behavior of the struc-
ture factor of liquid He mixture for various fermion
concentrations.

Physically, the fixed points which appeared in the
BBA model correspond to the zeros of t (q). As we
stated at the beginning of this section, our BBA is a
kind of lowest-order calculation in which the struc-
ture factor is expressed by means of local interactions
in the momentum space. Hence, as far as the mo-
menta associated with the zeros of v(q) are con-
cerned, atoms behave like ideal particles to give us an
obvious result, that the structure factor is equal to unity
which is independent of the fermion concentration.

On the other hand, experimentally obtained values
of the structure factor at the fixed points are
S(qt) =1.25 and S(q, ) =0.97, respectively, and they
differ from unity. These discrepancies are thought to
originate in the absence of higher-order terms in our
theory. In fact, the role of the higher-order effects

1.5- X=0.4

1.0

0.5 n (Eq.(&.3))
oods(neutron) 0S-

1.0 2.0 . , 3.0
a(A ')

FIG. 10. S(q) for pure liquid 4He.

4.0
3.01.0 2.0

a(A ')

FIG. 12. BBA calculation of the ratio R (q ~x).
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can clearly be seen in the case of pressurized pure
liquid 4He. When we vary the number density
p(=N4/II ) in the Sp(q) expression [Eq. (13)] as a
parameter, we obtain a quite similar behavior of the
structure factors as those in the BBA theory; they
also exhibit some density-independent fixed points at
their interaction-free momenta. Evidence of these
fixed points in the pressurized liquid He is presented

I

by the inelastic neutron scattering experiment by
Dietrich et al. although only single-excitation con-
tributions were taken in the integration of S(q, co) to
S(q). For a more complete S(q) theory, Mihara and
Puff have constructed a nonlinear integral equation
for the S(q) of ground-state 4He in which nonlocal
interactions, namely, the higher-order effects, are in-
cluded:

1

a(k)
S(k)

= e(k) +2pe(k) v(k)

d3 A

+—
l [v(k+q)[k (k+q)]' —v(q)(k q) )[S(q) —1]

m " (2m)'

It is easy to see that the inclusion of the higher-order
effects does not influence the position in q of the
fixed points but shift the value of S(q), since the p
appears solely at the local interaction term in the
equation. As another nonlocal theory, we consider
Massey's' variational calculation for the structure of
liquid He. By using a Jastraw-type wave function
and Bogoliubov-Born-Green-Kirkwood- Yvon
(BBGKY) equations, he calculated the g (r) of a Bose
liquid by means of a variational method in real space.
In Fig. 13 we show our result of the Fourier transfor-
mation of the Massey's g (r) for various values of p.
We can see several fixed points. Moreover, the posi-
tion of the fixed points at both sides of the maximum
shows quantitative agreement with our experimental
result as shown in Table II. The interaction potential
used in Massey's calculation is the Lennard-Jones 6-
12 potential shown in Fig. 9, which is fairly realistic.
Then the excellent agreement seems to have some
necessity; first, the information extracted from the
position of the fixed points for both parameters, x

t5-

I

and p, are after all related to the two-body interaction
potential of helium atoms. And second, this interac-
tion potential is believed to be the same for both
helium isotopes.

Structure factor theory for a liquid He mixture has
been developed by Massey, Woo, and Tan (MWT). '0

They extended the variational method of Massey' to
a mass 3-mass 4 boson mixture case and obtained
partial radial distribution functions gt +(r),
g""(r), and g" "(r) for x =0.06. We have calcu-
lated the corresponding partial structure factor
S 4 (q), S ' (q), and S ' (q). The resulting
structure factor, however, showed a contrary effect of
the 'He atoms to the experimental facts. Figure 14
indicates that the system is more ordered with added
mass 3 atoms than in the pure state. This discrepan-
cy may be attributed partly to the MWT's choice of
the number density value in the calculation; they
used the same p value to that of pure mass 4 boson
system, while as we mentioned above, the role of the
number density in the structure factor expression is
very important. As for the presence of the fixed
points of the structure factor, we can say nothing
from their theory because their calculation is limited
to a unique 'He concentration.

1.0-

05-

TABLE II. Positions and values of the fixed points.
He- He: Experimentally observed value in the present work.

4He: Observed in the structure factors which we obtained
from Massey's theoretical g(r) values.

3He-4He (experimental) 4He (theoretical)

0
).0 2.0

q(A ')
3.0 4.0

FIG. 13. S(q) for liquid 4He under various values of
pressure which has been Fourier transformed from the
theoretical result of g(r) by Massey (Ref. 29).

S(q, )

S(q2)

1.95
1.25
2.9
0.97

1.96
1.23
2.92
0.94



4602 MAKI SUEMITSU AND YASUJI SAVfADA

1.0 ~

1.0 2.0
q(A ')

3.0 4.0

FIG. 14. S(q (xl for mass 3-mass 4 boson mixture for
x =0.06, which has been calculated from Massey-Woo-Tan's
(Ref. 30) theoretical result of the partial radial distribution
functions.

Campbell" extended the M%T theory to a more
complete one including multiphonon interactions.
His result, however, does not give us any explicit x
dependence of the structure factor. At present, there
seems to exist no theory which gives us the x depen-
dence of the structure factor especially concerning the
presence of the fixed points. More detailed theories
would be necessary for a full understanding on this
point.

The evaluation of the condensate fraction no in the
mixture is also of great importance. Hyland, Row-
lands, and Cummings" have argued the role of the
condensate and noncondensate atoms in the spatial
correlation of the atoms for superfluid He and have
proposed a simple expression of the temperature
variation of the radial distribution function at large r,

Their basic idea is that the spatial correlation is

formed solely by noncondensate atoms. Recently,
Robkoff, Ewen, and Hallock 3 (x ray) and Sears and
Svensson34 (neutron) experimentally obtained the
condensate fraction no in superfluid He with the aid
of this expression. In liquid He mixture, however,
'He atoms which are noncondensate by their nature
rather disturb the spatial correlation because of their
larger zero-point motion, as we have seen in our ex-
periment. The separation of the two, i.e.,
condensate-induced and 'He-induced, mechanisms of
the delocalization of atoms and the following deter-

mination of no is left to the future research.
To conclude, we have first measured the x-ray

scattering intensities from liquid He mixture and
have obtained its structure factor which sho~ed the
following characteristics: with increasing 'He concen-
tration (l) the peak position shifted to lower momen-
ta, (2) the magnitude decreased around the peak and
increased below and behind the peak, and (3) there
exist at least two fixed points of scattering momen-
tum at which the magnitude is not influenced by the
variation of the 'He concentration.

In order to understand this behavior of the struc-
ture factors, we have carried out a simple binary-
boson-approximation (BBA) model calculation. The
model manifested all the three above-mentioned
characteristics of the structure factor, and the x-

independent fixed points in this model were found to
be at interaction-free momenta. Although the lack of
information about higher-order effects makes it im-

possible to compare quantitatively our experimental
results with theories, a comparison with liquid He
theory by Massey for various liquid densities yielded
an excellent agreement concerning the position of the
fixed points. This fact seems to reflect the fact that
the position of the fixed points for both situations
are, after all, related to the interaction potential itself
and that the interaction potential is identical for both
'He and 'He atoms.

The experimental finding of the fixed points in this
experiment suggest, in analogy to the pressure effect
on the structure factor of pure liquid 'He, that these
fixed points might also correspond to the zero points
of the Fourier transformed interaction potential.
These observations imply the possibility of directly
obtaining important information on the He-He in-

teraction by structure factor experiments.
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