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Spin-polarized hydrogen-helium film system: A surface "polaron"
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Experimental investigations of spin-polarized hydrogen Hg are carried out in a sample
cell lined with a helium film whose purpose is to shield the Hg atoms from magnetic im-

purities in the walls. The purpose of the He buffer is to minimize spin lips which cause
recombination into the Hq molecular ground state and degradation of the sample. In this

paper, we focus our attention on the H&- He film system and investigate the consequences
of allowing the adsorbed Hl atom to interact with a dynamic He surface. The coupling
between the Hl atom and the modes of the film raises the possibility that the atom will

find it energetically favorable to be localized in the plane parallel to the surface of the
film, i.e., to form a H~ polaron. Using a simple model for the atom-film interaction, we

show that polaron production can be important. %e estimate the order of magnitude for
the parallel binding energy and find that it can be comparable to the experimentally mea-

sured binding energy. %'e call attention to the important characteristics of the particle-
film system that influence the size and nature of the polaron; e.g., the effect of evolution

of the film from He to 'He and the consequences of the mobility of the surface modes.
Where polaron effects are important the parallel binding problem and the perpendicular

binding problem are strongly interdependent and cannot be factored. %e then use a sim-

ple perturbation theory argument to calculate the polaron effective mass. %e finally cal-

culate the ripplon-mediated Hl-Hg interaction and show that it is short ranged and at-
tractive.

I. INTRODUCTION

A major experimental effort' is underway to at-
tempt to create long-lived samples of spin-
polarized hydrogen H&. An important element of
this experimental effort is the construction of a
suitable sample space, i.e., a sample space that
minimizes the spin-flip transition rate (since the
presence of "wrong" spin atoms degrades the sam-

ple through H+ H~H2 recombinations). ' 3 The
current generation of experiments form the sample
in a He sample chamber, that is, a chamber vnth
walls covered by a llquld- He film. Thus, one of
the important environments which atoms of the
Ht sample continually visit is the He film surface.
At suitably low temperatures it is quite probable
that the first high-density H$ forms in the vicinity
of the He film surface due to the van der Waals
physisorbed state; also, it is near the surface that
several important spin-fiip mechanisms (forbidden
elsewhere) can operate. Thus, in this paper we
focus attention on the behavior of a Ht atom lo-
cated near the surface of a He film.

Guyer and Miller' and Mantz and Edwards
have calculated the binding of a single H& atom to

the He surface. [The H& is found to be weakly
bound in qualitative agreement with experiment
(see Table I).] In these calculations the emphasis
was placed on properly accounting for the static
surface profile and for the effects of strong short-
range correlations on the interaction energy. Here
we look beyond the Hg static surface picture and
we consider the interaction of the Hl. atom with a
dynamic surface: a surface described by quantized

Expt. 0.93+0.5'
0.25+0.02

0.63
0.1

2.5+0.4'

1.39
1.1

'Reference 7 (H~ on He).
Reference 21 (H1 on He).

'Reference 22.
"Mantz and Edwards, Ref. 6.
'Guyer and Miller, Ref. 5.

TABLE I. Comparison of the calculated and meas-
ured binding energies of atomic hydrogen to the surface
of liquid 'He.
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deformation modes. If the Hl atom is completely
delocalized in its motion parallel to the surface,
then it pushes in the same way on all parts of the
surface with a force at each point proportional to
thc pfobab111ty that lt sits Rt that point, 1.c., pro-
portional to A ' where A is the area of the sur-
face. The Ht atom pushes uniformly on the whole
surface and drives the k =0 mode of the film. If
the Hl atom motion becomes localized in a plane
parallel to the surface, then it pushes on the sur-
face beneath itself with a force that becomes larger
as the atom becomes more loca11zcd. A loca11zed
HJ, atom distorts the surface, drives the finite
wave-vector modes of the film, and exerts max-
imum force on the nearby elements of the surface.
As the Ht atom configuration evolves from com-
pletely delocalized to completely localized the
surface-parallel contribution to the kinetic energy
goes from 0 to + co. Simultaneously, however, the
increasingly localized Hl atom will exert stronger
and stronger forces which will tend to deform the
surface (move it out of the way of the Hl atom)
Rnd 1ead to R f8dQctiof/ 1n thc cncfgy of 1ntclact1on
between the atom and the film. See Fig. l. It is
possible that a compromise between the kinetic en-

ergy expense and potential energy adva~t~g~ of
parallel localization is achieved for a Ht atom of
finite extent in a plane parallel to the surface; i.e.,
there is a Hl "polaron. " It is ihe purpose of this
pRpcl to explore th1s poss1b111ty and 1ts consc-
qucnccs.

It is clear from these brief remarks that the
qualitative and quantitative properties of the film
and the modes it can support are an important part
of this discussion. In Sec. II we write down and
discuss the Hamiltonian we employ to describe (1)
the film and its modes, (2) the Ht atom, and (3)
the H& atom-film coupling. In Sec. III we discuss
the film and its modes. Special attention is
focused on the driving force for the film modes
(the force exerted by the substrate and on the force
due to surface tension) and on the relationship of
the wavelength of the modes to the film thickness.
Both the dispersion relation for the film modes
and the amplitude of the film's response to an
external force driving its modes are influenced by
these details. In Sec. IV we discuss the Hl po-
laron. We make an approximate calculation of its
energy and draw particular attention to the possi-
bility that substantial parallel localization of the
H& induces an important coupling between the per-
pendicular problem (Guyer and Miller, ' Mantz and
Edwards ) and the parallel problem. In Sec. V we

Fi I rn

Potentiol Energy~

Film

Fi lrn

(o)

FIG. 1, H& polaron. In (a) various possibilities for
the parallel structure of a particle are considered. When
the particle is nonlocal, I~+ (x), it has zero parallel
kinetic energy and zero potential energy, (1). The ener-

gy as a function of I is in (b). As it becomes localized
the particle deforms the surface and reduces its potential
energy, as in (2) and (3). When the particle is highly lo-
calized it has large kinetic energy, as in (4). The total
energy could have a minimum in a localized structure
between (1) and (4).

calculate the effective mass of the Hl and discuss
the Hg-Hg interaction communicated by the modes
of the film (it is a short-range interaction because
of the nature of the k~0 modes of the film). Our
concluding remarks are in Sec. VI.

Throughout the text we will talk about the "par-
ticle"; we are thinking about Hg but wc also keep
in mind that the effects we are describing will be
qualitatively similar and perhaps more important
for Dl and Tl and for other free particles that
might reside above the film.

II. ENERGY OF SYSTEM

The energy of the coupled particle-film (PF) sys-
tem is written as the sum of three terms
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and

Ep ——fd'p' f«'
i
V@(x')

i
',2' p

EtF fd p——f '
dz fdx'nV(x —x')

(3)

where a is the strength of the van der Waals in-

teraction between the He and the substrate (the
mobile part of the film is set a distance D away
from the substrate), and (4) the energy associated
with the production of new film surface

Ivr[p{p, t))= -—- (vpj pi )

X i
4(x')

i

These terms are the film energy Er, the particle

energy Ep, and the energy Epr; associated with the

coupling of the particle to the film. They are

described in detail here. In this connection see Fig.
2.

%e take the system to be at suitably low tem-

perature so that the film is at T ~~ T~ and the
~He density (assumed to be uniform) is equal to the

superAUld density. The height of the film at p is

taken to be' (see Fig. 1)

n&(p)=
I
4(p)I'

where g(p) is the complex order parameter of the
film. (We use n to denote the average number den-

sity of the film n =a, a =3.6 A). The three
terms in Eq. (2) for EF are (1) the kinetic energy
measured by the gradient of f, (2) a term propor-
tional to p4, the He chemical potential that deter-

mines the equilibrium film profile (see below), (3)
the energy of interaction of the film with the sub-

Q)~////////////YYYY/PYYYY~

where cr is the surface tension of the He film
(o =0.378 ergs/cm for bulk ~He).

B. Epg, the particle-Alm interaction

The particle-film interaction [see (4)] depends

upon the film profile through h(p) and upon the
wave function for the particle above the film
4(x'). lf we introduce a Hartree-type decomposi-
tion for C&(x ') =p(z')8(p '), then Epz may be divid-
ed into two parts

.Epr ——Vg+ Vi),

where
d

V, =f dz fdz'( V{z—z') ), i
y(z')

i
',

vii=fd'p»(p) fd'p'(v{p p))ii—i@p ) I'. (»

Vi is the interaction of the particle with a static
ickiless d aild Vil is the interaction of th

particle with the modes of the film (the parallel ex-
citations) embodied in

5h(p)—:h(p) —d .

The angle brackets in Eqs. (8) and (9) are defined by

( )i= fd pfd p' i8(p ) i', (10a)

( . . )ii= fd fdz' i(t(z')i 5(z —d), (lob)

where the 5 function in (10b) fixes the film surface
at its eqlllllbfllliil lielgli't z =d [cori'ectiolls oilly ap-
pear as second order in 51i in Eq. (9)]. The perpen-
dicular structure of the particle P(z') is determined

by the z part of the kinetic energy in Eq. (3) and

by the potential energy in Eq. (8),

FIG. 2. Notation. The coordinate systems and vari-
ables used to describe the particle and film are shown.

Ei[p(z')]= fdz' ,-+ Vi .dP
2Pllp Z
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A relatively sophisticated treatment of the perpen-
dicular problem, modeled here by Eqs. (11) and (8),
has been given by Guyer and Miller and Mantz
and Edwards. For the time being we take the per-
pendicular problem to be solved. The parallel
structure of the particle 8(p ') is determined by the

p
'

part of the kinetic energy in Eq. (3) and by the
potential energy in Eq. (9) [which couples 8(p ') to
the parallel excitations of the film]. Below, we
look in some detail at the various terms in Eq. (1).

III. THE FILM

A. Modes of the film

The structure of the film and the modes of the
interacting film (with no particie-film coupling) are
found from Eq. (2).' Upon writing

h(p, t) =d+5h(p, t),
P(p, t) =P()+5/(p, t),

=nh(p, t)

5$(p, t)=v'nd [rt(p, t)+if(p, t)] .
Thus,

EP =nd fd p [(Vrt)2+(~I)'g)2]

(16)

The equations of motion for small amplitude dis-
turbances are found from

5E(2&
i'

dt 5$~

or equivalently,

gE(2)

()t 2nd 5(

fi
Bt 2nd 5q

Thus, we obtain the continuity equation

and then expanding Eq. (2) to second order in 5$,
wc find

where EF ' depends upon d, EF" is linear in 5$(p),
and EP ' is quadratic in 5$(p). For EF" we have

and the equation of motion
T

8 A 3o; a

L

2
Vpq,

PB4

(18}

Ep = — d p JM4+Q
(1) a

3

(13)

where v = Vz(R/2m4)g is the velocity of the fluid in
the film parallel to the surface. Equations (17) and
(18) are combined to yield the dispersion relation
for third sound

where wc have dropped thc surface tcnslon contri-
bution to W. If we take ((t4 as given and set the
coefficient of 5$(p) equal to zero, we find d as a
function of p4, the film thickness is determined by
p4. Use of the value of d from Eq. (13) in EF '

yields the energy that resides in the static film.
The modes of the film are found from the quadrat-
ic term in Eq. (12}. For EP ' we find

E(2i Jd2
~
q5y

~

2

+ —,a — (5/+5/') . (l4)

%C now introduce explicitly the real and imaginary
paris of the order-parameter fluctuation:

'3
N 3Q Q

C —=
k Pl 4

(19)

[We have dropped the second driving term in Eq.
(18).] C3 is proportional to the van der Waals
force on the upper edge of the film C& cc d

In Eq. (19) we have an expression for co(k) when
the film is driven at the upper edge by the van der
Waals force and when the wavelength of the dis-
turbance is long compared to the film thickness d.
%'e will continue to pursue a calculation subject to
these and further specializations. Below we will
indicate how the relevant results are modified to
deal with a driving force due to surface tension
and the effects of the wavelengths which are short
compared to the film thickness.

The modes of the film are quantized by intro-
ducing thc dcfi&itions
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n(p)=X(n»e'"'+n»e '"'}
k

(20)

ei k .p +~+ e i—k ~ 7i}
k

and writing the continuity equation in the form

il» ——k v»/c0». We find from Eq. (16)

(2) 2m4Nk e
(ri»ri»+ n» n» }

»

Upon defining C(k) through ri» ——C(k)a»,
ri» ——C(k)a» we find

&s"=g~»«»&»+ 2»

(21)

(23)

with

C(k) =
4m4lmk

and co» given by Eq. (19). It is useful to note that
Eqs. (20) and (24) lead to

1/2

(a»+a» }e'" ' i' . (25)

We call particular attention to the amplitude C(k)
that relates the creation or destruction of a surface
excitation to ri(p) [or 5h(p)]. The amplitude goes
as v k, C(k) 0: (k /co»), so that 5h(p)~0 as the
wave vector of the excitation approaches zero.
This result is a consequence of the nature of the
driving force in Eq. (16) (i.e., this driving force is

proportional to ii ) and it has important conse-

quences for the form of the film-mediated interac-
tion between adsorbed particles.

As remarked on above, the equations that we

have developed are subject to some specialization.
The essential features of the development are un-

changed when two additional effects are taken into
account. These additional effects are: (1) modifica-
tion of the forces which drive the film to include
surface tension [the second term in W, 8'r from

Eq. (7)] and (2) modification of the flow pattern of
the fluid that occurs as the wavelength of the dis-
turbance becomes comparable to or smaller than
the film thickness. Before we proceed to discuss
the consequences of accounting for (1) and (2)
above, let us pause to define the language we will

use in the developments belo~. It is conventional
to refer to the modes of the film that are driven by
the substrate force on the upper surface as third
sound. "The modes that are driven by the surface
tension and that are at kd && 1 (wavelength short
compared to d) are capillary waves. The quanta of
these surface excitations are ripplons. Those
modes of the film witb wavelengths that are long
compared to the film thickness are shallow modes'

(actually the modes are of a shallow film) and

those with wavelengths that are short compared to
the film thickness are deep modes. The films we
will consider ar'e driven at the upper surface by
forces from the substrate and by the force associat-
ed with surface tension. They can support modes
that have wavelengths that are long or short com-

pared to the film thickness. Vfe refer to these four
possibilities using a language that describes the
wavelength-thickness relationship and the source of
the driving force; i.e., long substrate (I.S), short
substrate (SS), long (surface) tension, (I.T) and
short (surface) tension, (ST}modes. See Table II.
Below we refer to a generic excitation of the film

as a ripplon.
To describe the modes of the film we employ the

hybrid dispersion relation

2

+ k tanhkd, (26)
Pl 4

TABLE II. Notation for modes of a film. A, is the wavelength of the mode and d is the

film thickness.

Old name Driving force

shallow third
sound

deep third
sound

shallow
capillary wave

deep
capillary wave

substrate

substrate

surface tension

surface tension

long, substrate
(L~)

short, substrate
(SS)

long, surface tension
(LT)

short, surface tension
(ST)
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which gives the four limits correctly (n =a ):

LS: a=0, kd(g1, a) =C3k

SS: a=0, kd)) 1, co =Csk/d,

LT: CI ——0, kd «1, co = kd,2= cr(ka )

Pl 4

ST: C3 =0~ kd )p 1~ QP
2= a(ka )

P7l 4

(27)

While the dispersion relation changes its form as
the wavelength and driving force change, the am-
plitude C(k), which relates the creation (destruc-
tion) of an excitation of the film to the amplitude
of the surface [see Eq. (25)] depends only on kd.
%e write the hybrid amplitude

Irik(tanhkd )

4m&¹od

which gives the two limits correctly:

there is a crossover from long-wavelength modes
(kd « 1) to short wavelength modes. Except for
the thinnest films, we always have k1 &k2. Thus
as k increases, the sequence is LS~SS~ST. See
Fig. 3.

We close this description of the modes of the
film with several observations. (1) Both the sub-
strate and surface-tension driven modes are rela-
tively soft. At ka~ 1, fiCIk=3(a/d) ~ && 1 K
for d ~p a. At ka ~1 the energy in the surface
tension driven modes is of order oa =5 K. Dis-
turbances of the surface on a length scale of ordeI
a or smaller may bring into play energies (and
forces) that are quite a bit larger than those that
are found from fico by extrapolating the co in Eq.
(26) to ka =1.' We will sometimes use a k cutoff
at kcI = 1 to examine the consequences of the treat-
ment of the large wave-vector modes; (see, e.g.,
Sec. VB). (2) As k —+0 the dispersion relation goes
unambiguously to m=C3k, the LS mode, and
C(k)-Vk. See the discussion at the conclusion
of Sec. VI.

SS,ST: kd ))1, C(k) =

The various limiting forms exhibited here Eqs. (27)
and (29) can be derived by following the steps out-
lined in Eqs. (16)—(24), and incorporating three
modifications: (1) the change from the substrate
driving force to tllc sllrfacc tcIISIOII drlvlng fol'cc
introduces a factor of k in the last term in Eq.
(16), (2) the transition from long-wavelength to
short-wavelength modes changes the kinetic energy
in the flow pattern' (an amount of fluid propor-
tional to k instead of d flows in response to the
forces), and (3) because of the change in flow pat-
tern the continuity equation changes from
5IIk+d(ikuk)=0 to 5hk+k 1(ikuk)=0; i.e, the
Ilk —uk relationship changes [see below Eq. (21).]

The co-k relation in Eq. (26) has two crossovers
as k increases. At

[ 0 I I I I I I I I I I I I I lt

], /2
m4C3

OQ

2
a—=5
G

o o[
G, GI G. i 0

there is a crossover from long-wavelength substrate
driven modes to long-wavelength surface-tension
driven modes; we use m4Cs —3a(a/d), 3ct =10
erg, and 0.=0.38 ergs/cm to obtain the numerical
estimate on the right-hand side of Eq. (30). At

FIG. 3. Crossovers and the dispersion relation. As
described in the text the modes of the film evolve in a
way that depends upon the film thickness d and on the
mode wavelength ka. The crossover lines are shown as
a function of a/d and ka [sec Eqs. (30) and (31)];how-
ever, its precise location depends upon details that can-
not be assessed in general.
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IV. THE PARTICLE-FILM INTERACTION:
THE POLARON

The particle couples to the modes of the film
through V~~ [8(p)] [see Eq. (9)]. In the following,
we shall only consider the linear (one ripplon) cou-

pling terms. Thus, we set 5h(p) =2dg(p) and find

V~~=2.d fd'p&(p)F(p)

d g~—rikF k+rj-kFk»
a k

where

F(k) = ( Voa
~
P(d)

~
)P(k), (40)

5E~~/58" (p) =0 for the optimal 8 can now be easi-

ly obtained, We shall, however, take a less direct
route which may better illustrate the essential
physics.

Let us consider a simple contact interaction

V(x —x ')= Voa35(x —x ')

to describe the particle-film potential. With this
form, we obtain from Eq. (33)

F(p)= fd P (V(P P ))(( I8(P) I'
2 —+

yF i k —PAk" (33)

P(k)= fd pe'" i' ~8'(p)
~

(41)

is the form factor for the parallel wave function.
The potential Uo[8] can be written:

V~~ =g[E(k)ak+E( —k)ak],
k

(34)

If we now substitute ak and ak as defined below

Eq. (22), we obtain

Uo[8]= —[Voa l(t(d)
~

']'

X
d C'(k)P'(k)
a k fRijk

(42)

where we have defined

E(k) = C(k)F —k,
d
a

(35)

E is easily brought into diagonal form by intro-

ducing the operators bk ——ak+E( k)/ficok. Thus, —
we find

E'= gfrapk(bkbk+ —,)+Uo[8]
k

where

(37)

U [8]=—yE(k) E( —k)-
ACOk

(38)

acts as a single particle potential that can bring
about the parallel localization of the particle. In
competition with this energy reduction is the paral-
lel kinetic energy in Eq. (3). Thus, the parallel
wave function is found from the energy

fi
Eii= fd p i

7 8(p) i +Uo[8(p)] . (39)
2m'

We refer to the problem set by Eq. (39) as the
parallel problem. The Euler-Lagrange equation

and C(k) is from Eq. (28). We now add this con-

tribution to the film energy to find

E'=g[~k«kak+ —, )
k

+.E(k)ak+E( —k)ak] .

In order to assess the effects of localization we
shall use a simple Gaussian form for the parallel
wave function:

1/2

8(p) 2 e
—(&/2)rP2

Using the Gaussian in Eq. (41), we find P(k)
= exp( —k /4) and thus

—[Voa
I
O(d)

I

']'
2PP1p 8~~4( 23

(44)

In the completely delocalized limit y-1/A and
thus E vanishes (it goes to zero inversely as the
area of the system). In order to obtain localization
we need to find a state with E &O. In this simple
model we cannot obtain an estimate for the width

y since both the kinetic and potential energies are
linearly proportional to y. We can, however, ob-
tain an estimate of the value of d =—d, where for
d p d, polaron production becomes energetically
favorable. Thus, from Eq. (44) we find

f2
(mgC3)

2m&a
=8+- '

[Voa
I
P(d)

I

']'
(before we have extracted the d dependence in C3).
We can see qualitatively from Eq. (45) that the
larger the energy cost in localization (-A' /mz) re-



lative to the particle-film interaction and the larger
the energy cost in distorting the surface (-m4C3)
relative to the particle-film interaction, the more
difficult it is to produce polarons (i.e., one must go
to thicker and thicker films). I.et us now use
m4Cs ——3a(a/d ) in (45)

(46)

and using a=25 K (glass substrate), a =3.6 A and

V a ~~~~(d)
~

~=2 K we find d, /a=5 —6 layers. InVoa
2F' 4 lot E~~ as a function of ya and d/a for

the above values of the various parameters. At a
given localization the binding energy decreases

with increasing film thickness. This behavior re-

flects the softening of the ripplon spectrum wit

0.20

De loco l ized

increasing d (m4C3-d ); i.e., the thicker the
film, the easier it is to distort the surface.

From the discussion here it is clear that if the
long wavelength modes of the film alone are in-

volved, then a polaron will form for suitably thick
films. The size of the polaron will be comparable
to the size of the modes that support it (i.e., to the
wavelength of the modes to which the parallel
structure of the particle is coupled). If the long
wavelength modes alone are involved, then the po-
1 'll become larger and larger as the film isalon wi

illthickened and its binding energy to the film wi

become smaller and smaller. Such a polaron is not
much different from a free particle. However, we
are looking for the possibility of parallel localiza-
tion that involves energies that are important to
th rf ce problem, i.e., energies that are of theesu a

e. . IK.order of the surface binding energy, e.g.,
From i' k /2m~ =1 K, k=10 cm ', we see that
important polaron effects occur if the particle can
couple advantageously to modes of the surface at
ka =1, i.e., to the short-wavelength modes of the
surface. The elasticity of these modes, the measure
of the forces the film brings to bear to prevent dis-
tortion, is much larger than that of the long-
wavelength modes, and is independent of the film
h' k Important polaron effects will occur i

the potential energy

Q. l 5

1 1 I I, lG
Q.Q 0.2 QA 0.6 0.8 l.Q

2+0

FIG. 4. The parallel binding energy E~~ [Eq. (44)j us-

ing a aussiaG ussian for the Hl distribution function, as a
2function of film thickness d/a and localization a . Us-

ing the ~al~es V&&~
~
4)(d)

~

'=2 K and a =25-K (layer)',
we find po aron pr uf d 1 oduction energetically unfavorable for
d/a &6 layers. For thick films, localization can lead to
values for E~I of the same order of magnitude as the
measured (Ref. 6) binding energy 0.9 K.

[Voted(d)']'
Uo ——

o.a

is greater than the kinetic energy i)i /2m&a . This
potential energy drives the particle toward the po-
laron state and depends importantly on the charac-
teristics of the system: (1) Hl on "He and H& on
He have different values of p(d) a. Tl, for exam-

ple, on the average resides closer to the "He surface
than Hl, etc., and (2) by considering a He- He
mixture one can adjust the surface tension in a
continuous manner between the two pure limiting
cases. In addition there are considerations of
another genre. The modes of a He film are fast
and undamped so that the particle and its "dress-
ing" can move together. The short-wavelength
modes of a He film are overdamped, however, and
the particle &nay have to leave the modes of the
film behind in order to move.

Finally we note that the potential energy that
gives advantage to parallel localization fEq. (44 ] is
driven by P(d) a, the probability that the particle is
on the surface. This probability is governed by the
perpendicular problem, Eq. (11). Thus, the perpen-
dicular problem, Eq. (11),and the parallel problem,
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Eq. (39), are not independent. In this paper we
will not attempt to deal with the coupled parallel-
perpendicular problem using the detailed numerical
methods which were employed in the relatively so-

phisticated treatments of the perpendicular prob-
lem alone. We will be content here to draw atten-
tion to the physical ideas that underlie a discussion
of the binding of a particle to the He surface with
a simple model of the important relationships.

Hqo
I p —q;q J, (52)

etc. If we keep only the single ripplon states, then
the wave function, in first-order perturbation
theory, can be written

H~o ——e' q ' ~ E( —q), (53)

V. THE PARTICLE

A. The effective mass
(p —A'q)

+COq

2m'
(54)

In the development above, attention has been
focused on the coupling of a particle above the sur-

face to the modes of the surface and on the poten-
tial energy that results from this coupling. Our
picture has been that of a single static particle
above the surface. We find that this particle may
couple strongly enough to the surface to cause
parallel localization and an attendant localized sur-
face distortion, as seen in Fig. 1. When the parti-
cle moves it carries this localized surface distortion
along, and as a consequence, it has an effective
mass. To estimate this effective mass we shall use
a simple perturbation theory approach. '

From Eqs. (23) and (34) we can cast the
particle-film problem in the operator form

The second-order energy shift is thus given by

IH;o I

'

2m'

az=sE'"+SE"'+ (56)

Aq pkq
q+

2m' mp

We shall only consider the case of slow atoms (i.e.,
no Cerenkov behavior} and thus we can develop
AE in a power series in p:

where

ao+Il

Ho ——gficok(akak )+
k 2m&

H'=g[E(k)ak+E( —k)ak],

(48)

(49)

where AE'2"' is proportional to p
" and we shall

omit terms of higher order than p . In order to
compute AE, we need a specific model for the
F. (q) in Eq. (S5). For simplicity we shall use the
contact potential which was introduced in Sec. IV.
Thus, from Eqs. (3S), (40), and (41):

(57)

g-'=0-„10)=
I
p;0 I (50)

which denotes a state with no ripplons (10) is the
film vacuum) and a hydrogen atom with momen-
tum p (9- is now a two-dimensional plane wave

P

state). We can proceed by building a basis with to-
tal momentum p and increasing numbers of rip-
plons:

the ak (ak) create (destroy) ripplons, p is the hydro-
gen atom momentum operator, and we have
neglected the zero-point term in Eq. (48). The
eigenfunction of Ho can be written

with the Gaussian form in Eq. (43} for the parallel
wave function. This form of the wave function is
appropriate to the unperturbed state g'-' in the
limit ya « 1; i.e., for a state of modest parallel
localization, for which only the long-wavelength
modes of the film are important. To be consistent
with this we have taken coq ——C3q. Substituting
Eq. (57) in Eq. (55) we find

(58)

and
0- kak10) =

I p —k;k I,
9-

k 7aka~ 10)=
I p —k —1;k, 1 I,

(51) gE(2) Uo 2

+0((ya ')'),
2m'

(59)
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where Uo is the parallel potential defined in Eqs.
(39) and (44). Thus, the energy for the parallel
problem can be written

Uo p2+ Uo+
2Plp ~ C3 2m'

from which we can extract the effective mass m~,

1/2

+0((ya ) ~'), (62)
I Uol 2 3/2

gC yl/2

(63)

a measure of the degree of localization.
%e have consistently described the physisorbed

atom as a "slow" particle. Let us consider this for
the case of a well-localized particle; then, we may
simply ask whether the large k modes of the film
can keep up with the particle. Using the ST
dispersion relation co =sr(ka) /m4, we have

' 1/2

u(k) =— (ka)
Nl4

2
m&C3 a m~C3

2

I'oa
I 4(d)1 '

d
3Q a

which is to be compared to the particle velocity

u~(k)=, = —, (ka) .Ak fi

m& m& a
(64)

The effective mass increases with increasing film
thickness, which reflects the fact that the surface
of a thicker film can be distorted more easily than
that of a thinner film. Note, however, that Eq.
(60) is valid only for uery thin films. For films
which are more than a few layers thick, the energy
shift calculated is greater than the unperturbed en-

ergy. Using the full dispersion relation [Eq. (26)]
and the hybrid amplitude [Eq. (28)] in Eq. (55)
curbs this effect somewhat Never. theless, the ener-

gy shift is comparable to the unperturbed energy
for fairly thin films [d & 10—15 layers, depending
on the estimate of Voa

~
P(d)

~
]. This suggests

that for thicker films the parallel potential energy
in Eq. (9) cannot be treated as a perturbation, and
that its contribution to the binding energy may be
significant. See the remarks at the end of Sec. IV
and in the conclusion. A large surface effective
mass could have extremely important effects for
surface rate processes. '

Following Pines, ' we can use our perturbation
theory results to try to identify the coupling con-
stant for the H-ripplon system. To this end we
calculate N, the average number of virtual ripplons
which follow the physisorbed particle:

The velocities in Eqs. (63) and (64) are plotted as
functions of ka in Fig. 5. (For the purposes of this
figure, we have taken m&

——mz. ) The figure indi-
cates that the particle velocity will be less than the
surface mode velocity for all wave vectors of in-
terest.

S. Thc paxtlclc-psrt1clc intcrsction

We now consider the case of Nz particles ad-
sorbed to the helium surface. In the dilute particle
limit, Nza /A « 1, we may write the distribution
function P(p) as

akak

E(k)

flak p.haikk+
2Alp Eflux

Thus, in the delocalized limit for a slow particle,
we find

FIG. 5. Velocities. The particle velority and the
velocity of the short-wavelength modes are shown as a
function of ka. If the particle is well localized it drives
the short-wavelength modes to form the distortion of
the surface. These modes are faster than the particle
and will not be left behind as it moves.
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P(p) =gP;(p)
Q

(V( — ')) = — gV (k)e

S-=X I
()(p —R )

I

' P;(p )=—gP;(k)e

where the ith particle is located at lateral position
R;. If we now proceed as we did above in the case
of a single ad atom, then the function E(k) intro-
duced in Eq. (35) becomes

The potential U[8] can be written in terms of
E(k) precisely as was done in Eq. (38):

U[8]= —QE(k) E( —K) .
%ok

E(k) =- QE, (k) We can now substitute Eq. (66) into (70) and
separate the diagonal from the nondiagonal terms.
Thus,

U[~] =&p Uo+ Uett(Ri ' ' ' Riv» (71)

F~(k) =—Vii(k)P;(k),

and V~~ (k) and P; (k) are defined by

(67)
where Uo the diagonal piece is the same function
as Eq. (38) and U,tt the nondiagonal piece can be
written

U.tt«i . . R~)= —g'ge ' 'E, (k) E, ( —k) .
i,j k k

U,tt is a particle-particle interaction mediated by the helium surface deformations (i.e., the "mattress' effect).
In order to examine the qualitative features of U,tt, we shall specialize to the case of two ad atoms and

the particle-film contact interaction as introduced above. Then

V~, (k) = V,a [y(d) [',
P

U,tt(R)= — — (Voa
~
P(d)

~ ),—-icos(k R)P(k)',
(2EmgC3) k

where R=R&—R~ is the distance between particles
and we use the same P(k) for each particle [i.e.,
the same y as in Eq. (43)]. Converting the summa-
tion over k into an integral, Eq. (74) can be written

U,rt(R ) =(Uo/try) I dk cos(k.R)P(k)2 . (75)

(Note, the quantity in parenthesis is independent of
y.) We now consider U,rt in the localized and
delocalized limits.

In the localized limit P(k)-1 for ka & 1. This
condition can by introduced into Eq. (75) by set-
ting P(k) = 1 along with a momentum cutoff at
k =k, ka =1. Then

like E. ~, since

Ji(kR )-(2/irkR )'icos(kR —3'/4) .

(The osciHation in sign is a consequence of the
sharp momentum cut off.) In a thick film we
should take account of the ST contribution to the
dispersion relation [see Eq. (27)]. Thus, we may
substitute

OQI=—
2 a,

Pl 4C3

U,tt(R)=(ZUO/y) Ji(kR) . —k
R

For large kR, this function decays algebraically

(76)

U,tt(R) =(2Uoly) Ko(R/~dl ), —I
(7&)

into Eq. (72) and omit the momentum cutoff. This
yields
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where Eo is a modified Bessel function. For large
separation distances,

Ko(z) —V'n. /(2z)exp( —z),
i.e., the effective interaction is short ranged. For
particles that are close to one another,

R /~ld && 1, U,ii(R ) ~ lnR.
In the delocalized limit, we can return to the

Gaussian model which has P(k) =exp( —k /4y).
Thus,

U ff(R) =2 Uoexp( ——,}R ') (79)

which for yR & &, 1 is an oscillator potential.
[This model could also be applied to the localized
case where the Gaussian would play the role of a
smooth momentum cutoff. Then in contrast to
Eq. (76) U, rr is very short ranged. ]

We note, in passing, that in the limit of a semi-
infinite film i~co since C3~0 [see Eq. (77)] and
thus the surface would seem to become unstable.
This unphysical result has been remarked on by
%'idom' and discussed in detail by Cole. This
behavior is of interest for the thermodynamics of
surfaces but is not of importance for the system we
are studying. It should also be stressed that a cru-
cial element in determining the form of the effec-
tive interaction is the k dependence of the ampli-
tude C(k) [see Eq. (28)] which couples the surface
excitations to surface displacements. The C(k) do
not go like k ' as do phonons and so we do not
obtain a lnR interaction.

VI. CONCLUSION

In this paper, we have described qualitatively the
consequences of coupling a Ht atom to the modes
of a 4He film. The modes of the film (ripplons)
were discussed in some detail with particular atten-
tion paid to how the restoring forces and the rela-
tive depth of the film influence the dispersion rela-
tion co(k) [see Eq. (26)] and the ripplon amplitude
C(k) [see Eq. (28)]. It is clear from the results of
Sec. V that the characteristics and behavior of the
adsorbed system depend importantly on the form
of co(k) and C(k}.

If a Hl atom couples strongly enough to the He
film, parallel localization can occur: i.e., a Hl po-
laron is formed. The strength of the interaction
that makes a localized state stable Uo [see Eq.
(39}],depends upon the (correlated) interaction of
the Hg atom with the surface together with the
elasticity of the surface. Thus, the HL atom is at-
tracted toward the surface by the van der %aals

d

l
4 He Film

C

X7
c

m hJ

h

E~
~ -0.5 K

FIG. 6. Binding energy as a function of He thick-
ness. A He layer, riding on top of a He film, can
respond to the long-wavelength modes of the He film;
it cannot respond to the short-wavelength modes. Thus,
to the degree that the parallel binding of the H& is due
to the short-wavelength modes in the film, this com-
ponent of the binding will go to zero as the film is
thickened.
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force between it and the film V~~(k)~ Voa
~
P(d)

~

(for the contact potential model). This "potential"
depends explicitly on

~
P(z)

~

and couples the
parallel and perpendicular problem (in this same
manner, of course, Vi depends explicitly on

~
P(p)

~

[c.f., Eq. (10)]). Thus, the parallel localization
problem and the perpendicular binding problem are
coupled and interdependent. These two problems
may be taken to be approximately independent if
the energies involved are very different (e.g. ,

Fi » E~~). Our estimates indicate that it is possible
that the energies involved are not very dissimilar
and so this separation is not valid. A measurement
of the Ht binding energy as a function of film
thickness and composition might be very illuminat-
ing in this respect. (Indeed, if polaron production
is occurring, the surface recombination rate might
first decrease with decreasing film thickness. ) An
alternative way to alter the surface modes and thus
probe for the existence of polarons is to add He to
the film. ' ' ' The addition of a He component
tends to soften the surface modes so that one
might expect an increased tendency towards paral-
lel binding. However, although the (normal) He
film will support k p 0 long-wavelength modes, it
probably will not support the mobile large wave-
vector modes that represent a distortion of the
upper He surface. Thus, a thick He film above
He may bind a Hj atom only in the perpendicular

direction (see Fig. 6).
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