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We derive the superconducting density of states N, (co) of an antiferromagnetic super-

conductor in the presence of impurities and spin fluctuations. We use a self-consistent

ansatz for the Green's function 6 and our previous mean-field-theory results. N, (e) de-

pends on four functions of frequency: the renormalized frequency co, gap b, , molecular

field H~, and "pseudogap" Q. Equations for these four parameters are set up in general

and solved for the case of elastically scattering impurities and spin fluctuations. In the

absence of any disorder the density of states has structure at the gap frequency 6 and at
to=

~

Is, +Htt ~, where Htt is the (screened) molecular field. Most of our numerical work

for dirty superconductors is based on a "quasi-three-dimensional" approximation which

appears to be reasonable, although it underestimates gaplessness and overestimates the

strength of the subsidiary peaks at
i is+Hit

~

. We find in this approximation that mag-

netic impurities behave as might be expected but that nonmagnetic impurities can make

an antiferromagnetic (AF) superconductor gapless at moderate concentrations. As the

concentration is increased still further, the nonmagnetic impurities "screen" out the

molecular field, a gap reopens, and N, (co) obtains its BCS value. In the process of solv-

ing for N, (co), we have simultaneously solved the self-consistent equations for 6 (as well

as H~) as a function of temperature T for dirty superconductors. We find that both 5
and the thermodynamic critical field H, exhibit structure at the magnetic ordering tem-

perature T~. As in the case of our previous mean-field-theory results, the behavior of H,
is similar to that of H, 2, observed in the ternary compounds. When spin-fluctuation ef-

fects are included, N, (co) and its derivative are found to exhibit structure at the spin-wave

frequencies. In analogy with phonons in strong-coupling superconductors, this observa-

tion suggests that a measurement of N, (co) in AF superconductors can provide detailed

information about the dynamic structure factor for the localized spins.

I. INTRODUCTION

Considerable attention' has recently been focused
on the ternary rare-earth (R) compounds of the

type RMo6Ss and RRh4Bq because many of these
exhibit both magnetic and superconducting order.
Of this class of compounds, only those which un-

dergo antiferromagnetic (AF) order, arising from R
spins, have thus far been unambiguously shown to
have spatially coexistent magnetic and supercon-
ducting order. It might seem reasonable that AF
order will not destroy superconductivity since it is

not associated with macroscopic magnetic molecu-
lar fields and since, presumably, only small regions
of the Fermi surface are profoundly affected by
these fields. However, spin fluctuations about the
magnetically ordered state will scatter the Cooper
pairs and weaken superconductivity. It is, thus,
not a priori clear under what circumstances super-
conductivity and AF order are compatible.

To date, theories of the AF superconductors
have not simultaneously included these important
spin-fluctuation effects and the effects of the mag-
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netic molecular fields. It is the purpose of the
present paper to build on our previous Letter
(called paper 1.1), which primarily treated the AF
order at the level of mean-field theory, and to in-

clude spin-fluctuation effects. Furthermore, be-

cause the formalism for treating impurity scatter-
ing is closely analogous to that which includes spin
fluctuations and because the ternary R compounds
are not highly pure, we will discuss at some length
impurity scattering. Associated with "dirt effects"
are several very interesting phenomena.

Our ultimate aim in this work is to obtain froID
the "renormalized" Green's function 6, the super-
conducting density of states X,(co). It is this quan-
tity which can be directly measured in (future) tun-

neling experiments and which contains the most
detailed information about the delicate interplay of
superconductivity and magnetism. In the process
of calculating G and N, (co) we also obtain (i) the
temperature dependence of the order parameter b
and thermodynamic critical field H„and (ii) the
frequency dependence of the renormalized gap
parameter b,(co), magnetic molecular field H&(co),
and renormalized frequency co(co). Our calculation
of G provides a basis for future work dealing with
external perturbations in the AF superconductors,
as, for example, electromagnetic fields.

The first workers to study theoretically AF
superconductors considered the effects of spin
fluctuations in the paramagnetic phase. Subse-

quently, it was proposed that a "new" supercon-

ducting pairing (involving magnetic quasiparticle
states) was important, but this calculation was later
shown to be inapplicable. One-dimensional (1D)
systems with no spin or impurity disorder were ex-

amined using the usual BCS pairing in the pres-
ence of static, uniform magnetic fields. To date,
the most detailed study of spin-fluctuation effects
in AF superconductors is that of Ramakrishnan
and Varma, who discussed pairbreaking effects
but ignored the AF molecular field (which we

show to be important here). Recent work by
Zwicknagl and Fulde" is based on the "new" pair-
ing state and its effects on the electron-phonon in-

teraction. They studied H, 2 in AF superconduc-
tors; their work did not include (inelastic) spin-
Auctuation effects.

The present work is unique in that it includes
both spin-fluctuation and disorder effects while

simultaneously treating the AF molecular field,

Hg. Our focus is on N, (~), although we also cal-

culate the thermodynamic critical field H, ( T)
[from whch H, 2 may be obtained using the

phenomenological relation H, 2
——H, V 2a( T)]. Be-

cause we include H~ in our strong-coupling for-
malism, we obtain four (rather than two) coupled
Eliashberg-type equations for the renormalized gap
I, frequency ~, molecular field H&, and "pseudo-
gap" 0 (which will be defined below). These are
exactly solved numerically when elastically scatter-
ing impurities and spin fluctuations are present.

In Sec. II we review and extend our previous
mean-field results and present an ansatz for the re-
normalized Green's function G. This ansatz leads
to four equations for the unknowns 6, 9, H&, and
Q which must be solved self-consistently with the
(weak-coupling) equations for 5 and H~. While
we set up the formalism quite generally, we discuss
in detail the "quasi-three-dimensional (3D) approx-
imation", which is more amenable to numerical
solutions. In Sec. III, we study the effects of non-

magnetic impurities in 10 AF superconductors.
This section lays the groundwork for our quasi-30
studies of Sec. IV. It is illuminating because it
highlights the similarity in the formalism for treat-
ing nonmagnetic impurities in AF superconductors
with that for treating magnetic impurities in the
usual superconductors. '

Section IV A presents a detailed comparison be-
tween the quasi-30 approximation and a more ex-
act 30 treatment which we discussed in paper L1.
We are able to do this quantitatively only for pure
superconductors. However, our results suggest that
the quasi-30 approximation is reasonably good
when the superconductor is dirty. Generally, the
quasi-30 approximation underestimates gaplessness
and overestimates the importance of subsidiary
peaks in X,(co) which appear away from the gap
frequency.

In Sec. IV 8 we study the effects of magnetic
and nonmagnetic impurities on N, (co) in the
quasi-30 approximation. Our results are presented
for a range of lifetime parameters ri and r2. Sec-
tion IV C deals with finite-temperature properties
of the superconductor. Following the formalism of
Skalski et al. ,

' we compute 6 and H, as a func-
tion of temperature 1. Both 6 and H, show sharp
structure at the magnetic-ordering temperature T~,
similar to that found in the mean-field theory of
paper L1.

In Sec. V we set up the equations for 8, 6, H~,
and 0 when both spin Auctuations and impurities
are present. We numerically solve them using a
simple model for the dynamic susceptibility.
Sharp structure in N, (m) appears at the spin-wave

frequency m, . Away from m„ the density of states
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does not change appreciably from the case where

spin fluctuations are absent. Finally in Sec. VI we
list our conclusions.

II. GENERAL THEORY

where

~=g&kCk Ck
k, o

~ = g VkksCk+s
e

kk'acr'

(2.2)

XCk' —qcr'Ck'cr'Ckcr & (2.3)

g &(k —k')exp[i(k —k') R ]
kk'jcro'

~~J"sck Ck~ . (2.4)

Here 4 is the kinetic-energy term for the d elec-
trons. 4 ' describes the attractive phonon-
mediated electron-electron interaction which leads
to Cooper pairing. P " describes the conduction-
electron-f-electron spin-spin exchange. " Here, SJ
is the spin operator for the f electron at site RJ; s

In this section we present the general theory of
fluctuation effects and impurity scattering in AF
superconductors. %e assume that, as in the Chev-
rel and rhodium-boride compounds, the system
contains two" types of electrons. The first, the f
electrons on the rare-earth atoms, have localized
moments which undergo AF order. The second,
the d conduction electrons, form superconducting
pairs. Our Hamiltonian is thus

(2.1)

(2.5)

Here (P ") describes the mean-field approxima-
tion to A "

&~")= —g ag~(C„'.C„g.+Ct,g.C,.),
ke

(2.6)

and

Hg =Z(Sg }y2X,

Here (Sg ) is the thermal average of the Fourier
transform of SJ which is assumed nonzero in the
magnetically ordered state. Throughout this work
we will treat Hg as a phenomenological, temper-
ature-dependent quantity. Experiments suggest'
that at low T, Hg is of the order of 100 K. In
principle Hg should be calculated self-consistently,
by introducing the rare-earth ion-ion interactions.
Furthermore, it is presumably sensitive to impurity
effects. At this stage we proceed phenomenologi-
cally and ignore these.

In the most general case, superconducting pair-
ing with pair momentum q =0 and q =+Q should
be included in our theory. Ignoring fluctuation ef-
fects (A "'=0) and performing the BCS factoriza-
tion of Eq. (2.8) amounts to treating the AF super-
conductor at the level of a "coupled mean-field
theory": mean-field theory for both the supercon-
ducting and AF order. %e explored this theory in
detail in paper Ll. The full mean-field Hamiltoni-
an we studied there was

(2.7)

is the conduction-electron spin operator and
J(k —k') is the exchange interaction. In all that
follows, we assume J is independent of (k —k') for
simplicity.

We proceed by rewriting A "as

m" = (m")+(m"—(m") )

~'=gekCI' Cko —X&g~«k Ck+g +Ck+g Ck )
kg kyar

k~C —ki —g (ggCk+giC —ki 5—gCkiC-k —gq)+c c.l

k k
(2.8)

where a g=2+'V(C, . g, c, , ). (2.9c)

4=+V(Ck Ck ),
kg=2+'V(Cs C k+g),

(2.9a)

(2.9b)

He«, V is the usual BCS potential which is cut off
at m, . Throughout this paper we will treat phonon
effects in weak-coupling theory although the
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strong-coupling generalization is straightforward.
The prime in Eqs. (2.8) and (2.9) indicates the sum

is only over region I, defined below. We note that

Hg differs from Hg [defined in Eq. (2.8)] due to
screening effects:

Hg Hg ————,g'Vo(ck Ck ~g ) .
k'cr

(2.10)

Formally this result follows from a factorization of
Eq. (2.3) in addition to the usual BCS factorization
which leads to Eq. (2.9). At temperatures that are
low compared to the magnetic transition tempera-
ture T3r,

~
Hg HQ

~

—is typically of order b, and

since, away from TM, 6 «H~, the screening will

have little effect. Near TM, however, screening ef-

fects are more pronounced.
It is convenient to divide the Fermi surface (FS)

into two regions called I and II. In region I, both

ek and ek+Q (for k &0) are within the BCS cutoff
co, of the Fermi energy EF. We treat Hg exactly

only in region I since its effects are most signifi-

cant there. In region II, which is the remainder of
the FS we ignore H~, since

lHQ~«k ek+Q) I
« I,

and therefore it leads to only weak perturbative
corrections. With this approximation we may then

write down a simple 4)&4 matrix representation of
A " in region I; only the operators Ck„Ck+~„
C k„and C k ~, are coupled. The Hamiltonian

Inay be diagonalized and 6, b~, etc., are solved for
self-consistently. This procedure was described in

detail in paper Ll. Implicit in all of this is the
reasonable' assumption that H~ &&E~ and that

the magnetic reciprocal-lattice vector intersects the

Fermi surface (in the real ternary compounds), so

that the density of states near Ez is modified by

the magnetic Brillouin-zone boundary. In paper
L1, we pointed out that the fraction of supercon-
ducting electrons in region I is related to ro, /kpQ.
(Throughout this work we use the units
A'=2m =1). It is believed that this ratio is of the
order of 10—20%.'

In ID systems we noted in L1 that

b« ——6 Q
——0 is the only allowed solution of the

coupled gap equations. Physically this corresponds
to that fact that Q is large compared to the inverse
coherence length so that only the usual (q =0)
pairing corresponds to a free-energy extremum.
Using our Green's-function formalism we have de-

rived the coupled gap equations for b,g, b, Q, and
6 for 3D systems. These are presented in the Ap-
pendix. A numerical solution of these coupled
equations yields that b,g = —b, g and that

~
6+Q

~

is one to two percent of 6 for region I containing
10% to 20% of the entire Fermi surface, respec-
tively (with Hg ——0.1 —0.3', ). This ratio de-

creases as H~ varies outside this range. Because
our numerical results yielded a small value for

~
4+Q

~

and because in what follows we will pri-
marily use the "quasi-3D approximation" (in

which b, +Q is strictly zero), we will henceforth
consider 5+~ to be negligible. That our detailed
numerical calculation led to an extremely small
value of

~
4+Q ~

is further evidence against the ex-

istence of the so called "new pairing" state. '

To go beyond our simple mean-field theory we

will adopt a generalization of the matrix Green's-

function approach, used to treat dilute magnetic
impurities in superconductors. To include spin-fiip

scattering effects (which arise from spin-

fluctuation and magnetic impurity scattering) we

must represent our Green's function 6 in the
eight-dimensional basis

0 —(Ck~ C —k& Ckt C k& Ck+Qi C —k —Q& Ck+Qt C—k —Qi ) (2.11)

We may write the unperturbed Green's function, corresponding to our coupled-mean-field theory as

Go '(k, iso„)=ice„4"=ice„—e,p3 Eg73p3 —kp202+Hgr ip3(T3 (2.12)

1 1

where e, = —,(ek+ek+Q) and e, = —,(ek —ek+Q);
co„ is a Matsubara frequency and ~;, p;, and o.; are

the Pauli matrices on eight-, four-, and two-

dimensional vector spaces, respectively. Thus, for
example,

0 o2 0

0 0

o-, 0 0 0

0 —o2 0
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where each entry is the 2)&2 Pauli matrix o.2.
The renormalized Green's function which in-

cludes spin-fluctuation and impurity effects is ob-
tained diagrammatically using the self-consistent
Hartree-Fock approximation. We make the ansatz

In the Born approximation, we find for impurity
scattering

d k'
X(k,i co„)=T g f 3

5(co„—corn )
(2n. )'

G (k~lco~ ) =leo~ —Esp3
'—Egt3'p3

~nP2O2+ +Qn lP3O3

+l Qn&lP101 . (2.13)

X U(k —k')G(k', icom )

X U(k —k'), (2.15)

Here, co„, b,„,Hg„, and Q„are unknown functions
of co„, which are to be determined self-consistently.
Note that a new matrix element involving the
"pseudogap" Q„ is required for self-consistency
even though its analog was not present' in the
bare Green s function Gp. This is similar to what
was found previously when considering the effects
of Pauli paramagnetism in superconductors.

The interaction of the superconducting electrons
with spin fluctuations and/or impurities leads to a
self-energy,

X(k, ico„)=Go '(k, ico„) G'(k, ico—„) . (2.14)

where U is the 8)&8 matrix scattering potential,

U(k) = U)(k)p3~ U2(k)S. a . (2.16)

Here Ul and U2 are the potential and magnetic
scattering interactions, respectively, and

a = —,(1+p3)o'+ —,(1—p3)cr2cr o q .

By inserting Eq. (2.15) into Eq. (2.14) and using
Eqs. (2.12) and (2.13) and equating matrix ele-
ments, we obtain self-consistent equations for the
four unknown parameters (co„, b,„,Hg„, and Q„}
which appear in the Green's function:

3 I

con —

con=Ted

f,& m[com[com+ , «k+~i, —+g)+~m+Hg Qm1 2—QmHg—~m lg++(2m)'

(2.17a)

3 I

b, =TQ f 3' 'I—6m[corn+ , (E k—+E k+g) +b m
—Hgm+Qm] 2QmcomHgm —1g,+, (2.17b)

(2m. )

d'k'
H~ —Hg=T+f,rtm'[ Hg (~m— ek~k+g —~m+Hm+Qm)+2~m~mQ 1g

(2~)
(2.17c)

Q. =T gf,&m '[Qm(~m+&k&k+g ~m Hg Qm—}+ m—~mHg 1g+
2 2 2

(2n. )
(2.17d}

where

'=(co +pksk+g Hg +b, —Q—)2 e, (co +b, )+4—(co Hg b, Q )—(2.18)

gq, (co)=[U)+pU2((S„)+ (SY )

+v(S, ) )15(co}, (2.19)

and p, v= + 1; here the omitted arguments in U l

and U2 are (k —k'). We have chosen Hg to lie
along the z axis. Note that in Eqs. (2.17a) and
(2.17b), the thermal average (S ) =(S„)+(S~)
+(S, ) appears. By contrast, Eqs. (2.17c) and

Here we have omitted the arguments in gz„
=g&„(k—k';co, —. corn ). We define (for elastic im-

purities)

I

(2.17d) depend on the quantity (S„)
+ (Sz ) —(S, ). The sign changes come about be-
cause of the commutation relations.

In order to include spin-fluctuation effects U2
X (S„)5(co}is replaced by (J/2) X„„(k—k', co) and
similarly for the y and z components. Here X is
the time-ordered propagator for the localized spins.
For notational simplicity throughout this section,
we will present the formalism by explicitly includ-
ing impurity effects only. The effects of spin fluc-
tuations are discussed in detail in Sec. V.

Finally, Eqs. (2.17}must in turn be solved self-
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consistently with the equations for b and the
screened H&. These may be obtained from the
Green's function G(k, iso„),

~gf dk

XTr[p,o,G(k, iso )], (2.20a)

d k'
Hg Hg ———VTg f (2m )

XTr[ripio iG(k, i to~ ) ] .

(2.20b)

In gene-. al, the solution of these four [Eqs.
(2.17)] simultaneous integral equations together
with Eqs. (2.20) is exceedingly difficult. The easi-

est way to proceed is to chose a simple model for
the Fermi surface (FS). In a previous Letter (Ll)
we presented our mean-field calculations for the

AF superconductor using a spherical FS. When
Auctuations and impurity effects are included, even
this model is too difficult to handle. We resort,
therefore, to the "quasi-3B" model suggested by
Bilbro and McMillan' for charge-density waves in
superconductors. It is assumed that in region I we
llave a 1D baild so that ek = —ek+g fol' k = —kp,
while in region II, the small effect of Hg„and Q„
are neglected. In our earlier work using the spheri-
cal FS, as we have noted above, the fraction of su-

perconducting electrons y in region I is related to
co, /keg. In the "quasi-3D" model which we use
in the following, we treat y as an arbitrary parame-
ter. Numerical results comparing the spherical FS
model with the quasi-3B approximation can be ob-
tained at the level of our coupled-mean-field
theory. On this basis we will arrive at a reasonable
estimate for y.

In the "quasi-3D approximation, "Eqs. (2.17)
simplify considerably. We may perform the fdk'
and make use of the fact that ek ———uk+~ in L1 to
obtain

to„—co„=N(0)g y
(m+&~) (co~ —~I~) (1—y)~~

2A, + 2A, (-' (2.21a)

&„—b =N(0) y
(4+H& ) (5 —H~ )

2A' 2A

(1—y)b,
+ 2 2 ]y2 'g —+

(co +& )

(2.21b)

0g—
2A

(~~+Hg ) (& Hg )—llf It l Ill

2A'

(to +Q~ ) (co —0 )0„=—N(0) y — g~~
2k+ 2g- (2.21d)

Here N (0) is the density of states at EF and

~m =[(~m+Hg~)'+(com+II )']'"&AT,

and we have omitted the argument (co„—to ) in

g„„. Here, g„„denotes the l =0 projection of g„.
That is

2kF

gpv(ton)= gpv(9icon) 2 d9 ~0 2k@

where q =
~

k —k'
~

and both k and k' are

presumed near k~.
In this quasi-3B approximation we avoid the

difficult issue of dealing with an anisotropic self-

energy X(k,ito„) (which depends on the direction
of k). It may be seen from Eqs. (2.17) that be-

cause there are two angles which appear in the in-

tegral for X (that between k' and Q, and that be-

tween k and k') that even for k and k' on the FS,
the self-energy depends on k. The solution of
these equations requires the introduction of general
spherical harmonics l in the coupling constant g, as
well as in 5„,etc. In the quasi-3B approximation
the anisotropic effects only appear in region I.
Furthermore, since region I is treated as a 1B sys-

tem, only the l =0 projection enters into the ex-

pression for X. Without such an approximation it
is doubtful that the problem could be solved. A
numerical justification for this approximation is

provided in Sec. IV.
Finally, the self-consistent equations for 5 and

II& may be written in the quasi-3B approximation,
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a=z(0)VQ y
(6 +Hg ) (6 H—g ) (1—y)h

2A, + 2A,
— (g' +g' )'~'

(~ +Hg ) (~ —Hgm)
Hg Hg————N(0) V y

2A
(2.22b)

(2.23)

and

—=4m'elÃ(0)
~

Ul
~
~S($+1),

f'2

A (numerical) solution of Eqs. (2.21) together with
Eq. (2.22) thus yields all the necessary information
about AF superconductors in the presence of spin
fluctuations and impurities.

For the case of impurities which scatter elasti-
cally

N(0)g„,(~)=——+ -(2+v) &(~),
I l p
2 V$ 372

(u~ —il+ )

6+H& 2 (1
(3.1)

applied field. They correctly point out that even in

zero external magnetic field, there is a first-order
phase transition from the superconducting to the
Iiomlal state as Hg ls lncrcascd. Howcvcl; by ig-

noring screening effects [see Eq. (2.22b)] they find
this occurs at a critical value H& which is about
one half as large as that we obtain by including the
effects of screening.

In the absence of magnetic impurities and con-
sidering only elastic scattering we can recombine
Eqs. (2.21) (when we analytically continue to real
frequencies) into a form which is similar to that of
the AG theory,

—=4nciN(0)
i Ui i

(
U

~

is the l =0 projection of
)

U ); cl 2 is the
concentration of the appropriate impurities. In
this case, we may readily perform the g in Eqs.
(2.21). For inelastic-scattering processes, such as
those which arise from spin fluctuations, Eq. (2.21)
do not simplify further.

III. APPLICATION TO ONE-DIMENSIONAL AF
SUPERCONDUCTORS: NONMAGNETIC

IMPURITY EFFECTS

We begin our analysis of Eqs. (2.21) by consider-

ing a 10 AF superconductor for which
ck =—ek+g and y= 1 in Eqs. (2.21). This case is
particularly informative because the effects of non
magnetic elastically scattering impurities in AF
superconductors can be cast into equations which
are formally very similar to those found by Maki'
[who, following Abrikosov and Gorkov (AG),
studied magnetic impurities in ordinary supercon-
ductors]. These lead to results in striking contrast
to those found for nonmagnetic impurities in ordi-
nary superconductors. Furthermore, Suzumura
and Nagi have extensively studied this limit for a
pure AF superconductor and in the presence of an

(3.2a)

+ I 1
sgn(h+Hg) .

5+Hg
(3.2b)

N, (co)=——,E(0)lm
u2 )i/2

+sgn(h —Hg )

(3.3)

Once the signs of g+- are chosen, Eqs. (3.1), togeth-
er with the condition that N, (co) & 0, constrains the
signs of Re(1—u+ )'~ . Alternative choices of the
signs of g+- are clearly possible, However, they
lead to unnecessary complications. %e choose the
+ signs in g in order to make g+-a smooth func-
tion of I/~i For this c.hoice, both g- have the
sign of (5 H~)—

It can be seen from Eq. (3.1) that scattering
from nonmagnetic impurities affects the supercon-
ductlllg dcflslty of states X (co),
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in the AF superconductors. Note that both contri-
butions to the quantity in large parentheses must
be positive [since they derive, respectively, from in-

tegrals like Jd k 5(E—E+-(k}),where E+-(k) are

the quasiparticle energies which will be discussed

in more detail below]. '

For ordinary superconductors when only non-

magnetic impurities are present, Eq. (3.3) yields
the BCS value

N, (co)=N(0)1m[co/(5 —co )'~ ] .

This result is commonly quoted as the "Anderson
theorem. " While nonmagnetic impurities in AF
superconductors behave somewhat like magnetic
impurities in usual superconductors, they cannot
drive the system gapless in strictly 1D systems.
Using Eqs. (3.1), it can be shown that a necessary
condition for gaplessness is that g, g+ &0. In
deriving this result one uses the fact that for
g-+p 0, Imu+ and Re[(1—u+ )]'~ must have the
same signs (at co=0). ' This together with the fact
that

~ g ~
y g+

~

eliminates all possible gapless
solutions of Eq. (3.1) for positive g-+. Gaplessness
in 1D systems thus requires that H~ g h. Howev-

er, because a 1D system cannot support an

Hg & b„ this inequality can never be satisfied. This
result is not valid for a 3D superconductor, which

may be driven gapless by nonmagnetic impurities,
as shown in Sec. IV.

In the limit of a pure 1D AF superconductor
[(I/r&)~0] it follows, from Eqs. (3.3) and (3.1),
that

N, (c0)= —,N(0)Im
[(g+H )2 2]1/2

respectively. Interestingly, it follows from Eqs.
(2.22) that Hg~Hg and b,~h in the limit

w) ~0.
We have solved Eqs. (3.1) numerically using

Newton's method and iterating down from high
frequencies ~. The application is straightforward,
although care must be exercised in choosing the
correct branch of the square-root functions
(1—u+ }'~ . In order to obtain a positive N, (co),

and continuous functions for N, (co), and u+, the
real parts of (1—u+ )'~ were initially positive (at
high co). We often then found Re(1 —u )'~ be-

came negative as co was decreased; Re(1 —u+ )'~

always remained positive for all frequencies.

N, (co) vs co at T=0 is plotted in Fig. 1 for
r, co, =(a) ao, (b) 25, (c) 12.5, and (d) 2.5. Fixed
values of Hg ——0.01 and b, =0.013 in units of ro,
were used in all the cases in Fig. 1. This value of

H~ is lower than would be expected experimental-

ly in order to maintain superconductivity in a 1D
system. Because these 1D results are more of
pedagogical value than of direct relevance to exper-
imental systems, we did not solve for N, (co) self
consistently with 6 and Hg [i.e., using a fixed
value of the coupling constant N(0) V)]. Self-
consistent results, however, are presented below for
our quasi-3D model. As expected from Eq. (3.4),
for the pure 1D superconductor, there are two
divergences in N, (co) [see Fig. 1(a)] at
co=

~

b, +Hg
~

. As ~~ decreases the peaks first
round out (b) and then they merge into a single

peak (c) which continues to sharpen (d), and thus
become more BCS-like as ~& further decreases.
These features are all in accord with the discussion
presented above, based on analytical considerations.

[(h.—Hg) —co ]'

(3.4)

Thus, the density of states has two singularities at
co=

~

b, +Hg
~

. As (nonmagnetic) impurities are
added these singularities become rounded peaks.
In the limit 1/r&~ ao, it can be shown that N, (co)

is the usual BCS result. This can be seen by not-

ing that a solution of Eq. (3.1) is u+ ~co/6 in the
limit g+-~ Oo. Physically, this corresponds to the
fact that the impurity (potential) scattering is suffi-

ciently strong to smear out the antiferromagnetic

gaps present in the normal-state band structure.
The density of states, thus, becomes independent of
the AF molecular field. It should be noted that

H~, 6, co, etc., are not equal to H~, 5, and co,

IV. APPLICATION TO QUASI-3D AF
SUPERCONDUCTORS: IMPURITY EFFECTS

A. Comparison between exact and quasi-3D
results for pure systems

As discussed in Sec. II, the full solution of the
six coupled integral equations needed to determine

the Green s function 6 is exceedingly difficult in

3D systems. %e, therefore adopt the "quasi-3D
approximation" from which Eqs. (2.21) and (2.22)
follow. As a check on this approximation and as a
means of estimating the parameter y, we now com-

pare the results obtained for N, (co), b ( T), and

H, (T) (the thermodynamic critical field) in both

the quasi-3D and the "exact" 3D calculations. For
this comparison we use our coupled-mean-field
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FIG. 1. N, (co) vs co at T=0 for (a) ~leo, = oo, (b) 25.0, (c) 12.5, and (d) 2.5, in a 1D system.

theory with no impurities present. As in paper L1
in our "exact" 3D calculations we assume a spheri-
cal FS. In mean-field theory the electronic eigen-
energies are given by

E-+(k) =( —,(ek+ek+g)+b, +Hg
N, (.)

N(oj

2.0

1.0—

I

(a)

2 1 ( k ek+g) +4Hg[(ek+ek+g)

+4g2] 11/2)1/2 0.0
0 0.05 0.10 0.15 0.20

from which the density of states,

N, (co) cc Jd k[5(co E+(k))—
(4.1)

1.6

1.2

{b)

Hg-6

may be readily evaluated. We applied a numerical
technique in which a random mesh of 106 values
of k (all with k &5co, ) were summed over. For
each value of k, E-+(k) are determined and a histo-
gram plot of N, (co) is generated. A smoothed out
and normalized version of this histogram is
presented in Figs. 2. We show N, (co) at T=0 for
(a) Hg ——0. leo, and (b) 0.5co, . We chose kF Q =co, .
This choice of Q is considerably smaller than
would be expected experimentally; we use it here in
order to emphasize the effects of the AF molecular

N, (.) 1.0
N(oj

Hg+h

0.4—

0.2—
0.0

I

0.2
I

0.4 0.6

FIG. 2. N, (co) vs co at T=O for H~ ——0.1', (a) and
0.5', (b), for pure superconductors.
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field. Additionally we chose b =0.013co, cor-
responding to the BCS value for 5 with

N(0) V =0.2. It should be noted that there is a
large peak in E,(co) for both figures at co= A.
This comes from those regions on the Fermi sur-
face in which

~
ek —ek+& ~

~~H~. Thus, the AF
molecular field is relatively unimportant and Eq.
(4.1) yields the BCS quasiparticle energies

(uk+5 )'/ and (@k+~+6 )'/ for values away
from the magnetic Brillouin-zone boundary. How-

ever, for
~

e), —ok+& ~
(H&, we do observe struc-

ture coming from the AF molecular field at
co-

~

b, +H& ~, as was seen in our 1D calculations.
It is interesting to note that X,(co) rises rapidly
from co=0, so that there is no true gap in N, (co)
for these (rather physical) values of H~. Presum-

ably for H& (5, we would find a true gap in

E,(co) obtained from our histogram approach.
This case is relevant to temperatures near T~.
The density of states exhibits first a peak and then

a dip at the frequencies co=
~
6+H~

~

. We do not

at present, understand the origin of the "dip,"
which is different from what would be expected if
region I were behaving like a strictly 10 system.
However, we will show that once impurities are
present, this subsidiary structure in N, (co) is of lit-
tle consequence anyway.

These results should be compared with the T =0
plot of N, (co) for ri ri 0o, usin——g o—u—r quasi-3D
model. This is shown in Fig. 3 for H~ ——O. lcm, . '

%e choose the parameter y=0.02 corresponding to
2% of the Fermi surface in region I. This choice
for the value of y was motivated by studying

several T-dependent properties which are discussed
below. For this case we solved self-consistently for
b and Hg using E(0)V=0.2 so that b, =0.0127',
and Hg =0.0988co, . Comparing Figs. 2 and 3 we

see that both figures show the pronounced BCS

peak at ~=A and structure at
~

b, +H&
~

. Howev-
er, in the quasi-3D model (with no impurities),
X,(co) diverges at

~
5+H~ ~, whereas in the exact

numerical calculation (Fig. 2) there is only small
structure at these additional frequencies. Note also
that the quasi-30 model leads to a true gap in

X,(co) which is not seen in Fig. 2. Hence, the
quasi-30 model is generally less "gapless" than
would be expected from an exact 3D calculation.
The expected effects of impurities on the quasi-3D
model are to weaken the subsidiary peaks at

~

b, +H~
~

and to generally fill in the gap in the
density of states at the Fermi energy (except in ex-
tremely dirty systems: rico, (5.0). In summary
the quasi-3D model in the presence of impurities
should be a reasonable approximation to an exact
calculation for N, (co).

It is also useful to assess this approximation by
looking at temperature-dependent quantities for
pure superconductors. To do this we hose a T-
dependent AF molecular field of the form

H(2
——H(2(0)(1 —T/Tsi)'/ and T~ , T, , w——h—ere

T~ is the magnetic ordering temperature and
E(0)V=0.2. The T dependence of 5 and H, were
iBustrated in paper I.1 using our "exact" 30 calcu-
lation. In Figs. 4 and 5 we plot these quantities
(for slightly different parameters than in paper 1.1)
in the exact 3D (solid lines) and quasi-3D approxi-
mation (dashed and dotted-dashed lines). We fixed
the value of Hti(0) at 0 Ice, in cur.ves b and c
which is slightly below the experimental value'
and varied the parameter k~g/co, or y. The solid
lines in Fig. 4 plot 6 vs T for (a) the BCS limit, (b)
keg/~, =3.0, and (c) kFQ/ro, =0.2. The dashed
line is for y=0.02 and the dotted-dashed line is for
y=0.01. These small values of y yield semiquanti-
tative agreement for h(T) with the values obtained

3,0--—
Ji

I.O—
Hg-h, Hg+ 5

0-
0 0.05

I

O. IO

40 /QJC

O. I 5 0.20

FIG. 3. X,Cm) vs ~ in quasi-30 model for a pure su-

perconductor,

0.6
0.0 O. l

I

0.2

T~T
Bcs

C

FIG. 4. 6 vs T for "exact" (solid lines) and quasi-3D
[dasllcd (/=0. 02) Slid dotted-dasllcd (/=0. 01) lines]
model. Solid lines correspond to (a) BCS limit, (b)

kFQ/co, =3.0, and (c) k/g/co, =2.0
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in the exact 3D calculations with a reasonable
choice for kFQ ho, . Since even the latter parame-
ter is not known accurately from experiment we
did not make any attempt to fit our more ad hoc
parameter y exactly to any given theoretical curve.
It is clear from the figure that y-0.01 or 0.02 is
required to get reasonable agreement between the
exact and quasi-3D calculations,

Figure 5 illustrates the behavior of the thermo-
dynamic field H, (T) Thi. s parameter corresponds
to the free-energy difference between the supercon-
ducting and normal states. The results obtained
for a pure 3D superconductor, treated "exactly" as
in paper Ll are indicated by the solid lines for (a)

the BCS limit, (b) kF Q/co, =3.0, and (c) kl,.Q/co,
=2.0. We took Ho(0) =O. leo, in curves 6 and c.
The dashed line corresponds to y=0.02 and the

dotted-dashed line to y=0.01 (with the same value
of Hg(0) =O. lm, ). Again these values of y are in
semiquantitative agreement with those obtained by
our more exact procedure. In summary, we deduce
from Figs. 4 and 5 that a reasonable estimate of
y=-0.02. %e also note that for somewhat larger
values of y with E(0)V=0.2 and Hg(0)=0. leo„
we find that the system undergoes a first-order
phase transition to the normal state at low T, as
found previously for a strictly 1D system. That
such a small region I is required to avoid the first-
order transition is presumably an artifact of the
quasi-3D model in which all electrons in region I
feel the effects of the magnetic molecular field to a
great extent. We see no evidence for a first-order
transition for reasonable values of Hg in our more
exact 3D calculations.

B. Impurity effects at T=0

In this section we discuss the effects of magnetic and nonmagnetic impurities in N, (co), b(co), Hg(co), etc.,
at zero temperature. These are calculated within the quasi-3D model. Throughout we assume @=0.02 and

Hg/co, =0.1 with X(0)V=0.20. The latter two parameters are believed to be reasonable for the AF super-

conductors.
We do not exhibit results for N, (co) at finite T, since this quantity behaves as would be expected from its

T=O values and the T dependence of b, . In the quasi-3D model N, (co) is given by

N, (co) =X(0) —,Im
(co+A)y (a) —Q)y 2(1 —y)a)

[(6+Hg) (co+A) —]'~ [(5—Hg) —(co —Q) ]' (6 ci) )'~—(4.2)

where co, 5, 0, and Hg are functions of co. We
solved for these functions using Eqs. (2.21) and
Newton's method. %e started from high frequen-

cy, making reasonable guesses for their solutions
and then decreased co, using the four values (for co,

6, 0, and Hg ) obtained at the previous frequency
as an initial guess.

In Fig. 6 is plotted E,(m) vs co for a supercon-
ductor with only nonmagnetic impurities (~&~ ao )

for (a) ri ——0.004, (b) ~i
' ——0.016, (c) ~&

' ——0.4,
and (d) r&

' ——2.0, all in units of m, In order .to
have a reference point with which to compare
these figures, we estimate that ~]-10 " to 10
sec in the cleanest ternary compounds. For
m, -10 ' sec ', this yields ~~ '-0.01 to 0.1 in
units of ar, . The self-consistently determined
values of b, /co, and Hg/co, are (a) 0.0128 and
0.0988, (b) 0.0124 and 0.0991, (c) 0.0130 and
0.0994, and (d) 0.0133 and 0.0998. Figure 6(a) has
a well-defined gap, a sharp peak at b, and smaller

H C

(H Bcs j2 0

0.0
0.0 0.]

I

0.2

T
BCS

C

0.3 0.4

FIG. 5. H, vs T for exact (solid lines) and quasi-30
[dashed (y=0.02) and dotted-dashed (y=0.01) lines]
model. Solid lines correspond to (a) BCS limit, (b)

k~Qi ar, =3.0, and (c) k~Qlco, =2.0.
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' ——0.016, (t=) ~~
' ——0.4, and (d) ~~

' ——2.0, a11 in units of co, .

peaks at
~

b, +Hg
I
. These are rounded relative to

the case of a pure superconductor, as was seen in
the earlier 1D calculations. As the nonmagnetic
impurity concentration increases we see the filling
in of the gap and the disappearance of the subsidi-

ary peaks. Figure 6(b) shows that nonmagnetic
impurities can induce gaplessness in a magnetic
superconductor. Figures 6(c) and 6(d) show that as
the impurity concentration increases still further
the system regains its gap and becomes more
BCS-like, as was demonstrated rigorously to be the
case for our 1D system.

Figures 7 illlustrate the behavior of N, (co) when

magnetic impurities are present for (a) r&
' ——0,

rq
' ——0.002, (b) r) ' ——0, r2 ——0.0045, (c)

r2
' =0.004, r&

' ——0.20, and (d) r2
' =0.004,

~~
' ——0.4, all in units of co, . The self-consistent

values of 6 and H& (in units of co, ) are, respective-
ly, (a) 0.011, 0.0988, (b) 0.0125, 0.0992, (c) 0.0083,
0.0991, and (d) 0.0081, 0.0994. As for a usual

(nonmagnetic superconductor}, for small rz
' there

is a gap in N, (co}. However, in the case of the AF
superconductor, there are also two additional peaks
at co=

~

b+H&1. This is seen in Fig. 7(a). Figure
7(b) shows that as r2

' increases the gap narrows

and the subsidiary peaks also weaken. We found
that as in the nonmagnetic superconductors, gap-
less superconductivity sets in at about ~2 -6 and
the system was dnven normal for r2 kp

—1 & BCS

BCS
2—= —,b, c (T =0). Interestingly enough, even for a

gapless superconductor, the subsidiary peaks do
not completely disappear. In fact at
rz

' ——0.0064co, the secondary peaks (which are
essentially unresolvable) reach a higher value of
E,(co) than does the BCS peak. The effects of su-

perposing potential-scattering impurities on top of
magnetic impurities are quite dramatic. These are
illustrated in Figs. 7(c) and 7(d). For small addi-

tional concentration of nonmagnetic impurities the
superconductor becomes gapless [Fig. 7(c)]. In-
creasing ~~

' still further, while keeping ~2
' a con-

stant, results in a return of the gap and more
BCS-like behavior. This is similar to what was
seen in Figs. 6 for r2

' ——0; as r&
'

grows, impurity
states first fill in the gap in the density of states.
Then increasing r&

' still further, the system be-

comes more BCS-like.
For completeness we have plotted the real and

imaginary parts of the frequency-dependent (renor-

malized) self-energy parameters io, b„H~, and 0



IMPURITY AND SPIN-FLUCTUATION EFFECTS IN. . . 4553

l.2—

I.O—

IO-

0.8 -'

Ns(0)) 0 6
e(o)

0.0
0 0.05 O. IO

/+c

O. I5 0.20

0.2—

0.05
l

O.lo

N/QPC

0.15 0.20

(c) I.2—

I.o

Ns(a)) 0 6
x(0)

0.4—

(")
O 6

x(0)
0.4—

0.05 O. lo

QJ /4)c

I

O. I5 0.20

0.0
0 0.05 0.IO

/"c

O. I5 0.20

FIG. 7. E,(m) vs e for (s) ~1
' ——0, v2

' ——0.002, (b) ~~
' ——0, rq

' ——0.0045, (c) wq
-' ——0.004, ~&

' ——0.20, and (d)
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for r& 0 004——co, .and r2 ——0 (Figs. 8), and r2
=0.004co„r& ' ——0 (Figs. 9). As seen from Figs.
8(b) and 9(b) most of the structure in 5 is below
the gap frequency. While co shows virtually no
structure for the case of magnetic impurities [Fig.
9(a)], when nonmagnetic impurities are present
[Fig. 8(a)] there are features which appear below
the gap. For both Figs. 8(c) and 9(c), Hg is nearly
constant with an almost vanishing imaginary part.
A rather detailed structure appears in Q at fre-
quencies away from the gap frequency. However,
it should be noted that this is on a scale which is
about 3 orders of magnitude smaller than 6 and 4
orders of magnitude smaller than Hg.

The self-consistent equations for b, and Hg ob-
tained from Eqs. (2.22), are approximately given by

N(0) V
0

X tanh-
2

0 N(0) V ~~ ~+Hg
Hg Hg J——dco—Im y2 A, +

(b, —Hg)

C. Finite-temperature effects

In this section we numerically compute 6 and
H, as a function of temperature in AF supercon-
ductors, when impurities are present. %hile it is
probably difficult to measure the experimental
values of b„ it is nevertheless enlightening to study
the effects of impurities on the superconducting
order parameter. "

(4.3b)

where A,
-+ = [(b,+Hg ) —(co+0) ]'~ . Here we

have analytically continued Eqs. (2.22) to the real
axis and replaced the Matsubura sum by an in-
tegral over frequency. The integration cutoff in
these equations, co,

'
is approximately (Ref. 10) ~,
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to within corrections of order the maximum of
(Hg/co, ) and (5/co, ) . Since these are both num-
bers of order (0.01) or less, these corrections will be
ignored and we take co,

' =m, . We have verified
that our solution to the above equations reproduces
the usual BCS result at low temperatures. When

H~ ——0, it yields good agreement with the low-
temperature values of b, for the case of a nonmag-
netic superconductor with magnetic impurities.

In Fig. 10 is plotted the gap parameter 5 as a
function of temperature T/T, for (a) rz

' ——0
and ri ' ——0.16'„and (b) ~i

' ——0 and

r2
' 0 00——4'., As b. efore, we take H~

=O. leo, (1 T/T~—)'~ and TM , T, ——.—Figure

10(a) shows that for nonmagnetic impurities the
shape of b, is similar to that of a pure AF super-
conductor (see Fig. 4). There is a cusp at the mag-
netic ordering temperature. The decrease in 5 as
T decreases below T~ is due to the increase in the
AF molecular field. For T & TM, 5 assumes the
BCS value. For magnetic impurities, 6 vs T has

two maxima, one at T=-0 and another at T=T~.
The differences in Figs. 10(a) and 10(b) are due to
the fact that the superconducting transition tem-
perature, T, =0.55T, , is considerably smaller for
the case of magnetic impurities. Thus, b, falls off
rapidly below T~ as T increases; even though H~
is decreasing with increasing T, effects of this
molecular field are not sufficiently strong to
counterbalance the tendency of b, to decrease with
increasing T. In the immediate vicinity of the
magnetic ordering temperature, however, there is a
small cusp in b, due to the sudden turning on of
the molecular field. For T & T~, b assumes the
Abrikosov-Gorkov value.

To calculate the thermodynamical critical field,
we follow the formalism of Skalski et al. 'o This
approach is more tractable than numerical coup-
ling-constant integration techniques. We have for
the difference in free energies of the superconduct-
ing and normal states,

l

CiP pro b,
F, Fz —f dc—o[N, (——co) NH (co)]—2' tanh + —N (0)b 2

0 2 V

—4p ' J dco[N, (co) NH(co)][ln—(1+e ~)+pro/(e~+1)] . (4.4)

Using N, (co), the superconducting density of states
we computed earlier, we may then obtain —H,
=8m(F, —I'N). Here, N~(co)=lim~ ~,(co). Note
that this quantity differs from N(0) due to the an-

tiferromagnetic molecular field H&. We find
N&(co) has a small peak at co=H~ for low to
moderate impurity concentrations.

In Figs. 11(a) and 11(b) are plotted H, as a func-
tion of temperature for (a) ~i

' ——0. 16'„~i ' ——0,
and (b) ri ' ——0, r2

' ——0.004co, . These are the same
parameters as used in Figs. 10(a) and 10(b). For
the case of potential scattering only [Fig. 11(a)), we
see a rather complex structure. However, it should
be noted that the variations of H, with T are on a
scale small compared to H, . In both Figs. 11,
there is a sharp drop in H, with decreasing T at
TM, i.e., when the molecular field turns on. In
Fig. 11(a) there are two opposing trends in H, : a
general tendency to increase as T decreases, as in
BCS theory, and the reflection of the decrease in b,

with decreasing T [seen in Fig., 10(a)]. This leads
to a low-temperature maximum. In Fig. 11(b) the
fact that b, increases with decreasing T [see Fig.
10(b)] causes a rapid increase in H, with decreas-
ing T. This curve looks qualitatively in agreement

l.o
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BCS

08 l

0.0 O. t 0.2 0.3 t 0.4
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FIG. 10. 4 vs 'rfor (a) ~2
' ——0, w~

' ——0.16'„and (b)
vi

' ——0, g2
' ——0.004cg, ~herc 5O =—Q (T=0).
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Thc equations for Q, 6, Rnd Hg Rre SIImlar. Thc
parameter a F(v), which is the effective coupling
constant times magnon density of states, is

Tg TBCS 2k~
Iz F(v) =N (0)J f P(q)B (q, v)d q, {5.4)

FIG. 11. 0, vs T for (a) ~2
' ——0, ~~

' ——0.16~,; and

(b) ~l '=0, ~, '=O. OO4a, .

with what is observed experimentally for H, 2.

FOI coQ1plctcncss, %c have 1nd1catcd thc expected
behavior of H, for the case H~ ——0 by the dashed

lines. This projection of the nonmagnetically or-

dered state lcRds to tllc BCS curve ln Flg. 11(a)
and the usual magnetic-impurity curve in Fig.
11(b). Note that in the latter case T,QT,

In summary, it can be noted from Figs. 11(a),
11(b), and 4 that the temperature dependence of
H, is quite sensitive to impurity effects. This is

likely to be true for the parameter H, 2 as well.

Furthermore, because longitudinal spin-fluctuation
effects are similar to those of magnetic impurities,

vrc expect that a more realistic prediction for thc
behavior of 0, in the AF superconductors is that
shown in Fig. 11(b).

V. SPIN-FI.UCTUATIQN EFFECTS

Equations (2.21) are readily generalized to the
case %'herc sp1n Quctuations RI'c prcscnt. %c may

carry out the suIn over frequencies m~ using the
spectral representation of the propagator X to ob-

tain, for example,

where B(q,v) ls the Fourier transform of
( [S;(t),SJ(0)j ) and is thus related to g by the
spectral representation. Here p{q) is the joint den-

sity of states of conduction electrons whose wave

vectors are separated by q. For a spherical Fermi
surface P ~ 1/q, so that

2k~

a F(V)—:N(0)J f I B(q,V) . (5.5)

Thus a2F(v) is related tothe I ='0 projection of
B(q,v), similar to what was assumed for the case
of elastic impurities in Sec. II and in previous

cwork on spin-glass superconductors. "" Strictly

speaking, me have implicitly assumed the Fermi
surface to be spherical in deriving Eq. (5.1). How-

ever, in what follows it is informative to view

a F(v) as a general function which depends on an

arbitrary P(q).
Equations analogous to Eqs. (2.21b)—(2.21d) for

the case of spin-fluctuation scattering may be
readily written down using Eq. (5.1). The quanity
in large brackets in Eq. (5.1) is replaced by that in

Eqs. (2.21b) —(2.21d) (analytically continued to real

frequencies) to get the appropriate equation for
6—d, H~ —H~, and Q —Q, respectively. The ker-
nel X (co,ol, v) ls tllc sanlc 111 Rll four cqllatloIls.
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The quantity a F(v) appears in the equations for
cg —co and b, —b„while 1/3a F(v) appears in the
expression for H~ —H~ and Q. This factor of —,

derives from the facts that (i) we assume an iso-
tropic X= —,Xj+—,XII, and (ii) that [from Eq.
(2.19)] that different combinations of the x, y, and
z components of X appear in the self-energy contri-
butions.

The detailed form of a F(v) for antiferromag-
netic spin fluctuations is not known for the ternary
compounds. On the basis of the phonon analog of
this quantity (called a F in the literature) we ex-

pect that there are in general three peaks in the
"magnon" a F; a diffuse peak at co=0 (corre-
sponding to longitudinal fluctuations) and spin-
wave peaks at

I
co

I
=cos=-TM (corresponding to

the transverse fluctuations). The relative weight of
the elastic peak grows with increasing temperature,
whereas the inelastic peak becomes weaker. The
simplest model consistent with this picture is to
take for T & Tsr,

a F(v)= I S(S+1)T/T~5(v)

+ —,S (1—T/TM )

x[&(v—~, )+&(v+~, )] I

~, '=mnN(0)J S(S+1)(g—1) (5.9)

and we estimate this parameter to be of the order
of 10 (g —1) S(S+1)ra, from the literature. '

For completeness we now include the Lande g
value, and treat S as the total angular-momentum

I.O

[a F(v)]„,—=a F(v)+[a F(v)]; ~ .

The pp' sign conventions are as in Eqs. (2.21).
We have numerically solved the four coupled

equations for co, H~, 6, and 0 in order to obtain
X,(co) in the presence of spin fluctuations. Be-
cause of the complexity of Eq. (5.1) and its ana-

logs, we did not solve self-consistently for 5 and

H&. Rather, we have fixed 6 and H~, and solved
iteratively for the quantities of interest.

Our numerical results for X,(co) are plotted in

Figs. 12 and 13 for S=—,, @=0.02, 5=0.01'„
and H~ ——0.10',. Figures 12 correspond to a su-

perconductor with magnetic impurities at T =0.
The spin-wave frequency co, =0.0025co, . In this
case (rq) '=0.0057co, and r, '=0.016co, . Here,
the spin-flip-scattering time from the rare-earth
atoms is

&&
—X(0)J (1 e PI I)—
2

(5.6)
0.9

Here, n is the density of rare-earth spins. Above
TM we assume that a F(v) is given by its value at
Tz, which is just the Abrikosov-Gorkov expres-
sion for scattering from noninteracting spins,

a F(v)=J S(S+1)(1——e ~")5(v) .
2

(5.7)

[a F(v)]","&
Pv5(v) 1 p,—+ (2+p')

2S 7 i 3'

Note that the elastic peak has zero weight at T =0
in an antiferromagnet; this is in contrast to the
situation in a spin glass, where there is always
spin-disorder scattering at any temperature. It
should also be noted that elastically scattering im-

.purities will contribute a (constant in temperature)
5(v) term to the scattering function.

In fact, we may readily superpose impurity on
top of spin-fluctuation effects. This leads to
[a F(v)]; ~,

N() 08

N(Oj
0.7

0.6

05 i I

0000 " 0.004

~c dNs IOO
N(0j d(u

0—
0.000 0.004

I

0.008

+«c

I

0.008

0.0I2

I

O.OI2

I

(b)

0.0I6

0.0I6

pp'=+1 . (5.g)

The equations for r~ —m and 5—5 follow from
Eq. (5.1) and its analog by using the combination

FIG. 12. (a) W, (co) vs co (with spin fluctuations in-
cluded) at T =0 for w, '=0.016co„and ~~

' ——0,
~~

' ——0.0057co, . The inset shows X,(co) over a wider ~
scale. (1) dN, /de vs co for same parameters as in (a).



4558 M. J. NASS, K. LEVIN, AND G. S. GREST

0.96

0.95

N ((u)

N(0)

0.94

0.93

0.92

0.9 I

0.000
I

0.004
I

0.008

C

0.0I2 0.0I6

6.0

"c dNs

N(0) da)

40

2.0

0.0
0,000 o.ooe

I
"s

|di&c

0.008
I

0.0I2 0.0I6

FIG. 13. (a) X,(co) vs co (with spin fluctuations in-

cluded) at T=T~/3 for w, '=0.032co„w~ ' ——v'2 ——0.
The inset shows X,(~) over a wider co scale. (b)

dX, /de vs co for same parameters as in (a).

quantum number. Figure 13 corresponds to a pure
superconductor at T=T~/3 with m, =0.005co,
and ~, '=0.032~, . While it may be noted that at
T=T~/3, the self-consistent 6 should be smaller
than the value we chose, we have corrected for this

by taking a fairly large value of ~, . This achieves
a reasonable degree of gaplessness at this tempera-
ture. Our numerical value of r, ' was taken to be
on the large side of the experimental range in order
to illustrate clearly the effect of magnetic fine
structure.

Figure 12(a) shows that there is sharp structure
in X,(co) at co=co, for T =0. This is similar al-

though more pronounced than found earlier (by the
present authors ) for the case of spin-glass super-

conductors. That spin waves are reflected in X,(co)

is not unexpected based on analogs with phonons
in strong-coupling superconductors. It should be
noted from Fig. 13(a), that at higher T- T~/3 the

sharp feature in E,(co) is thermally smeared so that
it is necessary to look at dX, /dco to directly ob-

serve the spin waves. Figures 12(b) and 13(b) plot
this quantity for the same parameters as in Figs.

12(a) and 13(a), respectively. These figures show

clearly very pronounced magnetic fine structure at
co=co, in E,(co). We have verified that the peak in

dE, /dao at T=T~/3 shifts with co, . It should

also be noted that the additional peaks at
co =

~

(6+H&)
~

are present in much the same way

as they were when spin-fluctuation effects were

neglected. This may be seen in the insets of Figs.
12(a) and 13(a).

VI. CONCLUSIONS

We summarize here the qualitative conclusions

of the present paper. Our emphasis is on results

which are experimentally verifiable. These conclu-

sions may be divided into three categories: those

pertaining to (A) nondisordered AF superconduc-

tors, (8) impurity effects, and (C) spin-fluctuation

effects in AF superconductors.
In category (A) we showed that:
(i) The order parameters b, +& are of negligible

magnitude compared to the usual BCS order

parameter. This result, obtained for 3D systems,

further argues against the existence of the pro-

posed ' "new pairing state" for AF superconduc-

tors.
(ii) The superconducting density of states X,(co)

for a 3D system with a spherical Fermi surface is

strictly zero only at co=0 ( for H~ & 6). A subsi-

diary fine structure is found at higher frequencies
~=

I
6+H~

I
. Thus, even without impurities or

spin fluctuations, a pure AF superconductor would

be "nearly" gapless. This derives from the fact
that the molecular field, H~, significantly alters

the quasiparticle energies.

(iii) A reasonable approximation for dealing with

the AF superconductors is the quasi-30 approxi-

mation. However, it appears to be better the dirt-

ier the system. In this model N, (co) shows a gap
at co=5 and diverges at co =

I
b, +H~

I
. We used

this approximation in all numerical work on disor-

dered superconductors.
In category (8) we found the following:

(i) In 3D AF superconductors, non-magnetic im-

purities can induce gaplessness. As the impurity
concentration increases still further, X,(co) becomes

more BCS-like and a gap reopens. This derives

from the fact that the impurities fi11 in the gaps in

the normal-state band structure at the AF Bril-
louin-zone boundary. For w~

' & 5m„ the molecular

field H~ is effectively "screened out." These re-

sults may explain why all but very dirty AF ter-

nary superconductors have T~ ~ T, .
(ii) The effects of magnetic impurities are simi-
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lar to those in ordinary (non-AF) superconductors.
However, as nonmagnetic impurities are added to a
fixed concentration of magnetic impurities the sys-
tem first becomes more gapless and then less so, as
in category (B), item (i).

(iii} H, has a different functional dependence on
temperature depending on whether the impurities
are magnetic or not. For magnetic impurities we
obtain curves for H, which look similar to H, ~

measurements.
In category (C) we found the following:
(i) As in the case of spin-glass superconductors,

the density of states N, (co) has fine structure at the
spin-wave frequencies co„due to the transverse
fluctuations. This result suggests that future tun-

neling experiments may be used to measure the
(averaged) magnon density of states, using the ap-
proach of McMillan and Rowell (who treated
phonon effects in strong coupling superconduc-
tors}.

(ii) At finite temperatures longitudinal fluctua-
tions will help to further reduce the gap in N, (co).
However, because a pure AF superconductor is on
the verge of gaplessness [category (A), item (ii)]
and because both magnetic and non-magnetic im-
purities will fill in the BCS gap [category (B),
items (i) and (ii)], longitudinal fluctuations may
only be important in determining the temperature
dependence of N, (0). This latter quantity is ex-
pected to increase with increasing T at low T, as in

the case of spin-glass superconductors. 27

(iii} Owing to the difficulty in solving our six
coupled integral equations, we have not computed
H, (T) when fluctuations are present. Based on
our other calculations, we expect the following
behavior. As T decreases below TM, H, will ra-
pidly drop due to the "turning on" of H~. At
lower T, H~ saturates and the temperature depen-
dence of the longitudinal spin fluctuations dom-
inates that of H„' H, will rapidly increase with de-
creasing T. Thus, we expect the behavior of H,
due to spin fluctuations to look similar to that ob-
tained when only magnetic impurities are present.
As discussed in category (B), item (iii), this would
yield qualitative agreement with experimental H, 2

measurements. A calculation of the more experi-
mentally accessible quantity H, i (which includes
spin fluctuations) will be presented at a later date.

ACKNOWLEDGMENTS

We gratefully acknowledge L. Coffey's help with
some of the H, calculations. The work of one of
the authors (M.J.N.), was supported by an IBM
predoctoral fellowship. This work was supported
by the National Science Foundation Grant No.
DMR 80-17758, and NSF Materials Research Lab-
oratory Grant No. 79-24007.

APPENDIX: COUPLED GAP EQUATIONS FOR 4,4+g

In the basis

(Cki C—ki Ck+Qt C—k —Qi } ~

the Green's function Go (k,ice„) is

Go '(k, iso„)=iso„—4 =iso„&,&3 &ap30—'3+Hg—pi+~&1+~gpirri ~QP2~»

where

1

&g =
2 (ek+Ek+g)a

and

(Al)

kg= —,(b, g+bg)

After inverting 60 to obtain Go, we find

d k'5= VTg f 3 Tr(Gooi)
(2m. )

3 I

=VTg f E '[h(co~+a, +e, Hg+b, +bg —bg—)+2HQ(E, bg+ico~bg)],
(2n. )' (A2)
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d'k'
&g ——VT g f Tr(Gop2trt)

(2~)

d k'= VTg I K '[b—g(or' +e,' e—,'+Hg+b, '+&g &g—) 2e.—(tco ~g Hg—~)]
m

b,g =VTgI,Tr(GO) &~t)
d k'

(2n )

d k'= VTg E &[kg+(or~+p, E, ——Hg Q —Qg—+b,g ) 2ico —(e, bg Hg&—)],
(2n. )

(A3)

(A4)

where

K=(co~+@,+e, +Hg+b, +kg —bg+ ) 4(e, bg+—ior~hg+ —Hgb) —4e, (Hg kg+ ) —4e,e, —. (A5)

We then carry out the co summation and do the integrals over k' numerically to obtain the results of Sec.
II.
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