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The ground-state properties of the He- He mixture are investigated by assuming the

wave function to be a product of pair correlations. The antisymmetry of the He corn-

ponent is taken into account by Fermi-hypernetted-chain techniques and the results are

compared with those obtained from the lowest-order Wu-Feenberg expansion and the

boson-boson approximation. A little improvement is found in the He maximum solubili-

ty. A microscopic theory to calculate 'He static properties such as zero-concentration

chemical potential and excess-volume parameter is derived and the results are compared

with the experiments,

I. INTRODUCTION

Recently, there has been a renewed interest in
the theoretical description of isotopic boson-
fermion mixtures, mainly due to the discovering of
an incomplete phase separation at T =0 K in He-
He mixtures. ' The maximum solubility of He

in He has been measured to be about 6.5%%uo. Dif-
ferent microscopic approaches to this problem have
been used in the p@st years starting from a
description of the system that does not incorporate
the fermionic character of He; however, this in-

correct treatment of the He symmetry properties
did not allow these theories to reproduce the phase
mixing. Hansen and Schiff and, more recently,
Guyer and Miller have in fact shown that in order
to obtain miscibility in the ground state of the
He- He mixtures, the presence of the Fermi-Dirac

statistics in He is necessary. In their procedure, a
Slater-Jastrow wave function was used and the an-

tisymmetrization of the He wave function was in-

troduced bP means of a lowest-order Wu-Feenberg
expansion' mixed to a hypernetted-chain (HNC)
expansion of the bosonic component.

In this paper we have generalized the Fermi-
HNC (FHNC) and HNC equations" to the case of
a binary fermion-boson system and we have ap-
plied them to the He- He mixtures to account for,
in a more complete way, the antisymmetry of the
He wave function. Two other quantities of exper-

irnental interest and which are useful to test the
microscopic models are the He chemical potential

e~ and the excess volume parameter ao. The first,
at zero concentration of He and zero pressure and

temperature, is identical to the binding energy of
one He atom in He, and its experimental value is
—2.795 K. The presence of an excess-volume

parameter is a consequence of the fact that the 'He

particle has a larger zero-point energy than the He
because of the lighter mass and therefore has a
larger specific volume. The ao experimental value

is 0.284. Woo, Massey, and Tan (WMT) have

developed a microscopic theory that involves the
knowledge of the radial distribution functions of a
binary boson system to calculate ao and e~.

Here we present the formulas for the radial dis-

tribution functions, in an HNC approach, of a bo-

son system with two internal impurities; then the
WMT theory of calculating the He chemical po-
tential and ao is applied. The plan of the paper is
the following. In Sec. II the generalization of the
FHNC and HNC equations to fermion-boson mix-

tures arid the energy equations are derived; in Sec.
III the expansion to calculate e~ and ao is present-

ed; in Sec. IV the results are presented and a brief
discussion of them is made; finally, the last section
contains a brief conclusion.

II. FHNC-HNC EQUATIONS FOR
'He-4He MIXTURES

We consider a homogeneous, isotopic mixture
compound of N3 He atoms and N4 He atoms,
confined in a box of volume 0 with densities

p3 —N3 III and p4 N4 l0 and p=p3+——p4 and con-
centrations x3 N3 l(N3+N4) and-—
x4 ——N4I(N3+N4); at the end we let N3, N4, and
0 go to oo, keeping the densities constant. The
Hamiltonian of such a system is
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where V(a'@ are the interaction potentials between the particles of the (z and p types, repulsive at short dis-

tances (here and in the following we will use Greek indices to stand for 3 aiid 4). To describe the system we

adopt a vanatlonal choice and simple generalization of the Jastrow wave function u~d to describe the
separate components; then

N3

/{1, . . . , E4,N4 ), . . . , N +N„)= IIf'3 '{i,j)
i=1
E QJ

T

N4

IIf{4,4)(i J)
i=1i(j

N4 N3

II IIf""{ij)
i =1 j=l

XP(1, . . . , &3), (2.2)

where f' p'(i, j)'s are the correlation functions between the i a particle and the j ((3 particle, with the usual
boundary conditions

lim f' '~)(i,j)=0, lim f(a'~)(i,j)=1,
r,)-+0 r]g~ eo

and (t( 1, . . . , X3) is the Slater determinant of plane waves relative to the Fermi component of the mixture.
We are mainly interested in the calculation of the ground-state energy, so it is useful to consider the a-P

radial distribution functions:

X.(X~ {3.,) I—}g}'«(i,j)
g' ' '(r")=-

PePP

with J)' the normalization integral and where dQ(i,j ) indicates the integration over all the particle coordi-
nates except i and j (i E }a } and jE [ p I). Now, we will derive the g' *@'s generalizing the HNC and
FHNC techniques to a binary system. To make this, we need to construct the sets of all the possible nodal
and non-nodal diagrams (we will work in HNC/0 and FHNC/0 approximation, i.e., we will disregard all the
contributions coming from the elementary, or bridge, diagrams) and to calculate the functions corresponding
to their sums.

The functions are denoted as i(iada'i', Nd(, ' ','&,', '3', and i)i(3' ' and Xd(d'P', Lda' ', X,'3'3', and X,'3'3'. The
first set of functions refers to the sums of the nodal diagrams and the second to the non-nodal ones. The
subscripts indicate the types of correlation lines reaching the external points (d denotes direct, e denotes ex-

change, and c denotes cyclic) and the superscripts the types of particles ( He or He) at the same points.
These functions are the solutions of the following seven integral equations:

~(a,P) ~ (y(a, i.) ) X(3.,P)+~(k„)3))+ (X(a,3) ) X(3,P)+~(3,)S))+ (X(a,3) ) X(3,P)+g(3,P))
dd ~ PA, dd } dd dd P3 de } dd dd P3 dd } ed ed

A, =3,4

~(a,3) ~ (X(a,A)
) X(3,,3)+~(A„3))+ {X(a,3) ) ~(3,3)+~(3,3))+ {X(a,3)

~ X(3,3)+~(3,3))
de ~ PA, dd } de de P3 de } de de P3 dd } ee ee

A.=3~4

~(3,3) ~ (~(3,3.)
) X(i1,3)+~(A„3))+ (X(3,3) ( g{3,3)+~(3,3)) + (X(3,3) ) X(3,3)+N(3, 3))

ee ~ pA, ed } de de p3 ee } de de p3 ed } ee ee
A, =3,4

(2.5)

(2.6)

The non-nodal functions are

where 8(x)=3(sinx —x cos)/x3, kz ——6m p3/v, and v is the degeneracy of the Fermi component. The con-
volution integral is defined as follows:

(f(a,8)
}
g(P, r)) J d& f(a,P)(& )g(P, r)(p )



VARIATIONAL STUDY OF 3He-4He MIXTURES 4535

X' 'p'(r)=(f' p'(r)) e —1 N—u'z xQ~»)(r) (a,p)

X~,"(r)=[(f' "(r))'e —1]Nae' ("}

X(»3)( ) (f(»&)(r))&e ~
[ N„'(r)+(Nge' (r)) v[1—(kyar)lv+Nee» (r}] ] Nee'

ee

X(»)(r)
X,', ' '(r)=[(f' '(r)) e —1][N,', ' '(r) —8(kyar)iv] .

By means of these functions we can write the radial distribution functions

g(4, 4)(r) 1+N(,4)(r)+X(, )(r)

g' '(r)=1+Nod' '(r)+Xdd' '(r)+Nd, ' '(r)+X~, ' '(r),

g' '(r)=1+Nd~' '(r)+X'' '(r)+N,', ' '(r)+X,', ' '(r)+2[Nd, ' '(r)+Xd, ' '(r)] .

(2.7}

(2.8a)

(2.8b)

(2.8c)

The boson-boson approximation is obtained by putting zero N 1
'p' and X~

'p' for (ij ) different from (d, d) in

Eqs. (2.5) and (2.7). So we have in this approximation

g' 'P'(r) = 1+N(a,P (r)+X(a,P)(r} (2 9)

for a,P=3,4. At the lowest order of the Wu-Feenberg expansion the radial distribution function of the He
component is given by

gwF (r} gsB (r)[1—~ (4r)»] .

The energy per particle of the binary system is

(2.10)

E
—=x&E' '(p3,p4)+xrE"'(p3, p4)+xexrE' '(p3,p4), (2.11)

where E' ' and E' ' represent the energies of the fermionic 'He and of the bosonic He components and E(~)
is the energy coming from their interaction; using the Fantoni-Rosati' form of the kinetic energy for a Fer-
mi system, the various parts of Eq. (2.11}may be written as

E' '= — drg' ' '(r) V' ' '(r) V ln—f' ' '(r)p4 $2

2 2m 4

E(m)=p dr g((4'3))(r) V(4 3)(r)—'V Inf' ' )(r)
f2

2p

E' =— drg' ' '(r) V' ' '(r) V lnf ' —'(r) +T (p3)+T' (p )+T (p3),
p3 $2

2 2m3

(2.12)

where T"'
&pf1 kp/m3 and T' ' and T' ' are the

two- and three-body terms of the kinetic energy
obtained from the application of the derivative
operator to the Slater determinant. ' The reduced
mass p 1s

1 1 1 1+
p 2 m3 m4

(2.13)

In the boson-boson approximation we have T"=0
for i =1,2, 3 while in the WF approximation T"'
is the same as in FHNC, T' '=0 and

(2)
TWF

(, ,)
V'l'(kFr)

p, dr-gpa (r)-
8m3 V

In terms of the energy and of the pressure

, aEI' =p
~p x3

we can calculate the enthalpy per particle,

E(x3,p) P(x3,p)
H(x3, P) =

iV p

(2.14)

(2.15)
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aaP~=H +Xp
a p

(2.16)

and the chemical potential of the a component, one He atom in 'He at that density and Ez(p3,P4)
may be interpreted as an interaction term between
the mass-3 bosons. A different form of (H ) is
the following:

These two quantities give direct information about
the phase behavior of the mixture.

III. HNC CALCULATION OF THE Hc
STATIC PROPERTIES

(H ) = Ngeo(pg) +N3e) (p4)

g2 /f3
+ — e2(p4)+0 —, (3.2)

In the WMT theory, the expectation value of
the Hamiltonian (2.1) for a binary boson system
was written as

(H ) = N4EO(p4)+N3E) (p4)

pf 2

+
N 2(P3 P4)

3

4
(3 1)

where Eo(pz) is the energy per particle of pure "He
at density p4, E,(p4) is the chemical potential of

The first two terms of formulas (3.1) and (3.2) are
the same (eo =Eo and e) E) );——e2 is the energy of
a system compound from X4 He atoms plus two
He impurities of opposite spins. It is clear that

N3
E~(P3,pq) =e~(p4)+O

X4
(3.3)

In the zero concentration limit (x3 —+0) we have

e2 E2 U——sing . Eq. (2.2) with /=1 the explicit ex-
pression for the e s are

eo(p4)= —dr go' '(r) V( ' '(r) — V Inf( '(r)P4 4 4 fi

2 2ppl 4
(3.4a)

e)(p4)= — dr go' '(r) 2V' ' '(r) — V lnf' '(r)~4 43 $2

2 2p

2

+— dr g'( ' '(r) V' '(r) V lnf—' ' '(r)PC 4 4
A'

2 2@i4

e2(pq)= — dr go '(r) V'' ' '(r) V in—f' ' '(r)~4 $2

2 202 3

(3.4b)

+— drg'(' '(r) 2V' ' '(r) — V Inf' ' '(r)P4 43 f2

2 2p

P d
— (4,4)( ) y(4, 4)( ) V2 le(4, 4)(r) (3.4c)

g„' '~'(r) is the radial distribution function of the a-P type with n internal impurities ( He atoms).
In the HNC/0 approximation the distribution functions go '~'s are easily obtained from the solutions of

the following set of equations:

N(a, P)(„) (g(a, 4)
) g(4, t3) +N(4, P)

)o ~ =P4 o i o 0 (3.5a)

and

X"~'(r)=(f' '~'(r)) e ' 1 No' '~'( ),r——

g(a, P)(r) 1+N(a, P)(r)+X(a,P)(r)

(3.5b)

(3.5c)

The g'~ '~'s are defined as

g "~'(r) =g "~'(r)[N"'~'(r)+N' '~'(r)] (3.6a)
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~(4,P)(„) (
(4, 3)

1 ( (3,P) 1)

is the sum of the nodal diagrams of 4-p type with one He impurity on a node, and

N')'"(r) =2p4(go'" —1
I
&)'")+p4(g o'"—l

I
p4(x')'"

I g o'" —1)}

(3.6b)

(3.6c)

( 4 3 )
(r ) p (g

(4 4 )
1

I
g (4 3 )

)+p (g (4 4 )
I g

(4 3 )
1 ) +p (g

( 4 4 )
1

I p (g ( 4 4 )
I g

(4 3 )
1 ) ) (3.6d)

~(4,a)( ) g(4, a)(r) ~(4,a)(r) ~(4,a)(r)

Finally, for g3
' '(r) we have

g(44)(r) g(4,4)(r)I ~(4,4)(r)+~(44)(„)+I~(4,4)(„)+~(4,4)(„))2 )

where

~(4,4)(r) (g(4, 3)
1 Ig(3,4))

(3.6e)

(3.7a)

(3.7b)

is the sum of all the nodal diagrams of the 4-4 type with two He impurities on the internal points and at
least one of them on a node, and E3 '"'(r) is the solution of the following integral equation:

/(44)(r) 2 (g(4 4)
1

I

X(44) )+ (g(4 4)
1

I

(X(4 4)
I

g(4 4)
1 }}

+p(x ' Ix ' +& ' )+ ( ""'—lI (I""
I

(x""'Ix""+N"")} (3.7c)

with

&3 "(r)=g,""(.)—N,""(r)-N,"."(r) .

(3.7d)

2
Nlj S=( I+(ro)

p4
(3.8)

In the WMT theory, the knowledge of E(), E), and

E3 allows the calculation of the static properties of
He in He; applying these results at zero concen-

tration, we can write

(4.1)

zero pressure comes from the FHNC-HNC ap-
proximation and the corresponding equilibrium
density is well far from the experimental one.

%e assume that the V'~'~' interactions appearing
in the Hamiltonian (2.1) are all of the form

'12 6
0 0

V(r) =4@
r r

with a=10.22 K and o.=2.556 A; the correlation
factors between the a-type and p-type particles are
taken identical for all the pairs and of the com-
monly used short-range form

2e2(p4) =(1+2ao)m4s (3 9) f(r) =exp bo 1

r 2
(4.2)

where s is the sound velocity in pure He at that
density.

As a starting point of this section, we discuss
the energy properties and the phase behavior of
liquid He- He mixtures at zero Kelvin tempera-
ture and zero atmosphere pressure. In these condi-
tions, the energy per particle is identical to the
enthalpy per particle. It has to be noted that our

with b as unique variational parameter.
In order to study the energy of the ground state

of the mixture for different He concentrations, we
fix x3 and then perform a minimization respect to
b and the density. This, together with the condi-
tion p ((}EIBp)=0, determines the total equilibri-
um density for a given x3 and ensures us to have
zero pressure.

The excess energy per particle E,„ is related to
the heat that must be removed or added to the sys-
tem in order to keep constant the temperature and
is defined as
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r
~P

r~
r~

TABLE I. Calculated values of the maximum 'He
solubility x 3 and of the spinoidal concentration x 3. BB,
boson-boson; WF, lowest-order Wu-Feenberg approxi-
mation; FH, FHNC-HNC approximation, expt. , experi-
mental results.

WF FH Expt.

K/N( K)

0.18
0.38

0.16
0.39

0.064
0.15

FIG. 1. E/N results. —boson-boson approximation;
———FHNC-HNC approximation.

E,„(x3) =E (x3 ) —(1—x3 )E (0)—x3E(1),
(4.3)

p3(x3 )=@3(1).

We can rewrite this condition in terms of E„,
dE,„(x3)

E,„(x3)+(1—x3) =0 .
Qx3

(4.4)

(4.5)

I I I Xg

O.T 0.8 0.9

FIG. 2. E,„/N results. —boson-boson approxima-
tion; ———FHNC-HNC approximation; ———.
lowest-order Wu-Feenberg approximation. The right
scale refers only to the boson-boson values.

where all the quantities are evaluated at zero pres-
sure and temperature. When we study the energy
diagram, looking for regions of instability requires
d E/dx 3 & 0 or, in an equivalent way,
d E,„/dx3 &0. When this condition occurs, the
system is completely unstable against phase separa-
tion. The condition d E/dx3 ——0 gives the frontier
of the region with the absolutely unstable systems
and determines the spinoidal concentration x3,' the
maximum solubility concentration x3 lies a little
bit before and is fixed from the condition of the
equality of the He chemical potential in pure
phase with that in the mixed one:

The region between the two concentrations x 3 and
x 3 is the locus of the metastable concentrations.

In Figs. 1 and 2 we present the values of E and

E,„obtained by using the following different ap-
proximations.

(a) Boson-boson: We consider only the underly-

ing boson-boson system without taking care of the
antisymmetrization of the He [Eq. (2.9)].

(b) Wu-Feenberg at lowest order: As in Ref. 9,
the antisymmetrization is properly included only at
lowest order [Eq. (2.10)].

(c) FHNC-HNC: All the effects of the antisym-
metry are considered except those contained in the
elementary diagrams [Eq. (2.8)].

In Table I the results for x 3 and x 3 in the dif-
ferent approximations are reported. As it has been
already established, ' the boson-boson solution is
completely unstable and no mixture at all takes
place. The differences between the other two cal-
culations are not large and, in spite of the small
improvement of the FHNC-HNC results, we are
still far from the experimental values.

Of course, to calculate E,„requires much more
attention than to calculate the energies of the sin-

gle pure components, because the first quantity is 2
orders of magnitude smaller, and therefore the
evaluation of the derivatives is a very delicate task.
Our feeling is that the calculations (performed by
us) are accurate enough. The differences from the
experimental results are not percentually larger
than those in the pure phases. In this respect, we

think that even the inclusion of the omitted dia-

grams will not improve significantly the con-
clusions (for pure He the elementary diagrams'

contribution to the energy' is about 10%). Simi-

larly, an optimal correlation factor, coming from
the solution of the Euler equation for the FHNC-
HNC energy, would not considerably improve the
description of the system. '

We think that the main source of disagreement
between the calculated x 3 and its experimental
value is the large error (Er &zan

—0.92 K) in the——



TABLE II. Calculated values of the zero-
concentration chemical potential e~ and of the excess-
volume parameter o;o for He. M denotes microscopic
and A denotes analytical calculations; expt. , experimen-
tal values.

Expt.

—1.89
0.38

—1.90
0.31

—2.79
0.28

p(x3) —p4
Qo= 11n1

@3~0 X3p4
(4.6)

where p(x3) is the equilibrium density of the mix-
ture at the x 3 concentration of He and p4 is the
equilibrium density of pure He, and

BE
e~ ——p3(x3 ——0)=E(0)+

3 x =01'

In the expt. column the experimental values are re-
ported. The agreement between the two calculated
values of e1 1s very good. This fact 1s a stlong 1n-
dication of the accuracy of the two procedures.
The values of ao are also in good agreement if we
have present that numerical derivatives are neces-
sary in order to obtain them. The comparison
with respect to the experimental results shows a
percentual error not larger than that made in the
pure phase calculations. %c Ica11zc that th1s type
of wave function allows a better description of the
He- He system at very low concentrations of He.

estimation of the pure He energy. Because of
this, the system is energetically favorited in the
mixed phase; in fact, to get mixing, it is also essen-
tial that, the He chemical potential at zero concen-
tration be smaller than that in the pure phase, but
as the experimental difference between them is
smaller than that calculated with the FHNC-HNC
results, we have a larger x3.

In Table II we present different results for the
zero-concentration chemical potential of He (e~ )

at zero pressure and for the excess-volume parame-
ter ao. The values under the M column (micro-
scopic) are derived from the equations of the Sec.
III of this paper; those under the 3 column (ana-
lytic) come directly from the curves of Figs. l and
2 employing the formula

This is in accordance with the fact that the simple
Jastrow wave function gives a disagreement of
about 25% in the ground-state energy estimation
for pure He and 60% for pure He.

We have also made calculations with different
parameters for every type of pairs in the two-body
correlation function, but the results are not signifi-
cantly affected. We think that effective improve-
ments can be achieved by introducing effective
three-body correlation in the wave function and
momentum dependence. This conclusion is strong-
ly supported from the results in the estimation of
the energy of the pure phases' and of the He ef-
fective mass with this more complete wave func-
tion.

V. CONCLUSIONS

The FHNC-HNC theory has been generalized to
apply for boson-fermion mixtures and specifically
for the description of the He- He system. The
system is as well described as in the pure phases.
As was expected, the disagreement between the
simpler lowest-order %u-Feenberg approximation
and the FHNC-HNC approach increases with the
He concentration and a small improvement is ob-

tained in the calculated value of the He maximum
solubility.

The He static properties at very low concentra-
tions, chemical potential, and excess-volume
parameter are better reproduced than the pure He
energy. At low concentrations, the mean distance
between the He atoms is large con1pared to that in
the pure phase, and the effective interaction be-
tween two of them does not depend too much on
the Fermi-Dirac statistics, but in order to obtain
good agreement with the experimental values it is
necessary to improve the description of' the mixing
by 1ntroducing a. more complete wave function
than the simple Jastrow-Slatcr employed in this pa-
per.
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