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We propose a simple theory for the I-V curves of normal-superconducting microcon-
striction contacts which describes the crossover from metalhc to tunnel junction behavior.
The detailed calculations are performed within a generalized semiconductor model, with
the use of the Bogoliubov equations to treat the transmission and reflection of particles at
the E-S interface. By including a barrier of arbitrary strength at the interface, we have
computed a family of I-V curves ranging from the tunnel junction to the metallic limit.
Excess current, generated by Andreev reAection, is found to vary smoothly from
4h f3'~ in the metallic case to zero for the tunnel junction. Charge-imbalance genera-
tion, previously calculated only for tunnel barriers, has been recalculated for an arbitrary
barrier strength, and detailed insight into the conversion of normal current to super-
current at the interface is obtained. We emphasize that the calculated differential con-
ductance offers a particularly direct experimental test of the predictions of the model.

I. INTRODUCTION

In recent years there has been much experimen-
tal and theoretical work on small-area high-
current-density superconducting junctions, since
such junctions have advantages for certain practi-
cal applications. Although the properties (I V-
curves, etc.) of classic (high-barrier) tunnel junc-
tions have long been understood in great detail,
the properties of metallic (no-barrier) junctions
have been studied only more recently and in
less detail, and the transitional case (small barrier)
has received practically no attention at all. Here,
we present a new unified treatment which is suffi-
ciently general to embrace both limits, as well as
the intermediate regime.

In this paper, we confme our attention primarily
to the X-S interface in the context of a generalized
Andreev reflection model. This avoids the compli-
cations of the Josephson effect, while allowing
complete dehneatlon of I-V curves lncludll1g the
so-called "excess currrent" at high voltage, as it in-
creases from zero in tunnel junctions to its limiting
value in clean metallic contacts.

The paper begins with a careful clarification of
the relation between a general. semiconductor
model of the superconducting energy levels and the
excitations of the BCS model and the Bogoliubov

equations. Kith this in hand, we are quickly led

to complete I Vcurves -for the case of arbitrary
barrier strength. %e also compute the generaliza-

tion of the tunnel-injection results for the genera-

tion of charge imbalance in the superconductor,
and give new insight into the detailed processes in-

volved in the conversion from normal to super-
current at an N-S interface. Some of the results
which we obtain by our simple technique have

been obtained earlier by other more mathematically
complex theones, but our method gives greater
physical insight. Moreover, the simplicity of our
method has allowed us to treat a broader range of
problems having direct experimental implications.
%e have also used this model in a previous publi-

cation to explain the origin of the excess current
and of the subharmonic gap structure which is ob-

served in metallic S-S contacts.

II. GENERALIZED SEMICONDUCTOR
SCHEME

It has long been conventional to simplify the cal-
culation of tunnel currents by taking advantage of
the fact that the BCS coherence factors uk and vk

drop out of the computation if excitations with the
same energy Ek, but with k & k+ and k p k~, are
grouped together. Then a very simple "semicon-
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ductor model" can be established, in which only
the superconducting density of states E,(E) distin-
guishes the superconductor from the situation in
the normal state. However, in combining k & and
k & for each EI„ information is lost. For instance,
the quasiparticle charge imbalance Q* refers
specifically to the imbalance between the two
branches k & kF and k & kz of the quasiparticle
spectrum, a distinction which is completely
suppressed in the simplest semiconductor model.
Another shortcoming of the elementary semicon-
ductor model is that the density-of-states factor
makes no reference to the microscopic nature of
the states. For example, it is clear that the current
must be carried toward and away from the junc-
tion by waves traveling in the appropriate direc-
tions, yet this physical fact is obscured in the usual
tunnel-Hamiltonian model.

Here, we describe a generalized semiconductor
model specifically designed to avoid this loss of in-

formation. The key innovation is the use of the
Bogoliubov equations to handle the interface; this

treats all cases from a clean metallic interface to a
tunnel junction in the same formal way by match-

ing wave functions at the boundary. These results

determine the probability current carried by the
various excitations characterized by the semicon-
ductor diagram. For simplicity, we restrict atten-
tion to metal clean enough to allow use of momen-

tum as a good quantum number for labeling the
various waves.

If one considers only energies E & 6, the Bogo-
liubov equation solutions (see Appendix for details)

for the incident, transmitted, and reflected particles
can be identified with the conventional BCS quasi-

particle excitations with energy

(g2+ &2 )
I/2

with respect to the electrochemical potential for
condensed pairs, where

in the absense of spin-flip processes this affects
only normalizations, and it need not concern us

here.
The nature of one type of these BCS quasiparti-

cle states is given by the usual Bogoliubov transfor-
mation as

where the BCS coherence factors are given by

Although, in general, Eq. (5) determines the mag-

nitudes of u~ and U~ (which can have phase fac-
tors), for simplicity we take them to be real and

positive. For the X-S case treated here, this in-

volves no loss of generality; only in S-S devices

does phase play a role. The excitations described
in Eq. (4) consist partly of electrons created at +k
(i.e., uI, cf„) and partly of holes created at —k (i.e.,
Ul, c ~„ the destruction of an electron at —k).
Since either term increases the system momentum

by +k, the subscript k in y~o is a well-defined

momentum index suitable for labeling. From Eq.
(5) we see that the excitations at +k+ are predom-
inantly electronlike, while these at +k are pre-
dominantly holelike. The other members of the
degenerate set are described by including the com-
plementary BCS operator yI, ~ and also including
both senses of k.

In preparation for the application of boundary
conditions, we note that the excitation described by
Eq. (4) is described in the Bogoliubov-equation for-
malism (see Appendix for details) as a two-element

column vector,

Ek

—CF .2'
Because only the square of eq enters the expression
for EI„ there will be a pair of magnitudes of k as-

sociated with each energy, namely,

III'k+-=(2m)' I'e +(EI, —b, )' ]'

Moreover, because of the BCS pairing of k and
—k, one must consider both signs of k together, so
that there is a fourfold degeneracy of relevant
states for each E, as sketched in Fig. 1. Of course
there is an additional twofold spin degeneracy, but

j/ //

FIG. 1. Schematic plot of excitation energies El, vs k
along an axis passing through the center of the Fermi
sphere in the superconducting state. The scale has been

greatly expanded near +k~.
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fk(x, t)
40 g (x t)

L

Here fk and gt, satisfy the differential equations

7' —p(x)+ V(x) f+&g2'
=iit ~Ef,Bf

Bt

7 —p(x)+ V(x) g +&f2'
=i% ~Eg,Bg

Bt
and they are proportional to uk and uk, respective-

ly, when V{x) is constant. The time derivatives

may be replaced as indicated in solutions for sta-
tionary states of energy E.

As written in Eq. (4), the excitations yko change
the charge of the superconductor by the fractional
electronic charge qk =uk Uk=ek—/Ek =+X,(E)
Since physically allowable operators must conserve
charge exactly, it is convenient to introduce opera-
tors of the form

'Veko=~k~k& —~k~ ~ —k&

'Vako= ~k~~k& —~k~ —k& =~Pinko ~

where S' adds a pair to the condensate and 5 de-

stroys one. These operators create excitations
while changing the charge by exactly +e, corre-
sponding to the subscripts e and h for electron and

hole, xespectively. Accordingly, they are better
adapted to describe the energy levels analogous to
those of ordinary electrons. The excitations
described by Eqs. (Sa) and (Sb) are identical, and in

no sense cancel hs one might suppose for electron

and hole operators. The systems resulting from

(Sa) and (Sb) differ only by one condensed pair
from the reservoir at the chemical potential.

Now for any system with fermion excitations
such as these, the total system energy can be writ-

ten as

E =EG+g Ek)'k)'k+v&
k

where E& is the ground-state energy, and the sum

runs over all the excitations, which have Ek & 0.
The electrochemical potential p must be introduced

explicitly since we are interested in treating pro-

cesses which change the number X of electrons in

a subsystem at given p by +1. In fact, the energy

required to make an excitation with charge e is

~ek =P+&k (10a)

I
I

kF

FIG. 2. SemicondUctor vers1on of Fig. 1. InclUsIon
of the quasiparticle branches in the lower half plane al-
lows all the transitions in Table I to be "horizontal. "

while that to make an excitation with charge —e
differs by 2p and is

Esk = P+—Ek = (P —Ek)—

We can now tabulate (see Table I) the possible
charge-conserving processes involving subsystems 1

and 2, and write down the corresponding condition
set by the conservation of energy. There are four
distinct cases, each of which conserves energy
equally well in reverse, making eight cases in all.
As is evident from Table I, all these energetically
allowed transitions occur as "horizontal" ones only
if we plot both +Ek; symmetrically about each p;,
as is motivated by recalling that p —Ek ———EI,I,
(see Fig. 2). Further, the four cases of Table I in-
clude all the combinations of +Ek, so that all hor-
izontal transitions in such a reflected" or semi-
conductor-model diagram are energeticaIIy allowed.

There is, however, another constraint on the sys-
tem; namely, a particle incident from the left can
only produce transmitted particles with positive
group velocity (dE/dfik) and reflected ones with
negative group velocities. In general, there is a fin-
ite probability of all the transfers allowed by these
considerations to occur, but in the special case of
zero barrier and no discontinuity in electronic-band
parameters across the X-S interface, it turns out
that there is essentially zero crossover between
channels inside and outside the Fermi surface, even
near the gap edge. It is here that the Bogoliubov
equations prove most useful: The semiconductor
diagram shows which transitions are energetically
allowed; the Bogoliubov equations provide the
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TABLE I. Processes involving transfer of a single electronic charge.

Process Energy condition

1. Electron from 1~2 (or reverse)
2. Hole from 1~2 (or reverse)
3. Create electron in 1 and hole in 2 (or destroy both)
4. Create hole in 1 and electron in 2 (or destroy both)

91+&k1=P2+Ek 2

P1 —&k1=P2—Ek 2

P1+Ek 1 =P2 Ek2
P'1 Ek 1 @2+Ek2

quantitative probability that each will occur.
As a final preliminary, we consider the special

case of the normal metal, obtained by letting 6~0
in the expressions for the superconducting case.

Here the situation simplifies from the supercon-

ducting case shown in Fig. 2 because electronlike

excitations cannot be made inside the Fermi

sphere, since the states there are fully occupied in

the ground state, and excitations must be orthogo-

nal to the ground state. Similarly, hole excitations

are possible only outside the Fermi sphere. As a
result, in the normal metal only the branches

shown in Fig. 3 exist.

III. THE N-S BOUNDARY
IN EQUILIBRIUM

%e start by considering the dynamic equilibrium
which exists at an N-S interface with no applied
voltage, as sketched in Fig. 4. In this equilibrium

situation, all relevant quaisparticle states (such as
those labeled 0, 1, 2, 3, 4, and 5 in the figure) are
occupied with the same probability fo(E), which

also gives the probability of a hole in the state 6 at
E. Viewed ki—nematically in a semiclassical ap-

proximation, however, particles approach the inter-
face and are transmitted and reflected with certain
probabilities, which are given by the products of
squared amplitudes of Bogoliubov-equation solu-

tions times their appropriate group velocities. The
self-consistency of the equilibrium state provides a
useful check on the computed probability coeffi-
cients.

To be concrete, consider an electron incident on
the interface from the normal state with energy
E p 6, as indicated by the arrow at the state la-

beled 0 in Fig. 4. By matching slope and value of
the wave function across the interface, one finds
the probabilities A(E), 8(E), C(E), and D(E) for
the four processes indicated by those labels in Fig.
4, i.e., outgoing particles at points 6, 5, 4, and 2,
respectively. In words, C(E) is the probability of
transmission through the interface with a wave

vector on the same side of the Fermi surface (i.e.,
q+~k+, not —k ), while D(E) gives the proba-
bility of transmission with crossing through the
Fermi surface (i.e., q+ —+ —k ). 8 (E) is the pro-
bability of ordinary reflection, while A (E) is the
probability of Andreev reflection as a hole on the
other side of the Fermi surface. The latter process

„Eek 1%~ --g 3'~q
Hi'

—k —k

I I

k k

0

FIG. 3. Ek vs k for the normal state.

FIG. 4. Schematic diagram of energy vs momentum
at X-S interface. The open circles denote holes, the
closed circles electrons, and the arrows point in the
direction of the group velocity. This figure describes an
incident electron at (0), along with the resulting
transmitted (2,4) and reflected (S,6) particles.
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In other words, the hole is generated as far below

p as the electron was above, as drawn in Fig. 4.
Of course, this result is obvious in the excitation
representation.

It should be clearly understood that the probabil-
ities A, 8, C, and D (and the similar set A', 8', C',
and D' for quasiparticles incident from the super-
conducting side) are those appropriate for probabil-
ity current, taking account of the cancelling effects
of state density and group velocity. For example,
consider the flow of particles across the interface
in the energy range E to E+dE, and including
only states outside the Fermi surface. From left to
right, the current from states at 0 to those at 4 in
Fig. 4 is proportional to uFC(E)fo(E)dE; the
balancing current from right to left, i.e., from
states at 1 to those at 5, is proportional to
urC'(E)fo(E)N, (E)dE, where N, (E) is the normal-
ized density of states in the superconductor. In
equilibrium these flows are exactly equal, so that

C'(E)N, (E)=C (E),
and similarly

D'(E)N, (E)=D (E),

(12a)

(12b)

governs the branch-crossing transfers. The results
of Eqs. (12) can be derived by direct computation,
or by appeal to time-reversal symmetry. For sim-

plicity, in the remainder of the paper we write all
expressions in terms of C(E) and D(E), avoiding
the need for explicit inclusion of the density-of-
states factor N, (E) or the quasiparticle group velo-

city vg =X, vz in integrations over energy.
Recognizing the symmetry of the problem about

p, we see that A (E) and 8 (E) are even functions
of E. Similarly, C(E) and D(E) are also even-

functions of E, provided one uses the convention
that D(E) describes processes in which the
transmission involves branch crossing, while C(E)
governs transmission processes in which the parti-
cle stays on the same branch.

is not included in Table I, since it involves a
transfer of a pair carrying 2e across the interface,
while the processes in Table I transfer only a single

. electronic charge. The energy conservation condi-
tion appropriate for Andreev reflection is found by
equating the energy of the initial electronlike exci-
tation with that of the final holelike excitation plus
a Cooper pair at the chemical potential. That is,
E,k ——E~k+2p, from which it follows that

It is important to note that the conservation of
probability requires that

A(E)+B(E)+C(E)+D(E)=1 . (13)

This result is particularly useful in simplifying ex-
pressions for energies below the gap,

~

E
~

& 6,
where there can be no transmitted quasiparticles,
so that C =D =0. Then, Eq. (13) reduces simply
to A (E)=1 8(E—), so that a single function of en-
ergy is all that is needed.

Now, in general, A, 8, C, and D depend on the
angle of incidence of the trajectory and on the de-
tailed shape of the scattering potential. For sim-
plicity, we restrict ourselves to a one-dimensional
(1D) geometry. For the purposes of this paper, the
actual three-dimensional (3D) geometry is invoked
only to enforce three boundary conditions on the
10 model: that the junction is well-cooled, and
that the energy gap and the electric potential both
rise to their full asymptotic values on a scale short-
er than g on either side of the neck.

To capture the essential effect of any interfacial
scattering with a single parameter, we model it by
a repulsive potential H5(x) located at the interface.
This is meant to represent the effect of the typical
oxide layer in a point contact, the localized disor-
der in the neck of a short microbridge, or the in-
tentional oxide barrier in a high-current-density
tunnel junction. The calculations with the Bogo-
liubov equations are quite straighforward, but are
given in the Appendix to avoid a digression at this
point. The results of the calculations are values of
the four coefficients A, 8, C, and D as functions of
energy and barrier strength. To simplify the for-
mulas, we have introduced a dimensionless barrier
strength Z =k+H/2' ——H/Rvz. The significance
of this Z is illuminated by noting that the
transmission coefficient in the normal state is sim-
ply (1+Z ) ', and the corresponding reflection
coefficient is Z /(1+Z ).

The expressions for the energy dependences of A,
8, C, and D for E & 6 can be conveniently written
in terms of uo and vo, the BCS parameters u and v

evaluated on the branch outside the Fermi surface.
The results are as given in Table II. I'or conveni-
ence, in addition to ihe general results we also list
the limiting forms of the results for zero barrier
(Z =0) and for a strong barrier [Z (u—u ) &) 1], as well as for 6=0 (the normal-metal
case). Curves computed using the general results
are plotted in Fig. 5 for Z=0, 0.3, 1, and 3. In
the special case of E=6, one notes from Table II
that A =1 and 8 =C =D =0, independent of Z.
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TABLE II. Transmission and reflection coefficients. A gives the probability of Andreev reflection (i.e., reflection
with branch crossing), 8 of ordinary reflection, C of transmission without branch crossing, and D of transmission with

branch crossing (see text). (y =[uu+Z (uo —uu)], uo ——1 —uo ———
[ 1+[(E b, —)/E ]' } and N, ( E)=( u u—)

' )

Normal state

General form

Z2

1+Z
1

1+Z

E)h

Q2

E2+(Q2 E2)( 1 +2Z2)2
2 2

u OUO (up U02)2Z (1+Z ) up(up —VO)(1+Z ) Up(u02 Up)Z

No barrier (Z =0)

Strong barrier [Z'(u —u ) »1]
Up/Q p

2 2

E(h 4Z'(5' —E')
2 2

u 0Up

Z (up —vp)

1

Z2( 2 U2)

2
up

Z2(up —Up)

2
Up

Z (up —Up)

&ccordingly, except for Z =0, & (&) has a sharp

peak at the gap edge, although this peak becomes

unobservably narrow for large values of Z.
Although we have developed this technique quite

independently, other workers have also employed

the Bogoliubov equations, and along similar lines.

Andreev in 1964 used them to calculate the

thermal-boundary resistance at an X-S interface.

Thus, he was essentially concerned with the restric-

tion of quasiparticle flow from N to S caused by

the gap. Kummel expanded the equations to in-

clude the condensate phase, and then used them to
calculate the momentum balance of electrical-

current flow near a vortex core. He emphasized

the interchange of current between quasiparticles

and the pairs in geometries where the gap varied

with position. Then, in 1971 Demers and Griffin'

and Griffin and Demers, " calculated the transmis-

sion coefficients in N-S-N and S-N-S geometries

and made the extension to a 5-function barrier at

the interface. Surprisingly, this important work

remained essentially unnoticed for a number of
years but recently (1977) Entin-Wohlman'2 has

drawn on it to develop boundary conditions that

she used in solving the Gor'kov gap equation at an

N-S interface. Thus, use of the Bogoliubov equa-

tions to determine the fraction and type of reflect-

Z=O Z=0.5

0.5

Z =1.0

E o a(~)

~ ~ ~ ~ ~ o ~

B
Z =3.0

0.5 0.5—

0 h{T)

~c
Ag,~,

E o z{7)

FIG. 5. Plots of transmission and reflection coeffi-

cients at N-S interface. 3 gives probability of Andreev

reflection, 8 gives probability of ordinary reflection, C

gives transmission probability without branch crossing,

and D gives probability of transmission with branch

crossing. The parameter Z measures the barrier

strength at the interface.
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ed particles is not new, though perhaps the tech-
nique remains underutilized. What is new is our
extension of the method to calculations at flnite
bias voltage (as described in the next section) and
our development of a framework that allows the
physical consequences of these processes to emerge

more clearly.

IV. THE N-S BOUNDARY
AT FINITE VOLTAGE: I-V CURVES

When a voltage is applied, nonequilibrium quasi-
particle populations will be generated, which can in
general be found only by obtaining a self-consistent
solution to a suitable Boltzmann equation. This
solution is greatly simplified if one can assume
ballistic acceleration of the particles without
scattering. This is a good approximation for our
case of a small orifice connecting massive elec-
trodes, so long as the diameter of the orifice is
small compared to a mean-free path. Moreover, in
this regime, Bogoliubov-equation solutions neglect-
ing scattering potentials except at the interface
should also be usable. ' The physical assumption
which we use to define the problem is then that
the distribution functions of all incoming particles
are given by equilibrium Fermi functions, apart
from the energy shift due to the accelerating po-
tential. It is convenient to choose the electrochem-
ical potential of the pairs in the superconductor as
our reference level, since that remains a well-
defined quantity even when the quasiparticle popu-
lations are far from equilibrium. Moreover, it is
the quantity which defines the location of the
"mirror plane" of the semiconductor diagram.
With this convention, all incoming electrons from
the 8 side have the distribution function fp(E),
while those coming in from the N side are
described by fp(E —e V).

Since the current must be conserved, it can be
calculated in any plane. It is particularly con-
venient to do so on the N side of the interface,
where all current is carried by single particles, and
none as a supercurrent. To find the current in our
10 model, we take the difference between f (E)
and f (E), the distribution functions at points
such as 0 and 5 on Fig. 4, and integrate over E.
That is,

I=MJ

=2N(0)eu~W I [f (E) f (E—)]dE,
(14)

where ~ is an effective-neck cross-sectional area,
including a numerical factor for angular averaging
which will depend on the actual 30 geometry. For
example, in the orifice model of a point contact,
&=ma i4, where a is the radius of the orifice. '4

As usual, N(0) refers to the one-spin density of
states at eF.

With our assumption about incoming popula-
tions, it follows that

f (E)=fp(E —eV),

while

f (E)=A(E)[1—f ( —E)]+B(E)f (E)

+[C(E)+D(E)]fp(E) .
In writing Eq. (16), we have chosen to write f (E)
instead of fp(E —e V) in anticipation of later deal-
ing with more complicated problems where f (E)
and f (E) must be found self-consistently. Even
in such cases, Eq. (16) remains valid as it stands,
and serves as a boundary condition for a Boltz-
mann equation, whose solution would be inserted
into the general expression (14) to find the current.
However, in the present simple case, we can simply
substitute Eqs. (15) and (16) into Eq. (14), obtain-
ing

IN@ 2N(0)euF~ I ——(fp(E eV) I
—A (E)f—p(E+eV)+B(E)fp(E eV)—
+[1—A (E)—B(E)]fp(E) ] )dE

=2N(0)eu+W I [fp(E —eu) —fp(E))[1+A(E) B(E)]dE . —

In obtaining the final form, we have used the pro-
perties that A +B+C +D = 1, A (E)=A ( E), —
and fp( E)= 1 —fp(E). Th—e quantity [1+A (E)—B(E)] in Eq. (17) can be referred to as the
"transmission coefficien for electrical current. "
Its form shows that while ordinary reflection

[described by B(E)] reduces the current, Andreev
reflection [described by A (E)] increases it by giv-
ing up to two transferred electrons (a Cooper pair)
for one incident one.

If both sides of the interface are normal metal,
A =0 since there is no Andreev reflection, and



& E IONER. , M. TINKHAM, AND T. M. KI.AP~IJK

1 B—=C =(1+Z )
' as noted above, so that Eq.

(17) reduces to the simple form

2E (0)e uF W VV=
&+z'

Note that even in the absence of a barrier (Z =0),
there is still a nonzero normal-state resistance.
This is the spreading resistance typical of a two-
dimensional (2D) or 3D geometry, often referred to
as the S4arvin resistance in the present case of a
point-contact geometry with infinite mean free
path relative to orifice size.

Fol the more 1nterest111g X-S case~ we have 1n-

tegrated (17) numerically to obtain I Vc-urves for a
number of barrier strengths at T =D. The results
are shown in Fig. 6. The effect of changing the
barrier strength is even more dramatic in the dif-
ferential conductance dI/dV, plotted versus V in

Fig. 7, again at T =0. From Figs. 6 and 7, it is
clear that barrier strengths Z & 10 give results

essentially indistinguishable from those for classi-
cal tunnel junctions, although, as our model
demonstrates, there is a continuous variation from
the metallic to the tunneling limit. To facilitate
the interpretation of experimental dI/d V curves, it
is useful to note at T =0, Eq. (17) implies that
dI/dV is proportional to the transmission coeffi-
cient for electrical current, 1+3(e V) —8 (eV),
while at T@0,dI/d V is proportional to a thermal-

ly smeared version of the same quantity.

~. REI.ATION TO TRANSFER
HAMILTONIAN APPROACH

%ith the arbitrary barrier case well in hand, we
are in a position to contrast our technique with the
more conventional transfer Hamiltonian approach.
If one assumes a thick oxide between two banks, to
lowest order one can consider the two sides as
noninteracting systems, containing electrons in
standing-wave states labeled by quantum numbers
kL or kz. Of course, they are not truly unconnect-
ed and there is a small probability that an electron
from one side can tunnel to the other side; thus the
wave function must actually penetrate through the
barrier. Since this penetration will change the en-
ergy of the system, many workers have tried to
model the resulting change by adding a "transfer"
term to the Hamiltonian, although this pheno-
menological model has never been fully justified.

ls

The tunneling transfer matrix element T is tricky
to evaluate, since it is a function of the amplitude
of the small tail on the penetrating wave and re-
quires some microscopic knowledge of the system.
Nonetheless, many workers have calculated T, and
the result, for eV much smaller than the barrier
height, is an essentially featureless matrix element
much 11ke thRt fof an E-X contact.

By treating the tunneling as a perturbation, one
can calculate the current by using the Golden
Rule, and find the electron-transfer rate propor-
tional to a squared matrix element times the num-
ber density of unoccupied final states. This is in
the origin of the BCS density-of-states factor times
the thermal weighting factor [1 f(E —8V)]—

eIRN

RN—dI
dV

Z-0 Z =0.5

I

2Q
eV

Z =1.5 Z= 5,0

2

FIG. 6. Current vs voltage for various barrier
strengths Z at T =0. These curves attain their asympo-
totic limits only for very high voltages. For example,
the tunnel junction (Z =50) curve vrill be vnthin 1/o of
the normal-state curve (dotted line) only vrhen e V& 7A.

FIG. 7, Differential conductance vs voltage for vari-
ous barrier strengths Z at T=0. This quantity is pro-
portional to the transmission coefficient for electric
current for particles at E =eV.



25 TRANSITION FROM METALLIC TO TUNNELING REGIMFS IN. . . 4523

which appears in the tunneling current, for parti-
cles from I. to R. When we integrate over all
states on the left, an additional Ni, (E)f(E) ap-
pears, for a total probability (per unit energy) of

)&R ( ev—)f«)[1 f (E— eV—)] .

The latter two factors reflect the view that this is a
stochastic process involving two independent
banks, so that the joint probability for tunneling is

proportional to the probability of the initial states
being occupied times the probability of final states
being unoccupied (i.e., unblocked). When we com-
bine currents in both directions, the cross terms in-

volving products of Fermi functions cancel, and we
are left with the usual tunneling result in which
the current is proportional to an integral over

NL, (E)Ng(E eV)[f(E——«) f(E)] . —

The Bogoliubov equation approach is quite dif-
ferent in spirit. As we saw above, the current
transmission coefficient (in contrast to the matrix
element squared in the tunnel calculation) varies
rapidly for

~

E
~

=b, . This is the origin of the
density-of-states factor in the final result. In no
sense are the two banks decoupled; we associate a
given set of wave vectors on the left (q+, —q+, q )

with a specific set on the right (k+,k ), regardless
of the barrier height. q+ is not an "initial" state
from which transfer can be blocked by an occupied
"final" state k+. Rather, a wave packet describing
an incident particle in q+ evolves continuously
into transmitted and reflected wave packets in the
completely deterministic way described by Liou-
ville's theorem without scattering. Thus, we asso-
ciate one distribution function with this entire set
of wave vectors. Combining currents originating
from both sides gives a difference in Fermi func-
tions just as the transfer Hamiltonian did (after
cancellation of cross terms), but the rationale is en-

tirely different in detail. Since we can achieve the
same result with a model that has a larger range of
validity and usefulness, we have chosen this latter
point of view.

found by extrapolation back to the V=0 axis. By
manipulation of Eqs. (16) and (17), this I,„,can be
written as

I,„,=(I~+ I~~—)
I ev»a

1

eRN [1—8( oo )]

X I [& (E) B(E—)+B(oo)]dE, (19)

I,„,( V) =Its ( V) Iwv (V)— (20)

which simply gives the extra current due to the
superconductivity. Since Izz( V) is simply V/R~,
finding I,„,( V) is equivalent to giving the entire I-
V curve, as was done in Fig. 6. However, it is
worth noting that for Z =0 and b, « kT, the cal-
culation can be carried out analytically, with the
result,

1.5

4 -+
3

eIexc RN

1.0

0.5

where from Table II, 8( o)o=Z /(1+Z ) is the
reflection coefficient at high energy or in the nor-
mal state. Using this expression and those in
Table II, we have computed numerically the depen-
dence of I,„,R~ (the "insufficient voltage" referred
to by Likharev ) upon barrier strength Z. Since
this high-voltage limit depends on T only through
the magnitude of b, the normalized quantity

I,„,Rz/b, is a function only of barrier strength.
This dependence is plotted in Fig. 8. Note the
rapid falloff with increasing Z; clearly, excess
current will be seen only in relatively barrier-free
contacts.

More generally, one can define a voltage-depen-
dent excess current,

VI. EXCESS CURRENT

Although the high-voltage (eV» b, ) portion of
each I- V characteristic in Fig. 6 is linear with slope
R~, it does not in general fall on the normal-state
curve V =IR~ (as it does in a tunnel junction).
Rather, it is displaced by a constant amount re-
ferred to as the excess current, I,„„which can be

i i I I I I I I

0 Z

FIG. 8. Excess current (in units of b, /eR~) as a
function of barrier strength Z. The temperature depen-
dence of the curve is entirely contained within h(T).
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I,„,(V)=(4b/3eR~)tanh(eV/2kT), 5&&kT .

As noted in our previous work, this result agrees in
detail with that obtained by Zaitsev for a clean
metallic NS contact, after correcting a factor of 2
in his result.

We can also calculate the excess current for an
S-S' contact, by using the X-S result above. As we
explained in a previous publication, ' in the high-
voltage limit, the S-S' device can be thought of as
a series combination of an S-X and a N-S' micro-
constriction. The "insufficient voltages" of the
two simply add, so that the excess current is the
sum of the contributions from the two sides. For
example, in the clean contact with Z =0, we find

I,„,=4(5+5')/3'~ .

While the excess current has a clear mathemati-
cal definition, it may be a difficult quantity to
measure reliably, for at least two reasons. First,
for voltages greater than the gap, heating will gen-
erally distort the I-V curve away from its ideal
isothermal shape. ' There may, in fact, be no
linear region at high voltages until heating has
driven the contact fully normal. Secondly, even in
the absence of heating, care must be taken to carry
the measurement to sufficiently high voltages to
obtain a true asymptote. For example, the tunnel
junction curve in Fig. 6 (i.e., Z =50) appears to
have a significant negative (rather than zero) excess
current, even at a voltage as high as eV=36. Of
course, if one assumes our computed I- V curves
are correct and applicable to the contact at hand,
one can determine a value of Z by fitting the
measured curves at lower voltages.

VII. ANALYSIS OF CURRENTS
AND CHARGE-IMBALANCE GENERATION

In this section we establish a formalism for
separating the total current I&& into parts differen-
tiated according to the mechanism of charge
transfer. In particular, we distinguish the part of
the current Izz associated with the creation of
quasiparticle charge imbalance Q' in the supercon-

ductor from the part that is converted directly into

supercurrent. We also define linear-response coef-
ficients giving the normalized differential conduc-

tance 1' and its counterpart P', describing quasi-

particle charge injection, and evaluate them as

functions of Z and T.
For tunnel junctions, the rate of generation of

quasiparticle charge branch imbalance has been
discussed in some detail by Tinkham and Clarke'
(TC), by Tinkham, '

by Pethick and Smith' (PS),
and by Clarke, et al. (CESST). The latter au-
thors reviewed carefully the interrelations of the
definitions and conventions of the various treat-
ments including the rather different conceptual ap-
proach of Schmid and Schon. ' Using our present
method, we can generalize the tunnel results to ar-
bitrary barrier strength, providing a description
which covers all cases from the tunnel limit to the
ideal metallic contact, and which gives very de-
tailed insight into the process.

To minimize repetition, we refer the reader to
CESST for an index of the earlier work, and only
summarize the essential points. Noting that quasi-
particles at k have a charge

q» =u» —v» =e»/E» =++,(E»)
2 2—

(22)

the total quasiparticle charge (per unit volume, in
units of e) is

Q'=g q»f»
k

(23)

I~s = 2X(0)evFM

oE —e —oE

X[22(E)+C(E)+D(E)jdE .

This can be decomposed into two parts by recog-
nizing that the term 2A (E) represents the current

where f» is the actual occupation number in a
nonequilibrium system. To retain electrical neu-
trality, there must be an equal and opposite change
in the condensate charge, produced by a shift in

p, . [The quantity Q defined earlier by TC differs
from Q' by replacement of q» in Eq. (23) by
sgnqk ——+1, and represents the numerical popula-
tion imbalance between the branches. Since Q* ap-
pears to have more general physical significance,
we confine our attention to it in this paper. ]

To illuminate this problem, it is helpful to
rewrite the expression (17) for the current in a
form emphasizing the transmitted (rather than re-
flected) particles by using the sum rule (13) to re-
place 1+3 —8 by 2A +C+D. Thus, we write the
total current as
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I~s 2——N(0) eUF M

E —e —o E

X [2A (E)]dE, (25)

X [C(E)+D (E)]&E, (26)

due to quasiparticle transfer. But even Izs does
not represent the rate of generation of quasiparticle
charge at the interface, which we will call I~s. To
compute that, we must distinguish quasiparticles in
the two channels, k+ and k, and also take ac-
count of their fractional charge qk =+N, (E)
Thus,

due to Andreev reflection, in which the current in
the superconductor is carried entirely by pairs.
The remainder of IN& is the current

INs 2N(——0)eve&

o

that, but it is important only for weak barriers.
Again taking the strong barrier limit to evaluate
Izz, we note from Table II that (C D) —=Z, so
that Eq. (27) becomes

00

Iws= o E —e
eR~

XNg '(E)dE, Z » 1

(30)

again exactly equivalent to the standard tunneling
result for Q';„,.

For comparison, we now consider the same
quantities in the other limiting case of no barrier,
Z =0. Then, as noted in Table II, 8=D =0 and
C =1—A. In this case, the total current is

oo

Iws= o E-e —o E
eR~

X [1+A (E)]dE, Z =0 .

I~s 2N (0)eU—~—~
pE —e —pE

X [C(E) D(E)]N, —'(E)dE .
(27)

The Andreev portion of the current Izz is still
given by Eq. (25), but INs can be rewritten in
terms of A (E}as

(31)

Finally, since experiments usually involve current
bias rather than voltage bias, it has been useful to
determine the ratio

l

eR&

X [1—A (E)]dE, Z =0
Ii' =I'/I, (2g)

giving the charge imbalance generated as a fraction
of the injected current. These quantities have been
evaluated in the past for tunnel junctions, but now
we can evaluate them for arbitrary barrier strength,
as a function of V and T.

To make contact with the earlier work on tunnel
injection, we note that for strong barriers the re-
sults in Table II show that A ~Z g& 1, so Izs is
negligible and INs =Ized reproduces the form of the
usual expression for tunnel current, namely,

while

ao

Iws= 0E —e —o E
eR~

X[1—A (E)]

XN, (E)dE, Z =0 .

(32)

(33}

x~s —— ' oE —e —oE
eR~

XN, (E)&E, Z'»1.
(29)

The density-of-states factor N, (E) is not inserted
arbitrarily at this point; rather, it arises from the
limiting form of C+D given in Table II, namely
Z ~(u —U ) '. As is well known, Eq. (29) shows
no excess current; the Andreev term is essential for

Note that in Eqs. (32) and (33) there is no contri-
bution to the integrals for

~

E
~

& b„where
1 —A =0; but in Eq. (31), 1+A =2A =—2 in the
gap, where there is a large current derived entirely
from the Andreev-reflection process. By contrast,
in the strong-barrier limit, there is no current at all
in the gap, all current being carried by quasiparti-
cles above the gap. Since Q is generated only by
quasiparticles, the ratio F' =I'/I will in general
be smaller for metallic contacts than for tunnel
junctions.
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In the important special case of very low volt-

ages across the contact (eV« kT), we can replace
the difference of Fermi functions in the expres-
sions (24) —(27) and (29)—(33) by e V( —Bfo/BE)
and define generalized linear-response functions

analogous to the F and Z of CESST. These two
functions are the ratios of Izz and le, respective-

ly, to the current I&& at the same small voltage.

%e now generalize these quatities to include a

dependence on barrier strength as well. In doing
so, we also change the notation from F and Z to F
and F" to gain in suggestiveness and to avoid con-
fusion with the use of Z for normalized barrier
strength in this paper. Specifically, we define

Y(Z, T)= =(1+Z') fIN@(Z, T)

INN(z) ~v
[2A (E)+C (E)+D (E)]dE, (34)

Bfo
[C(E) D(E)]N—, (E)dE .

In the strong barrier limit, A -Z "-0, and us-

ing the limiting forms of C and D from Table II as

above, we obtain

F(Z»1,T)=f Xg (E)dE,

F"(Z)) 1,T)=f N, '(E)dE

which are exactly the standard tunneling results
given by CESST and others. In the zero barrier
limit, Z =0, 8 =D =0, C =1—3, and we have

[1+3(E)]dE,

Y'(z=o, T)= f"
BE

[1—A (E)]

&(X, '(E)dE . (39)

these coefficients Y' and F, and their ratio
p*=F"/F, are plotted versus T for various values

of Z in Figs. 9—11. Note that F"(Z, T) is almost

independent of the barrier strength Z.

VIII. APPLICATIONS AND DISCUSSION

A direct application of our results is to fit the
temperature dependence of the differential conduc-
tance of a point contact at zero voltage, which
should be simply F(Z, T)/RN This qu. antity is
easily measured, and, unlike the excess current, it
is not subject to problems with heating effects.

Although the parameter Z plays a fundamental

role in our theory, it cannot be independently
determined, and must be inferred from the IV-
curve. However, since both I,„, and 1'(Z, T)
depend on Z, we can test the model by comparing
these two experimentally accessible quantities
against each other. Figure 12 shows F(Z, T =0)
vs eR+I,„,/b. They exhibit an approximately
linear relationship to each other, as might be ex-

pected physically, since both depend linearly on the
Andreev-reAection probability.

In addition to our theoretical curve, two other

points are displayed in Fig. 12. The point marked

Zaitsev-clean is the result found by Zaitsev for a
microconstriction with no scattering in the bulk or
in the neck, and it agrees exactly with our calcula-
tion for Z =0. The point labeled AVZ-dirty is the

the result of a calculation by Artemenko, Volkov,
and Zaitsev for a microconstriction in the dirty
limit (rkT « iri) where the neck is short compared
to the nonequilibrium length g(T)(1 t)'~ Al-— .
though our model is not intended to describe dif-

fusive transport in the presence of distributed bulk

scattering, a suitable value (Z-0.55) of the

strength of our 1D 5-function barrier potential

gives results very close to those obtained by their
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2.0
Y(Z,T)

1.0
F

0.9

0.8—

0.7—

1.0 0.6—

0.5—

0.5
04—

0.3—

0.5
T~

1.0
Tc 0.1—

FIG. 9. Y, the zero-voltage differential conductance
in units of the normal-state conductance, vs T, for vari-
ous barrier strengths Z. The curve AVZ-dirty is
described in the text.

Green's-function method.
Our charge-imbalance results may also provide a

useful perspective on the work of Hsiang and
Clarke on resistance due to charge-imbalance re-
laxation near an N-5 interface. By a physical ar-
gument, they reasoned that the appropriate I"* for
a clean metallic interface could be approximated by
what we call here Y*(Z» 1) as computed for a
tunnel junction. Our calculation would instead
give F = Y (Z=0)/Y(Z=0). As just noted
above, Y is almost independent of barrier strength
Z, so Y*(Z»1)=Y"(Z=0). But the denomina-

1.0

0
0,3 0.4 0.5 0.6 0.7 0.B 0.9 1,0

T/Tc

FIG. 11. I', the ratio of quasiparticle charge inject-
ed to total injected current, as a function of T for vari-
ous barrier strengths Z.

tor factor Y(Z =0) varies from 1 at T to 2 at,
T =0, so the resulting T dependence of our F' is
somewhat different from that used by Hsiang and
Clarke, although it has the same qualitative shape.
Because the interfaces studied by Hsiang and
Clarke were not point contacts of the sort we have
been treating, however, it is not clear that our re-
sults should be expected to describe their data in
detail.

215 1

Y (Z,T)

1.0

eIexc RN

0 5

0,5

0.5
Tc

1.0

FIG. 10. Y*, the normalized differential charge im-
balance conductance at zero voltage, vs T, for various
barrier strengths Z.

Y(Z,T=0)

FIG. 12. eI,„,R~/5 vs Y(T =0) as the barrier
strength parameter Z ranges from ao to 0. The points
AVZ-dirty and Zaitsev-clean are di'scussed in Sec. VIII.
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As noted above, the total current I&& can be ex-

pressed as the sum of three terms: Izz, the An-

dreev term with no quasiparticle transfer; I&~, the
injection rate of quasiparticle charge; and (Izz

Izz—), the current carried by the pairs that must
fiow to compensate for the fractional charges of
the quasiparticles. The current I~q relaxes to su-

percurrent over a distance A&, ——(Dr&, )'~, a dif-

fusion length determined by r&~, the charge-

imbalance relaxat1on time.

The picture described in the previous paragraph
corresponds to the viewpoint of TC and PS, in

which the current (I I') is—viewed as being con-
verted discontinuously to supercurrent at the inter-
face. If one examines the problem more deeply,
however, one can obtain a more microscopic view

of the conversion process. The key point is that
there are solutions of the Bogoliubov equations
even for

~

E
~

& 6, but they are evanescent waves

which decay in a distance

IItu~/2(4' —E')'~'-g(T) .

charge imbalance, but combine "conversion'" terms
with ~, relaxation to find a shorter effective re-

laxation time ~z g s&, which reproduces the same

steady-state Q' as found by the two-step analysis
of Tinkham and Clarke' ' and of Pethick and
Smith. Thcfc seems to bc a gain 1n physical 1n-

sight, however, in distinguishing the two types of
processes.

RccogIllt1011 of tllc cxIstcllcc of R pcnctl ation
depth of order g for the evanescent quasiparticle
waves m thc gap also prov1dcs a morc clca1-cut ex-
planation for one aspect of the observations of Oc-
tavio et al. ' on subharmonic gap structure (SGS)
in tin variable-thickness bridges (VTB s). They ob-
served voltage-dependent shifts in the positions of
the SGS which they attributed to heating. Using
the gap shift as a thermometer, with b,IIcs(T) as
tllc cahbratlon cllfvc, tllcy could 111fcr tcIIlpcratllrc
rises. These temperature increases mere roughly
proportional to the dissipated power P, but much

(See the Appendix for details. ) Thus, even the An-

dreev current I~& is carried for -g as a quasiparti-
cle current before dt's:aying into a pair current, and
the interference of k+ and k waves causes a
similar effect also for the current I~s I~s above-
thc gap. This two-step convclslon ploccss 1s

shown schematically in Fig. 13. This point of
view is reminiscent of that of Schmid and Schon,
who treat thc cnt11c ln]ected current as a source of
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FIG. 13. Schematic diagram of conversion of normal
current to supercurrent at N-S interface. The evanes-
cent waves due to Andreev reflection die out over a dis-
tance of order g, while the injected quasiparticlc charge
imbalance relaxes over a charge diffusion length A +.

FIG. 14, Temperatule rise in tin vanable-thickness
bridge inferred from depression of energy gap as found
from subharmonic gap structure (after Octavio et al.).
(a) depicts temperature rise vs power dissipated, P. (b)
depicts temperature rise vs I'/g(T) The superior linear.
fit in (b) is consistent with observed gap being sensed at
a distance -g from center of bridge.
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more precisely proportional to P/g(T), as shown

by the comparison of Fig. 14(a) and 14(b). Given
the 30 cooling of these VTB's, in which the tem-

perature rise is proportional to P/r (where r is the
distance from the center of the contact), this obser-

vation was interpreted as showing that the energy

gap giving the SOS was that in the superconductor
at a distance -g froin the center. In a recent pa-

per,
' we have argued that the SGS arises from

multiple Andreev reflections together with the
sharp change in A (E) at the gap edge. Given the
penetration of the evanescent waves to a depth
-g(T), it is plausible that the gap reflected in the
SOS should be that at a similar depth into the
bank, as assumed by Octavio et al. on the basis of
somewhat different reasoning.

IX. CONCLUSION

We have proposed a simple theory for the IiIS-
microconstriction or point contact that is general

enough to describe the complete crossover from
metallic to small-area tunnel-junction behavior.
From this model, a deeper understanding of the
semiconductor picture, excess currents, current
conversion, and charge-imbalance processes have

emerged, in addition to calculation of I- V curves

for arbitrary barrier strength. The latter results are
directly accessible to experiment, and should be
helpful in interpreting the wide variety of I-V
curve shapes observed in the laboratory. The ap-
plication of this model to the S-S-S case has been

presented elsewhere, where it has been shown to
offer an explanation of the SGS observed in metal-

lic weak links.

fi V —p(x)+ V(x) f (x,t)
2m

+h(x)g (x,t), (Ala)

fi V——p(x)+ V(x) g (x, t)
2m

+b,(x)f(x, t), (A lb)

haik

—p u+ U

2m
(A28)

where b,(x) is the energy gap and p(x) is the
chemical potential (specifically that of the conden-

sate, in case of nonequilibrium conditions where p
is not uniquely defined). In the normal metal

[b,(x)=0], Eq. (Ala) is the Schrodinger equation

for electrons, while Eq. (Alb) is the time-reversed

Schrodinger equation for electrons. Since an elec-

tron satisfying the time-reversed Schrodinger equa-

tion behaves in many ways like a hole, we will

adopt that terminology here.

For 5+0, the electron and hole wave functions

couple together, with two major consequences.

First, a gap appears in the E vs k relation, just as

it does in elementary BCS theory. To see this re-

sult more clearly, we solve Eq. (Al) for a specific

geometry. The simplest example is one where

p(x), h(x), and V(x) are all constant, and the

solutions to Eq. (A 1) are time-independent plane

waves. Taking as our trial solutions

f =ue' ' ' " and g =ue' ' ' " we find for
V=O
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Solving Eqs. (A2a) and (A2b) for E we obtain

2

(A3)

(E2 g2)1/2
u =—1+

2 E
=1—U

There are two roots for E. We are concerned with

excitations above the ground state (E & 0), and in

this case

APPENDIX

The Bogoliubov equations may be written

irik+-=v'2m [p+(E —b, )' ]'

We also define

(A5)
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(E2 g2)1/2
1 —vo ——v, o

———I+
2 E

Q =e(
( f )

—
~ g )

). Using Eq. (Al), it is easy to
show that

For
~
F.

~
(5, u and u will be complex conjugates.

This definition differs from the usual BCS conven-

tion in which uk and uk are not defined for E ~ h.
Using the notation

~ f(x) '

g(x)

the four types of quasiparticle waves for a given

cncrgy take thc forms

+ik+~
W+k+—

I

+ik-x"~
Qo

Tlie f s ai'e tlie posi'tioii space represeiitaf1on of tlie

gko=Qkckt —Ukc k~ 81rlcc ckt produces thc %'avc

e', while c k, destroys an electron at —k, leav-

ing the system with a net positive momentum

rcprcscntcd by thc creation of a hole %'avc e

A second consequence, which follows from the

E{k) relation (A3), is that the gmup velocity

us ——dE/dhk goes to zero at the gap edge, even

while the phase velocity remains near the normal-

state value. This has some interesting conse-

quences„as can best be illustrated by deriving con-

servation laws for probability and charge.
We define P(x) to be the probability density for

finding either an electron or a hole at a particular

time and place. Thus, for a solution to Eq. (Al),
P{x,r) = jf ( +

~ g (
. Using Eq. (Al) to evaluate

BP/Bt, we find

(A7)

Ji ———[Im(f'Vf )—Im(g'Vg )] .

I @
= — [Im(f*Vf )+Im(g'Vg)] . (A10)

The term on the right in Eq. (A9) is a source (or

drain) term connecting the quasiparticles with the

condensate, and we will see an cxphcit interchange

of currents when treating the E-5 case below.

However, for now we concentrate on Eq. (A10).
Both the electron and hole contribution to the

quasiparticlc current enter with the same sign, and

a moment's thought shows this to bc reasonable.

An electron (f oc e' "), moves in the positive

direction and carries a positive current. A hole,

(g ~e' '), moves in the negative direction, but

also carries a positive current due to the sign of its

charge. Thus, while J~ ~ u~ =0 at the gap edge,

Jg ——8Up, so onc can v1ew thc charge CU1I'ent as

traveling with the Fermi velocity. Of course, for

the normal metal nothing so dramatic occurs, and

we always find simply J~ ——eJp.
Startiiig fi'oiri tlie basic Eq. (Al), it is a siiiiple

matter to work out the boundary conditions on

steady-state plane-wave solutions at an S-S Inter-

face. To model the elastic scattering that usually

occurs in the orifice, we include a 5-function po-

tential in Eq. {Al), i.e., V(x) =H5(x).
Thc appropriate bounda1y conditions, fol part1-

cles traveling from N to S are as follows.

(i) Contiiiuity of y at x =0, so itjs(0) =y/(0)
—=f(0).

(ii) (A/2m)(gs P~ ) =—Hg(0), the derivative

boundary condition appropriate for 5 functions.

(iii) Incoming (incident), reflected, and transmit-

ted wave directions are defined by their group velo-

cities. Wc assume the incoming electron produces

only outgoing particles.
Thus,

Note that the hole current enters Eq. (Ag) with a
sigii opposite to tliat of the electron part, just as
onc cxpccts for a time-reversed part1clc. Onc
can also show that Jz ~ us

——BE/BRk. Thus, at the

gap edge, 1t 1s zero.
We can also derive a conservation law for quasi-

particle charge. Assigning a unit charge +e to the
electron and —e to thc hole, the net, quasiparticle
charge density in one of these excitation waves is

I('inc =
()

gfi=a 1
e +b0eSq-X I —Iq+X

ik+x+d u& —ia-x
Uo , go

t

Applying the boundary conditions, and carrying
out an algebraic reduction» wc find
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QpUp

y

(uo —Uo)(Z +iZ)6=—

uo(1 —i»
y

t'upZ

y

Z = =H/fiu~,
mH

f&p

y=iio+(iio —oo)Z2 2 2 2

(A 1 la)

(Al lb)

(Al lc)

(Al ld)

by the condensate. For clarity, we have defined
C(E) and D(E) as the probability currents at
x » A, , measured in units of u~. The changeover
from full to zero current is described next.

As a simple example of quasiparticle current be-

ing converted to condensate current, we consider
the case H =0. Then, b =d =0, a =uo/Uo, and
c = I/uo. For E & 5, a'a =1, which means the in-
cident electron is totally reflected as a hole. Thus,
the total charge carried in the normal metal equals
2eU~, but in the superconductor J@ is exponentially
small for x »0. Explicitly,

J(2
——(equi/m)im[( ce' )'V'(ce' +")

X(Qoiio+UoUo)] .

Letting k+ =kg+i r1/Avi„where r)=(6 E)'~,—
we have

' 2 1/2
AUF

1
26 (A12)

Although right at the gap edge thc length diverges,
the characteristic length is A'uF /2b, = 1.22(( T).
Thus, in order of magnitude terms, one can say
that the particles penetrate a depth -g(T) before
the current is converted to a supercurrent carried

For slmpllcityq wc have lct k =k =g =g
=k~, whenever that substitution did not lead to a
qualitative charge. Note that in the absence of a
bamer (i.e., Z =0), b =d =0. Physically speaking,
this means that all reflection is Andreev reflection
and all transmission occurs without branch cross-
1ng.

The quantities A (E), 8 (E), C(E), and D (E)
used in the main body of the paper are actually the
probability currents, for the particle, measured in
units of u~. For example, 2 =Ji"/UF ——a'a, and
D =d'd(uo —uo). Since plane-wave currents are
spatially uniform, we need not specify the position
at which they are evaluated. However, for
E g 5, k+ and k in the superconductor have
small imaginary parts which lead to an exponential
decay on a length scale A, whcfc

I
uo

I

'+
I Uo I

' -z;~a„
~g =

2
—eUye

Iuo I'

Below the gap, I
uo

I

=
I

uo I, so
—2'�/le+

The "disappearing current" reappears as current
carried by the condensate. Rewriting the drain
term in Eq. (A9) as

—V J,—:(4ehlfi)lm(f'g), (A13)

then

4e+ "I
(

e e —ik+x'~ ik+x')dx~
p

4eh Uo~o & —2''ya ~Im, e ~dx'
QpQp

—2' lhuF=2eu~(1 -e (A14)

This is thc desired result, explicitly showing the su-

percurrent increasing to an asymptotic value as
x~ 00, at the same rate as the quasiparticle
current dies away.
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