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A simple method to sum elementary diagrams in the calculation of two-body and three-body

distribution functions by the hypernetted-chain method is proposed. The method is based on

the observation that the sum of the elementary diagrams has approximately the same spacial

behavior as that of the lowest-order four-body elementary diagram. Thus the sums of two-point

and three-point elementary diagrams may be approximated by a scaling constant times the

lowest-order contribution. The scaling factor is determined by equating energies calculated with

the Jackson-Feenberg and Pandharipande-Bethe expressions. Results of calculations of the en-

ergies and distribution functions of liquid ~He with the use of this method are reported, The
results obtained with the McMillan correlation function are in almost exact agreement with the

Monte Carlo results. Calculations with optimized correlation function having r tails are also

reported.

I. INTRODUCTION

The problem of calculating the binding energy of
liquid ~He starting from a strong two-body interaction
is more or less resolved with the Green's-function
Monte Carlo (GFMC) method. ' The main structure

of the ground-state wave function is also understood
from recent variationai Monte Carlo' (MC) and
hypernetted-chain' (HNC) calculations using prod-

ucts of two- and three-body correlations. However,
there are still open problems in treating the long-

range tails, r 2 of the two-body correlation and possi-

bly r ' of the three-body correlation. These tails are
particularly important if one wants to obtain a con-

sistent description of the ground state and the low-

lying excited states such as phonons, maxons, and

rotons, of the liquid. 4 The main object of the present
work is to develop methods, within the hypernetted-
chain scheme, to treat the long-range pair (or Jas-
trow) correlations f(r).

The two-particle distribution function g(r), for a

Jastrow wave function

@=gf(rr),

a(r) =a4(r) +as(r) + ' ' '

and the diagrams that contribute to ~q and ~q are
shown in Fig. 1. The lines in these diagrams
represent g —1, thus

e4(ri2) =
2 p ~ [g(res) —l][g(r23) —1][g(ri4) —I]

x [g(r24) —1][g(r34) 1]d rsd r4

[

6q

[ 2
e5' 2

is given by5

g (r) =f'(r) exp[&(r) + e(r) ]

Here N(r) is the sum of nodal diagrams

I 2

N(r~2) =p [g(r~s) —I][g(r23) I N(f23)]d r3

and a(r) represents the sum of elementary diagrams.
In the HNC method the e(r) is expanded in a

E'5.7

FIG. 1. The a4 and ~5 elementary diagrams. The black

dots and circles represent internal and external points,
respectively. The lines represent g —1 links.
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The three-particle distribution function g3(r]2 r23 r3])
is given by'

g3(r 12.r]3,r23) =g (r 12)g (r23)g (r31)

x exP[A (r]2, r23, r31) ]

Ay

where A (r]2, r23, r31) is the sum of so-called Abe dia-

grams. These Abe diagrams can also be expanded in
a series

A5. I A5 p A5 &

A =A4+As+A (1.7)

A„and e„ include all elementary diagrams that con-
tribute to the HNC/n level of approximation. The
diagrams contributing to A4 and A5 are shown in Fig.
2, and A4is given by

&4(r]2,r23 r31) = p Jt[g(r]4) —1][g(r24) —1]
x [g(r34) 1 ]d]r4 . (1.8)

A~ 4 A5 7

%e note that e„diagrams can be obtained by adding
[g(r]3) —I] and [g(r23) —1] lines to A„diagrams
and integrating over r 3.

It has been known that to obtain an accurate
evaluation of the energy expectation value, with
HNC equations and an optimized f(r) having r
tail, one needs to sum the slowly converging series
(1.4) of elementary diagrams. ] Thus far only the
lowest three terms of this series, corresponding to
HNC/4, HNC/5, and HNC/6 approximations, have
been calculated. ' The higher terms of the series are
too complex for numerical evaluation. In Ref. 7 the
HNC/n & 7 terms are summed with Pade approxima-
tion. It has also been suggested that there is a cer-
tain universality due to which we may approximate
the sum of elementary diagrams a(r) in liquids such
as charged Bose gas or He with that in hard-sphere
gas at an appropriate density. In this approach one
assumes that a(r) is only a function of some
equivalent hard-sphere gas density p„, and not of the
detailed shape of f(r)

In the present work we propose to use another ap-
proximate property of e(r) to calculate it. It appears
from Fig. 5 of Ref. 7 that the successive contribu-
tions e4, e3, e4 to e(r) from HNC/4, HNC/5, and
HNC/6 diagrams are approximately proportional.
This proportionality suggests a scaling equation

A5 7

FIG. 2. The A4 and 35 diagrams in the Abe expansion of
the three-body distribution function in terms of g —1 links.

II that an approximate scaling is obtained if the in-
tegrals contributing to e4 and e5 are calculated with
Gaussian bonds. Studies of integrals contributing to
2„, with Gaussian bonds, suggest that [exp(A) —I]
approximately scales with A4, or

exp[A (r]2, r]3,r23) ] 1 —(I + 3')A4(r]2, r]3,r23)

(1.10)

and it is argued in Sec. II that the two scaling factors
s and s' are related

s —2$

Thus ~ and A can be estimated from ~4 and A4 pro-
vided s is known.

The energy expectation value E can be written in
different forms by integrating the kinetic energy
terms by parts. The so-called Jackson-Feenberg (JF)
energy' EJF depends only upon the pair distribution
function g (r) and thus on the e(r):

]

] t2 V2f
E]F=-2p ~ g(r) u(r) ——

2m f
a(r) —(1 + s) e4(r) (1.9) (1.12)

where &4(r) is the HNC/4 contribution to e(r). This
scaling property may not be very specific to the func-
tions used in Ref. 5; for example, it is shown in Sec.

The Pandharipande-Bethe (PB) energy depends upon
both g(r) and g3(r]2, r]3,r23), or equivalently on e(r)
and A (r]2, r23, r3]):

Eps=
2 p J g(r) u(r) —— d r — p J~ g3(r]2 r23 r3]) ' d r2d r3

&' &'f
m f 2m

' ' f (r]2) f (r]3)
(1.13)
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In general, at any HNC/n level of approximation
[with Eqs. (1.4) and (1.7)], EJF 0 Eps llowevefr
EJF =Epg in the limit n ~. If we use the scaling
Eqs. (1.9)—(1.11) for a(r) and A the E3F and Epa are
functions of the scaling variable s, and s is deter-
mined by requiring that

E3F(s) = Epa($) (1.14)

It was shown in Ref. 7 that Epq = EJF follows from
the Born-Bogoliubov-Green-Kirkwood- Yvon
(BBGKY) relation between g and g3. Thus, requiring
Eq. (1.14) to hold would imply that the BBGKY rela-
tion is satisfied on average within the scaling approxi-
mation.

In Sec. III the proposed method, which we refer to
as HNC/g 2 is used to study the E(p) and g(r) in
liquid He with the McMillan correlation function. "
There are extensive Monte Carlo calculations for this
system, and it is shown that the E(p), g(r), and
e(r) obtained from the HNC/g equations are in

essentially exact agreement with them. Results ob-
tained with the HNC/8 equations using the optimized
correlation function are given in Sec. IV.

II. SCALING OF e AND A

g ( r) —1 =—exp( —4r p2~3r')

chosen such that

(2.1)

p 1 —g r dr=1 (2.2)

In this approximation' eq and ~5 can be analytically
calculated

It is evident from Fig. 5 of Ref. 7 that ~5 and ~6 are
approximately proportional to e~ and so ~4+ ~5+ ~6

can be approximated by (1+3)s4. This scaling prop-
erty may not be very sensitive to the detailed shape
of g —1. Figure 3 shows ~~ and ~5 calculated with
Gaussian approximation

e4(r) =- exp(-nr )
32%2

(2.3)

~3(r) = —,', ([(—', )'"—( —,', )'"] exP( —', ~r') +(—')'"exP( —
3
«')+ [—,

'
( —,', )'"——,

' ( —,', )'"]exp( —', Ar2)], (2 4)

where

n=mp'" .

It may be seen from (2.4) that the first and the
second terms on the right-hand side within the
square brackets would scale very well to a4(r), (2.3).

The third term in (2.4), which does not scale to
a4(r), is much smaller (by a factor -5) compared to
the other two terms and dies rapidly as r increases.
Thus, overall 65 is quite proportional to ~4. This scal-
ing is evident from Fig. 3 where e5-0.58~4.

The A q and A 5 in the Gaussian approximation may
be evaluated

~4("12 "13 r23) ( 3 ) exp[ —
3

n (r12 + r13 + r23 ) ] (2.5)

A3(r12r13r23) = —(
&

) 8 Xexp[ —u(
&

r12+ 2 r13 +
2 r23)1+( 1'1 ) / g Xexp[ ——„a(-r12+3r123+-r23)]

—(—„)'~'exp[ —
—,a(r 122 + r1'3 + r23 ) ] (2.6)

where the g X stands for the symmetrized sum over
the indices 12, 13, and 23. Again, it is seen from
Fig. 4 that A 5 scales with A ~, and 0.46A4 is a fairly
.good approximation of A5.

%'e have merely shown above that ~5 and A5 differ
from e4 and A4 by mostly a scale factor. Of course
this does not demonstrate the validity of approxima-
tions (1.9) and (1.10). However, it is shown in the
next section that the results of Monte Carlo calcula-
tions are in agreement with Eq. (1.9). The results re-
ported in Ref. 7 show that ~6 also differs from e~ by a

simple scale factor. All these together strongly indi-

cate the plausibility of the scaling approximations
(1.9) and (1.10).

It is necessary to have a relation between s and s'
to use Eqs. (1.9) and (1.10) to estimate e and A. We
note that A4 and ~4 are related

&4("12) = —,p ~ 4(r», r13 "23) [g (r13) —I ]

x [g(r23) —1]d'r3,
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FIG. 3. The ~4 and e5 elementary diagrams, in the Gauss-
ian approximation, plotted as a function of r in units of ro,
where ro = (3/4mp) '~3.

FIG. 4. The A ~ and A 5 diagrams in the Gaussian approxi-
mation plotted as a function of r in units of ro for the two
Choices f12 = f13=41.5 Slid f12 = f13 = l.

however, in general

6(f12) A p J~A (f 12irf 13 f23) [g (f13) 1 ]

&& [g(r23) -1]d'r, . (2.8)

In general ~„diagrams can be obtained by adding
[g (f 13) —1 ] and [g ( r 23) —1 ] links to A „diagrams
and converting point 3 to an internal point. For ex-
ample diagrams ~5 1—7 of Fig. 1 can be constructed
from diagrams A5 1—7 of Fig. 2 in this way. Ho~ever,
in e„diagrams the point 3 may be equivalent to an

other. For example, 3 and 4 are equivalent in ~4,
awhile 3 and 5 are equivalent in ~5 2 and ~5 3. There
are symmetry factors, such as the half in Etl. (2.7)
associated with these symmetries, and (2.8) is not an
equality due to the omission of these factors.

One would expect that the most important A„dia-
grams are those that have the least number of
(g —1) bonds. Examples of such A6 and 3 7 dia-
grams are given in Fig. 5, The E6 and Eq diagrams
generated from these have no symmetry factor asso-
ciated with them and the following equality is valid
for n ~6:

(2.9)

se4= x a„-p Jl X&.[g(f13) —ll[g(r23) —1]d'r3 —ps ~l &4[g(r13) —1][g(f23)—1]d'f3-2s'a4,
a&5

a,'(f12) = p J ~,'(f12, f23 r31) [g(r13) —1][g(r23) —1]d'r3 (rl ~6)
where A„' and e„' denote contributions of the leading A„and ~„diagrams. Thus if we assume that the A —A4
and a —e4 are dominated by A,'~6 and a„'~6, and A && 1 so that exp(A) is 1+2, we obtain

and so expect s —2s .

TABLE I. The calculated energies (in K) and scaling factors s at various densities (in o 3).

PB/HNC
JF/HNC
HNC/8
s.f.(s)

0.330
—6.66
—5.11
-5.93

2.08

0.350
—6.82
—4.90
—5.91

2.26

0.365
—6,91
—4,67
—5.85

2.36

0.38
—6.97
—4.37
—5.75

2.48

0.401
—7.00
—3.84
—5.55

2.66
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McMillan" form:

f(r) =exp[ ——,
' (b/r)'] (3.1)

A6

with b =1.17'. This correlation function has been
extensively used in the variational Monte Carlo stud-
ies of liquid He. The calculations use Lennard-Jones
potential (in K):

v(r) =40.88[(o/r)" —((r/r)'] (3.2)

I 2

A7 I A7 2 A7 3

A7 4
I 2 1 2

FIG. 5. The leading A6 and A7 diagrams.

The s may be somewhat less than 2s' due to the
HNC/5 diagrams e5 1—3 and A5 1—3 for which Eq.
(2.9) is not valid. A„~6 diagrams have «3 internal

points, and their leading terms (having the least
number of g —1 bonds) have the external points 1,
2, and 3 bonded to different points (as shown in Fig.
5). Thus when e„~6 diagrams are generated from
these leading A„6 diagrams, by adding g(r~3) 1

and g (r23) —1 bonds and making 3 an internal point,
no symmetry factor needs to be taken into account.
Point 3 remains as the only point connected to both
points 1 and 2. Unfortunately this is not true for the
leading As diagrams As 2 and As 3 (Fig. 2). The es

diagrams e5 2 and e5 3 generated from these have
equivalent points 3 and 5 (Fig. 1) and thus a sym-

metry factor —,. Hence if we define s5 and s5 as

gHNc@(r) =f e " [1 + (1 +2s) e4(r) ] (3.3)

instead of Eq. (2.2). The discrepancy between the

I ~ I I & I I

with 0- =2.556 A.
Results of energy calculations, as a function of

density, are shown in Fig. 6. The Monte Carlo points
with larger error bars are taken from Ref. 13,
whereas the points with smaller error bars are taken
from Ref. 14. The spectacular success of HNC/8
equations is evident. The lowest and topmost curves
give the HNC energies in PB and JF forms, respec-
tively. They are a way off from the Monte Carlo
points. The next two curves labeled as HNC/4 give
the two energies in the HNC/4 approximation.
Again, they are seen to be quite away from the
Monte Carlo points, however, the PB energies have a
slight edge over the JF energies, The full HNC/~
curve gives the energies calculated with the HNC/8
equations, There is almost a complete overlap with
the Monte Carlo points. The effect of not exponen-
tiating the two-body elementary diagrams is also
studied. The dashed HNC/8 curve, which merges
with the full curve at low densities, corresponds to
the approximation

A 5
—s5A4,

S564

(2.11)

(2.12)

s5 A 2s5. If diagrams A5 4—7 are negligible we expect
ss -4ss /3, and in numerical calculations (Figs. 3 and

4) we find ss —1.27ss.
The scaling factor s has a value around 2.3 (Table

I) in 'He liquid, of which we can expect only -0.6 to
come from ~5. Hence, we can expect ~„~6 to give
the dominant contributions to e, and therefore we

have used s =2s' in most of the calculations. How-

ever, the results are not too sensitive to the assumed
value of s/s'.

III. CALCULATIONS %ITH McMILLAN
CORRELATION FUNCTION

In this section we will describe the calculations and
numerical results with a correlation function of the

I I l I

FIG. 6. Comparison of JF and PB energies in HNC,
HNC/4, and HNC/8 approximations with Monte Carlo
results for the McMillan form of the correlation function.
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3.0

the HNC/8 curve and Monte Carlo points is excellent
in all the regions,

Next, using the Monte Carlo g (r) and Eq. (2.3)
we have calculated the Monte Carlo N(r). This
N(r) is shown in Fig. 8 by a dashed curve. The full
curve in Fig. 8 represents the HNC/g N(r). The
dot-dashed curve is HNC N(r). Substituting the
Monte Carlo N(r) into (2.2) we calculate the Monte
Carlo p(r) shown by a dashed curve in Fig. 8. The
full curve is HNCIg p(r) and dotted curve is a4(r).
As expected the HNC/g and Monte Carlo a(r) are
almost identical.

We carried out the energy calculations at the equili-
brium density assuming s =1.4s' instead of 2s'. This
changes the energy from —5.7 to —5.6 K. Thus, the
results are not too sensitive to the assumed ratio of s
to s'. Nevertheless, s =2s' is both theoretically plau-
sible, and gives essentially the Monte Carlo results.

FIG. 7. The two-body distribution function at the equilib-
rium density p-0.365a 3. The Monte Carlo points are tak-
en from Ref. 13.

IV. CALCULATIONS WITH OPTIMIZED
CORRELATION FUNCTION

For the boson systems, a relative two-body
Schrodinger type equation

two curves at higher densities and agreement of the
full curve with Monte Carlo points suggests that the
two-body elementary diagrams should be exponen-
tiated.

In Fig. 7, we have plotted the distribution function,
g (r), in the HNC and HNC/g approximations at the
equilibrium density p =0.365cr '. The full curve
refers to HNC/8 and the dashed curve refers to
HNC. It may be seen that the agreement between

5

——V'+ v(r) + ru(r) Jg (r) =0 (4.1)

for g(r) has been obtained by making the energy sta-
tionary with respect to variations of f(r).'" Here,
~(r) is an induced potential given by

t

ca(r) -«)p(r) + V'p(r) +2
A'2 5&

4m Sg
(4.2)

with

g2
cop(r) = '72 3N(r) —p N(r')(g —1 —N) d r'

4m

(4.3)

s s s s i

FIG. 8. Comparison of the contribution of nodal and ele-
mentary diagrams in the HNC/8 approximation with the
Monte Carlo results at the equilibrium density. The dot-
dashed curve represents the HNC N(r), and the dotted
curve gives the e4(r). It is not possible to extract Monte
Carlo ~(r) for r &0.8o-.

In Eq. (4.2) the term within the parentheses is
much smaller' than mp(r), and its inclusion makes
very small changes in the energy. %e will, therefore,
neglect it here and work in the approximation
cu(r) —ep(r).

The properties of Eq. (4.1) have been studied in
detail in Ref. 15, where an iterative procedure was

employed for its solution. However, the convergence
of this procedure depends very sensitively upon the
input choice of correlation function f(r). We have
employed a different procedure for the solution of
Eq. (4.1) in which the initial choice of f(r) is not too
important. We solve Eq. (4.1) up to some distance
d(=2 to 3o), much smaller than the one empioyed
in Ref. 15, and match the resulting f(r) with the
asymptotic f(r) at r = d

f(r «d) =1 —a/r2, f'(r ~d) =2alr3, (4.4)
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where

NlC

2m pf
(4.S)

and c is the sound velocity. The matching is
achieved by adding a variable parameter A, to the in-
duced potential (4.3). This A. may also take into ac-
count the neglected term in Eq. (4.2). Equation
(4.1) now becomes

This g(r) and N(r) are used to calculate coo(r) from
(4.3). The hip(r) may now be substituted into (4.6)
to obtain a new g„(r). The parameter k is varied so
that the new f(r) given by

f„(r) = Jg„(r) exp[ —N(r)/2] (4.g)

and its derivative matches with (4.4) at r = d. The
f„(r) with its asymptotic form (4.4) is used in Eq.
(4.7) to get the g (r) and N(r) in the entire region
for the next iteration. This procedure is iterated till

self-consistency is achieved. We note that the ele-
mentary diagram contribution e(r) is neglected in

this calculation of the optimum f(r). The e(r) has
probably little effect on the f(r).7

The optimum f(r) is then used to calculate the en-

ergy with the HNC/8 equations. The calculations are

for r ~~d.
We now give a brief outline of our procedure. As-

sume a value for the velocity of sound c. Take some
arbitrary f(r) whose value and derivative matches
with (4.4) at r = d. Obtain the initial g (r) from the
HNC equations

g(r) f2(r)eN(r)

(4.7)

N(1] )2p J [g (r]3) 1 ] [g(r23) —1 —N(r23) ] d r3

done at a number of densities, and a new value of
the sound velocity c is obtained from the relations

S/2

P(p) = p — —,c(p) =-p BE(p) 1 BP(p)
Bp N Bp

(4.9)

where P is pressure. Using these values of c(p) we
start again iterating from (4.4). However, in the
present calculations the c(p) converged in just two
iterations.

In our calculation we varied d from 1.5 to 30-.
After 2o- the energies were found to be insensitive to
d. Thus, in all our calculations we have taken
d =2o.. The value of ) at this d was -O.S K which
decreased to —0.05 K at d =3o. The results with
the optimized f(r) at various densities are given in
Table I. The second and the third rows give the
HNC energies in PB and JF formats. At the equilib-
rium density we obtain the HNC/8 energy —S.85 K
which compares well with the best variational Monte
Carlo2 value —5.94 +0.03 K and the value —5.77 K
obtained by Smith et a/. The last row gives the scal-
ing factor s at various densities as determined from
HNC/8 equations.

In Table II we give sound velocities in HNC and
HNC/8 approximations and compare them with
GFMC' and experiment. ' These velocities were cal-
culated by making a second-degree polynomial fit to
E(p) and using relations (4.9). It may be seen that
the JF and PB sound velocities differ widely from
each other. However, like the energies, they bracket
the HNC/8 sound velocities. The HNC/8 velocities
are seen to be closer to experimental and GFMC
values. Hopefully, the remaining discrepancy would
be bridged, to a considerable extent, by introducing
three-body correlations in the wave function.

Lastly, we have calculated the liquid structure
function S(k) and compare it with experiment in Fig.
9. The experimental data are taken from Refs. 17

TABLE II. Sound velocities in m/s.

HNC
PB

0.330
0.350
0.365

0.380

0.401

274
304
325

347

377

131
155
172 245, 8

+21
264.7
+ 14.9
290.54
+ 8.74

238.2

306.2
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l,4 V. CONCLUSION

l.2

l.o

O.S

~ ~ ~ ~
~ ~ ~ ~ ~

0.4

0.2

k (Cr-l)

FIG. 9. The liquid structure function, S(k), in HNC and
HNC/$ approximations.

The scaling method and calculations presented in
previous sections demonstrate that the series of ele-
mentary diagrams may be summed in a simple and
reliable way. Two basic assumptions are involved.
Firstly, the ~ and A scale to e4 and A4, respectively,
and secondly, the two scaling factors are related to
each other through the relation s =2s'. These as-
sumptions are made plausible and their validity is
best demonstrated by comparing the results of
HNC/8 equations with the Monte Carlo calculations.

The logical extension of the present work should be
to incorporate three-body correlation functions in the
wave function. ' Scaling equations for the elementa-
ry diagrams containing the three-body correlation
functions can be obtained. Calculations on these
lines are in progress.

and 18. The calculated S(k) is linear and compares
well with the data in the low momentum transfer re-

gion. Because of (4.4), it goes exactly to zero at
k =0 as it should. In the regions of maximum and
minimum of S(k) the HNC/g works better than

HNC, but we believe that three-body correlations

may improve the situation considerably.
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