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Influence of elastic and inelastic scattering on energy spectra of electrons emitted from solids
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We have investigated theorctically the spectrum of electrons emitted from a solid in the case

of a primary excitation function corresponding to a narrow line as in Auger and photoelectron

spectroscopy. We concentrate on the influence of elastic and inelastic electron scattering on the

shape and intensity of the spectrum in the vicinity of the primary peak. A near-peak as well as

an off-peak region is identified; the critical energy loss separating the two regions is shown to

depend on the relative significance of angular deflection and inelastic scattering, A rigorous for-

mula has been derived that allows the extraction of the primary spectrum from a measured elec-

tron current if the normalized energy-loss function is available. The physical significance of the

escape depth extracted from experiments with overlaycrs is analyzed. We find that it is not jus-

tified in general to identify the escape depth measured by means of ovcrlayers with thc inelastic

mean free path.

I. INTRODUCTION

Auger and x-ray photoelectron spectroscopy (AES
and XPS) are now widely used techniques for the in-

vestigation of solid surfaces. They give information
on elemental composition as well as electronic states
in the surface region of materials. ' Photoelectrons
are usually recorded as direct energy spectra X(E)dE,
with E being the electron energy, and peak areas are
used for the purpose of quantitative analysis. Auger
electrons are most often recorded as differentiated
spectra, at least for the purpose of qualitative analysis,
since this procedure most readily removes the back-
ground signal from (usually rather weak) Auger
lines.

Due to chemically induced changes in line shape,
which can occur, the intensity in the derivative spec-
trum3 (measured by, e.g. , the zero-to-peak or peak-
to-peak amplitude) is not in general a good quantity
for use in quantitative analysis. Therefore, it has been
argued that peak areas as determined from the direct
energy spectrum N(E) are to be preferred in quanti-
tative Auger analysis.

The line shape of Auger and photoelectron spectra
contains important information on the electronic
structure of solids. Thus, the detailed energy distri-

bution of emitted electrons gives information on
basic electronic and chemical properties of materials. '

Figure 1 sho~s a typical photoelectron spectrum
from a metal (gold). The peaks in the spectrum cor-
respond to kinetic energies of photon-excited elec-
tronic states in the metal. Measured line profiles will

be influenced by instrumental resolution, photon en-

ergy width, and core level widths. The instrumental
broadening can. in principle be minimized by im-

proved energy resolution.
Electronic energy levels in solids differ in general
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FIG. 1. Photoelectron spectrum of polycrystalline gold.

Courtesy of I. Alstrup, Haldor Topside Laboratory,
Copenhagen.

from those of the corresponding free atoms. In addi-

tion, the energy distribution of excited electrons is
determined by lifetime broadening and the electro-
static screening by conduction electrons of the core
hole created in the excitation process. 5 This latter ef-
fect results in a weak tail on the low-energy side of
the peak. 6 This asymmetry of XPS peaks which ex-
tends a couple of electron volts below the peak ener-

gy has been observed experimentally for a number of
materials and is well understood for simple metals.

Auger peaks are usually broader than photoelec-
tron lines. Auger peaks of interest to surface analysis
usually involve electrons from valence and have a
width of typically several electron volts. The ob-
served shape of an Auger line for a CVV (core-
valence-valence) transition is essentially determined

by a convolution of two electronic densities of states,
with a resulting typical width much larger than that
observed for XPS peaks.
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From Fig. 1 it is evident that every peak is accom-
panied by an increased background intensity at the
low-energy side. This tail (hereafter defined as the
background signal associated with the peak) corre-
sponds to electrons that have suffered inelastic col-
lisions in the material. This background signal can be
followed over an energy range of several hundred
electron volts (Fig. 1). Figure 2 shows schematically
a measured spectrum in the region around a single
peak, any possible structure in the background signal
being neglected.

The background signal constitutes a major problem
in the application of electron spectroscopy to surface
analysis. Correction must be made for this effect be-
fore a determination of the true peak area or line

shape is possible. Therefore, a theoretical description
is needed. Several authors have discussed the prob-
lem, s '4 yet the procedures proposed are essentially
empirical.

In XPS, the method of Shirley' is frequently used.
Here, the background intensity within a peak is as-
sumed proportional to the integrated intensity at
higher energy with the condition that the background
matches the measured spectrum outside the region of
the peak (Fig. 2). Sickafus" proposed a procedure
for background subtraction in AES involving straight
lines in a double logarithmic plot. For background
subtraction in ultraviolet photoemission spectroscopy,
Berglund and Spicer'2 considered a simple model in-

volving singly scattered electrons. Madden and
Houston" have applied deconvoluting methods in
which the spectrum of inelastically backscattered elec-
trons resulting from bombarding the surface with
monoenergetic electrons is an essential factor. This

spectrum, however, refers to a somewhat different
situation from that of XPS and AES where electrons
emitted are located inside the solid. '

In the present work we consider distortions in elec-
tron spectra caused by inelastic scattering events dur-
ing electron transport from the point of excitation to
the surface. The theoretical scheme is based on
standard theory of particle transport in random
media. The basic tools have been summed up recent-
ly. ' As the experimental resolution in XPS and AES
is typically of the order 1 eV we shall in this work de-
fine scattering on phonons as elastic scattering.

It is obvious that the background signal must
depend on the depth distribution of electron emitters
in the material. Therefore, the shape of the back-
ground signal must carry information on the depth
distribution of a given element in the surface region
of the material. This point will be briefly touched
upon in the present paper and will be treated in more
detail in subsequent work.

II. GENERAL DESCRIPTION

Consider the physical situation sketched in Fig. 3.
Electrons are excited (by Auger transitions or photon
absorption) in a semi-infinite solid with a plane sur-
face. The problem consists in finding the energy dis-
tribution of those electrons that escape through the
surface and enter the electron energy analyzer.

An individual electron with initial energy Eo creat-
ed at depth x below the surface (Fig. 3) will suffer
inelastic as well as elastic collisions during transport
in the solid. It is the inelastic scattering events that
are responsible for the experimental observation (see
Figs. 1 and 2) that an emitted electron may have a
kinetic energy E below Eo. Elastic scattering will also
be of importance. Indeed, angular deflection will
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FIG. 2. Schematic representation of measured electron
spectrum for Gaussian line shape of primary excitation pro-
file. Superimposed on the primary spectrum is a continuous
background due to inelastically scattered electrons. Note the
increase of the background signal near the primary energy.
Also shown is a background spectrum calculated on the
basis of a widely used empirical method (Ref. 10). See text.

FIG. 3. Emission of an electron excited at depth x.
Geometry and notation.
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cause deviations from straight-path motion in the
solid and thus increase the total path length traveled
by an electron before it reaches the surface. The
number of inelastic events increases with the total
path length traveled in the solid.

Let F(Ep, Qp, x) be the primary excitation spec-
trum, i.e., F(Ep, Q p, x) dEpd' Q pdx is the mean num-
ber of electrons excited at depth (x,dx) in an energy
interval (Ep, dEp) into the solid angle ( Q p, d2Q p)
per bombarding particle (photon, electron, ion, etc.).
Moreover, let P(Ep, Q p,x;E, Q)dE d'Q be
the probability for an electron of initial energy E0
and direction 00, generated at depth x, to arrive at
the target surface with an energy (E,dE) and direc-
tion ( Q, d Q). Then, the emitted electron flux
J(E, Q)dE d2Q is given by

J(E, Q) = J dEo J d'Qo J dxF(Eo, Q,x)

x P(Ep, Qp x;E, Q)

except for an energy shift and an angular deflection
at the surface caused by the work function of the ma-
terial; this effect is easily incorporated when neces-
sary, but negligible for E & 100 eV.

The primary spectrum, F(Ep, Qp, x), contains the
elementary excitation spectrum which depends on the
type and energy of the primary irradiating particle.
The depth dependence is determined by the attenua-
tion of the primary beam as well as the composition
of the medium. %e shall mainly deal with isotropic
excitation, i.e. ,

F(Eo, Qp, x) —= F(Eo,x)

this implies that the propagator function P can be
determined for an isotropic source, hence

elastic scattering event is small, we find effects of'

elastic and inelastic scattering to be separable, i.e.,

P(Ep, Qp, x; E, Q) = J dR g(Eo, Qo, x;R, Q)

x G(E,,R;E),
where 0(Ep, Q p,x;R, Q ) dR d'Q is the probability
for the electron to arrive at the surface moving in the
direction ( Q, d2Q) after having travelled a path
length (R,dR).

%e shall first consider the case of negligible angu-
lar deflection, Eqs. (3) and (4), and treat Eq. (5)
subsequently. In either case, we shall restrict our at-
tention to the case of small relative energy loss,
I Eo E I &(—Eo.

III. ELECTRON ENERGY LOSS

Let K(E, T) dT M be the probability for an elec-
tron with energy E to undergo an inelastic scattering
event with energy loss ( T, dT) while traveling a path
length element M, i.e., K(E, T) is the inverse dif-
ferential mean free path for inelastic scattering.
K(E, T) depends in general strongly on T but only
weakly on E. Hence, for path lengths sufficiently
small so that the mean relative energy loss is small,
one may ignore the dependence of E on E as a first
approximation.

In that latter case, the multiple scattering problem
has a rigorous solution. The energy distribution
G(Ep, R;E) is given by Landau's formula"

goo
G(E,,R;E) = ds exp [is e —R X( s) ],(6)

2m ~-

where

P=P(Ep, x;E, Q) (2a)

The effect of elastic and inelastic scattering is con-
tained in the propagator function P(Ep, x;E, Q).
The determination of this type of function belongs to
the subject of electron transport theory.

Consider first the case of slowing down without an-
gular deflection. Then, we may write

J(E, Q) = Jl dEp Jl dxF(Ep, x)G(Ep, R;E), (3)

with

R =x/cose,

where G(Ep, R;E)dE is the probability for the elec-
tron to have an energy (E,dE) after having travelled
a path length R, and 8 is the angle between 0 and
the outward surface normal (Fig. 3). Let us now
consider the case of non-negligible angular deflection.
Noting that in the vicinity of the peak the relative en-

ergy loss and hence the angular deflection in an in-

X(s) =J, dTK(T)(l-e-'") . (g)

For moderate energy loss, the validity of Eq. (6) may
be extended by means of the replacement

pR

RX(s) -J, dR'X(E(R'), s),
where E(R') is the mean electron energy after path
length R'.

The function K(E, T) shows in general some struc-
ture, e.g. , due to plasmon excitations at T =imp, 0)p

being the plasma frequency, as well as a broad con-
tinuum up to the maximum attainable energy
transfer, which is usually defined as T,„=E/2 in
view of the indistinguishability of individual elec-
trons. Although low-energy transfers are preferred,
E approaches zero for T 0. In metals, this ap-
proach must be linear at sufficiently low T. This gen-
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eral property has been demonstrated for the free electron gas. ' In insulators, Ewill be zero for values of Tbelow
the lowest level of excitation.

A. Small energy loss

For small energy loss, e (20 eV, only a very small number of scattering events can contribute to the spectrum,
and the discrete features must dominate. Hence, we may expand the exponential in (6) according to

e sxts& e "~ 1+R J dTK(T)e isT+ R2 J dTK(T) dT'K(T') exp[ —is(T+ T')]+, (10)
j

with
goo

dTK(T) .~o

From (10), we find the spectrum

goo
G(EO R;E) = e a+ 5(e) +RK(e) + —,R2 „dTK(T)K(a —T) (12)

(12')

The first term in the large parentheses of Eq. (12) represents the zero-loss portion of the spectrum, while the
second term corresponds to a single event, the third a double event, etc.

As an example, consider a system with plasmon loss only, according to

IC(T) = 5(T a~, ) . —1

X.p

where Itp is the mean free path for plasmon generation. Then, (12) yields

—R/Z R 1 R
G(ED,R;E) =e 5(e) + 5(e —iso)p) +— 5(e 2fcop) +-

Xp 2 Ap
(13)

where the coefficients correspond to the familiar
Poisson distribution.

Next, consider the linear portion for small energy
losses, (19a)

I

R W. If applying the substitution (9), we find the
mean energy loss

fR
(e) = J, dR'S(E(R'))

K(T) =AT, T & To (14) and the variance

where A is a constant and To some limiting energy
belo~ any discrete energy-loss peak. Here, we find

G(ED,R'E) =e " [5(e) +RA e+—A R'e ]

(15)
where A. is still defined according to (11).

(19b)
R

((e —(e)) ) = JI dR' W(E(R'))

S =S(E) and W= W(E) are the well-known expres-
sions for stopping power and straggling parameter. '

As an even simpler approximation, one may be
tempted to approximate (18) by a 5 function

8. Larger energy loss
G(EO, R;E) =5(e —RS) (18')

X(s) =isS+ —s'W
2 (16)

For e exceeding those energies where the discrete
features dominate the spectrum, a continuum
description of energy loss is appropriate. " Expand
(8) in powers of s,

the relative accuracy of this approximation increases
with increasing R.

C. An example

As an example, consider the energy-loss function

with
r~

S= J KTdT; W= JI KT'dT .

Then, Eq. (6) reads'9

K(T) =ATe i", 0~T&-
which yields

A. =/32/A, S =2/pX, W=
2

XS'

(20)

(21)

(18)G Eo,R;E =
(2m WR ) 'i' 2R W

i.e., one expects a Gaussian energy spectrum center-
ing around the mean energy loss RS with a variance

and

X(s) =A —,—1 1

p2 (p+is)2 (22)
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Insertion of (22) into (6) yields
i

G(q) =exp —— — —Jt ds exp ise+—

"lars expression can be integrated and yields
r

G(e) =e-"'"' 5(e)+- exp -- '
XS

i
ZS

(23)

„~ (Z/) )"(2./IiS)'"-'
v!(2v —1)! . (24)

J
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E NERGY LOSS (eV )

20 Ignoring all energy dependence of A. , S and 8'
p o, in Fig. 4 for a number of values of 8/h. .lot (24~

, an, we

The respective approximated curves, (15) and (18),
are also shown.
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In case of an isotropic source of excited electrons,
t e main effect of electron scattering is to limit the
contribution from deep layers to the flux of emitted
electrons. This situation is quite different from the
case of a collimated source where electron scattering
is crucial in determining the angular dist 'b t' f
emitted electrons, ln view of this state of affairs, it
appears justified to consider a rather sim 1simp e picture o
electron scattering. '6

Take for, for a moment, an isotropic source of elec-
trons at depth x =0 in an infinite medium. Ignore all

energy loss, but allow for angular deflection acc d-accor
g to a dlfferentlal cross section do'($) th $ b

ing the (laboratory) scattering angle. It is shown in
Appendix A that the depth profile as a function of
time t develops according to

(x') =- —,uXt i +—(e ' —I)
V

120 100 80 60

ENERGY LOSS (eV)

20

and /Ydo-(Q) the inverse differential mean free path
for scattering ($,d$), i.e., iYis the number of
scattering centers per volume.

For small times, Eq. (25) yields

(x') = —'(vr)'
3

27

FIG. 4. (a)-(~ . )—(c) Energy-loss spectrum of electrons at dif-

ferent path lengths for the scattering model specified by Eq.
(20). Full-drawn lines ending in the origin: Exact results
evaluated from Eq, (24) ~ Curves marked "Gaussian"'
Evaluated from Eq. (18) with parameters accord t E .
( ). Straight lines through origin'. Evaluated from linear

part of E . (15). 0o q. ). ashed curve' . Single-scattering spectrum,
Eq. (20). Choice of P '=15 eV.

corresponding to rectilinear motion, while for large t
we fJInd

(28)

i.e., a diffusionlike behavior with the d ff ' f
ficient

(29)
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Thus, for

r & rt =2kt/v

or 8 = et & 2A.~, we may approximate electron trajec-
tories as straight lines, awhile for 8 2X~, a dif-
fusionlike trajectory is more appropriate. "

This suggests that we can approximate the depth
distribution Q(x, t) dx of electrons versus flight time
for an isotropic source in x =0 by the expressions
(Fig. 5)

I(i) =-D
x', '-0

(4~Dr')'" 4Dr
(34)

for x' ~0; note that we consider electrons with ener-
gies far above the work function: The surface acts as
a perfectly absorbing wall.

The distribution (33) yields the following electron
current through the surface at x' =0,

Q(, i) =
1 o(iii —lxl) for r & ri

2vt
If this current has an angular distribution according
to the Knudsen cosine law, we find from (34) the
following probability for an electron originating at x
to arrive at the surface after flight time (t, dt) under
an angle ( Q,d'0),

so long as energy loss is neglected. Here, O(g) is
the step function,

0( )
1 for/&0
0 for /&0 . (32)

i

1 (x' —x)'Q(x', r) =-,i, exp —— „

exp- (x'+x)'
4Dt

Consider next an isotropic source of electrons at
depth x & 0 in a semi infinite m-edium. Then, in the
diffusion limit, we can extend (31) according to

(35')

After insertion of (29), and dR = udr, we find the
function Q introduced in (5) to be given by

r t 1/2

Q(E,,x;Z, n)
4m A. iR

3x
exp —-- cos8;

4A, )A

in the diffusion limit for an isotropic source at x.
Conversely, for straight-line motion, that function is
given by

6 X,Q(x, t)
Q(Eo,x;8, IT) = 8(R —x/cos8); 8 &2Ai . (36)

Insertion of (35) and (36) into Eq. (5), in conjunc-
tion with a properly evaluated energy spectrum (6)
(see Sec. III) allows evaluation of Eq. (3).

vt- 2X,

vt-4) t

x/),

V. HOMOGENEOUS ISOTROPIC SOURCE

Consider a homogeneous material under irradiation
conditions where the attenuation length of the pri-
mary beam is much greater than the depth of emer-
gence of electrons. For isotropic primary excitation,
we can then write

FIG. 5. Depth profiles for isotropic source of electrons in
lnflnltc mcdiUm vs flight time. Inltlal posltlon x =0 at, t =0,
according to Eq. (31). For vt && 2A.~, the profiles are ap-

proximately rectangular; for vt && 2A.~, a Gaussian diffusion
profile is approached. Both types of profile have been in-
cluded for vt =2k,~, indicating the magnitude of the error in
the transition region. Note that all energy loss is neglected
in this graph.

so that (1) reads

goo
J(E, II) =4m'' dEOF(EO) J dxP(Eo, x;E, 0)

Moreover, according to (5),

(37)

(38)
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Jf d J(E,,x;E, n) =Jt d~G(E, ,~;E)„, d 0(E,,x;~, n),
and, according to (35) and (36),

/'

cos8 for 8 & 2)~
3m 8

cosg for
f co 4n.

d g(E,,x;~, n) =
(39)

Hence, (38) reads

&j2f 16K.)J(E, n) =cose„~ dE, E(E,) J de+ J~„G(E,,Z;E) .
0 3m

Equation (40) has been derived in Ref. 16.
The critical path length Rq in (40) is chosen so as

to make J stationary, i.e., BJ/BR~ =0, which yields

A. Straight-path versus diffusion regime

Consider first the continuous-slowing-down distri-
bution Eq. (18') and a delta-function source,

16Ri=
3m

(41) ~(E,) = Cs(E, -E„), (42)

in close agreement with the previous limit R~ =2k.~.

with some constant C. Then, (18'), (40), and (42)
yield

1

5
—for Eg —E & R)S

J(E, n ) = C cose' QR)/S, i1 for Eg —E )R)S,E t/2
(43)

Equation (43) separates two regimes in the energy
spectrum, a near-peak region, where the assumption
of straight-linc motion is adequate, and an off-peak
region, ~here the diffusion picture is more appropri-
ate. It is seen that the limiting energy depends on
the transport mean free path A, ~ for angular deflec-
tion. For S —1 eV/A„and ) t & 10 A (for a discus-
sion of Xt, see Sec. VIII), the limiting energy loss is
& 20 eV. Therefore, within the range of validity of
these estimates, it appears justified to ignore angular
deflection in the analysis of measured spectra in the
immediate vicinity of a peak, if the target is homogene

OPS.

B. Near-peak regime

indicating that a background signal -A X(E~ E) is-
superimposed on the primary peak signal. Concern-
ing terms of higher order, see Sec. V 0 below.

C. Off-peak regime

Consider now the opposite limit of energy losses
exceeding both the limit defined by Eq. (43) and that
of (12), i.e., the continuum portion of the observed
spectrum. Insertion of (18) into (40), and setting

A~ =0 yields

r ' 1/2

J(E, n) =Ccose e's +K (6S/W), (45)
32K.)

, 3m 8'

Consider now the spectrum in the immediate vicin-

ity of the peak at Eq Inserting (15) int.o (40), and

setting R ~
=~ we find

J(E, n) =Ccosek {5(Eq E) +A X(E~ E)— —

where Eo is a modified Bessel function of the third

kind, and

x [+—,
' A')P(Eg —E)'] j, (44) For 6 ++ fair/S, t11e asymptotic expansion of Ko ls
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valid, so that
1 1/2

J(E, 0 ) =Ccos8
16K) 1.

(E„E)/
(45b)

i.e., the lower part of Eq. (43), while for a & 8'/S we

find

D. Analytical example

While analytical evaluation of Eq. (40) for the
spectrum (24) is possible in principle, the result is
not particularly enlightening except for the limits
R~=~ and R~=O, respectively. Here, one finds

1/2

J(E, 0) =Ccos&, ln
32K, i 8'

3m'W
(45c)

t

J(E, 0) = Ch. cos8 5(a) + 1 —exp—1 4e
zS ZS

Thus, the continuum portion of the spectrum not too
far away from the peak varies logarithmically with the
inverse energy loss. for straight-line motion and

(46a)

' 1/2

J(E, 0) =4Ccosg
3

2 2a
" (a/XS)'" '

g()+ e p (46b')

in the diffusion limit. Obviously, (46a) applies to
small, and (46b') to large values of e, i.e., the delta
function term in (46b') needs to be ignored. Thus,
(46b') takes on the final form

' 1/2

J(E, 0) =4C
, 3,

1

2 26 I 26
cos8 exp — I1

(46b)

where I~ is a modified Bessel function of the first
kind. Expansion of (46a) for small a reveals that the
hnear term in a agrees with that in (44) while the
square term does not occur in (44). This demon-
strates that (44), which originates from an expansion

I

for small &, Eq. (15), is not a proper power series in

e. This is the reason for the square brackets in Eq.
(44).

Figure 6 shows the two spectra, (46a) and (46b),
for the special case of Xt =3k.. Equation (41)
predicts the near-peak regime to extend down to
E =E& —at with at =16k.S/n. This is seen to be the
case. Also, the transition between the two regimes is
rather smooth. Figure 7 shows the transition point e~

that separates the near-peak regime from the off-
peak regime as a function of the ratio A. t/h. , for
h. t/X & 1.

6)i&S

100-

2--

SJ
C cos6 r

1
t
t

10-

, I.
EA 15 AS/'2 EA 10 AS&2

I
I

E„—5 AS/2 E~ E

FIG. 6. Calculated energy spectrum of electrons emitted
from a solid containing an homogeneous isotropic source of
electrons at a primary energy Ez, Evaluated from Eqs.
(46a) and (46b), based on inelastic scattering model, Eq.
(20). The abscissa scale can be compared with that in Fig. 4
by setting XS/2 =15 eV. The two approximate curves, Eqs.
(46a) and (46b), have been fully drawn in their respective

regimes of validity (E & e~), and stippled otherwise, For

Xt/h. = 3.

10 100

FIG. 7. Critical energy loss e~ separating near-peak from
off-peak regime, corresponding to negligible influence of an-
gular deflection and diffusion model of angular deflection,
respectively, as a function of ratio of transport and inelastic
mean free path, A.1/P. Evaluated for inelastic scattering
model Eq. (20)
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VI. INHOMOGENEOUS SOURCE: PEAK ATTENUATION

Consider an inhomogeneous isotropic source, e.g. , a sample with a nonuniform depth profile of the emitting
species. Then, the electron spectrum is„ in general, given by

J(E, Q) =4m J dE() J dxF(E(),x) I dRQ(Eo, x;R, Q)G(Eo,R;E)

according to Eqs. (1), (2), and (5).
If only the zero-loss peak is considered, Eq. (15) yields

6 (Eq,R;E)dE = e R~", (48)

and hence,

J 1(E. ())dE=4w J deF(x) J d)(e ""()(E„,x;)(, ()) (49)

for a monochromatic source. Evaluation of the integral over dR (49) by means of (35) and (36) yields (cf. Ap-
pendix B)

, r

1 X-exp —— — — for x &&R
4m )cosH

dR e "~"0(E x R Q ) = '

1 X—cosH exp —-=
%' () ),/3)'~' for x »R1 (50)

under the assumption that l() & X. After integration over d'Q, (49) and (50) yield

I" I'

W oo

J d'Q „,dE J(E, Q) =4m
~

dxF(x) —,E2 —+ dxF(x)exp ——
A

eJ 0 0 x1 )).A. ) 3 '~
)

where x1 is defined by the relation

X1 X1—E2 —=exp ——
2 X „(),Jt,/3)'"

E,(g)=- I dre-'r/r' .~1

It is seen that the attenuation of the zero-loss sig-

nal is determined by the inelastic mean free path A

for shallow layers (x ((x) =R)), but by the charac-
teristic depth A with

(52')

Peak
int ens i ty

(

0 forx&X,
LC for x&X,

if the observed Auger or XPS line originates from
the dopant. In this case, the parameter A is a matrix

A = (alt, /3)'~',

at greater depths (x » x)). As a rough approxima-
tion, one may approximate (51) by

d'Q J~ dE J(E, Q) =4m J dx

(51')

where the weight function sho~s the right limiting
value at x =0 and the correct asymptotic behavior for
x » x1.

As an example, consider a dilute alloy, doped with

a steplike concentration profile of some dopant so

FIG, 8. Intensity of the zero-loss peak as a function of
overlayer thickness X, according to Eq. (53). Escape depth
A according to Eq. (52), The dashed curve is an exponen-
tial, const exp( —X/A).
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property. Integration of (51') on the basis of (52')
y1clds

d'n i dE J(E n) =4~Chin(I+e-'~")J
(53)

Thus, the peak intensity decreases with increasing
thickness Xof the dopant-free overlayer. This de-
crease is exponential for X && A but less pronounced
for X & A (Fig. 8).

VII. LINE-SHAPE ANALYSIS

%C return to an homogeneous medium and con-
sider a primary excitation spectrum F(Ep) with a
narrow but nonzero width and some built-in structure.
In the vicinity of the peak, we may disregard angular
dcflcct1on of thc emitted electrons, 1.c., sct 81=~ 1n

Eq. (40). Hence, according to (12), the spectrum
(40) can be written in the form

J(E, 0) = ricos8 J dEpF(Ep) 8(Ep E) +—AE(Ep —E) +}'JI dTK(T)E(Ep E 1)— —

Usually, only relative current measurements will be performed. Hence, introducing the quantity

(E)= J(E rl)
A, cos8

we can write (54) in the form
r

J(E) =F(E)+}„~ dE,F(E,) X(Ep E)+}„-dr Z(r)Z(Ep E r}--
As an example, take a Gaussian primary spectrum

(E —E))'
42m 5 E 2AE'

and a loss function according to Eq. (20).
Thus, Eqs. (40) and (24) yield the following spectrum in the near-peak region,

(54)

(57)

f+ oo

j(E) = F(E) + Ji dEo F(Eo) 1 —exp—
AS E

4(Ep —E)
ZS

'I

1 E —EI,=F(E) + erfc --—exp2AS, 42AE
4(E —E&) ggE2 E E~ +4AE'/X—S

}S }'S' J2AE
+ — erfc (5g)

1+ oo

erfc(x) = dr e '
~ ~x (59)

This situation is illustrated in Fig. 9 for two values of
the ratio hE/h. S. Figure 9(a) shows a rather broad
initial spectrum, ~here the measured electron spec-
trum contains a significant background. In Fig. 9(b),
where hE/XS =0.25, a well-pronounced peak is ob-

I

served, superimposed on an approximately linear
background.

Figure 9 sho~s also a number of simplified approx-
imations to the spectrum. First, the single-scattering
spectrum, following by truncating the series (56),

J(E) =F(E)+ dE, F(E,)uc(E, E) (60)-

J(E) =F(E) I+
zS

r 3 2 r

E —EI + AE2 exp
1 2 2
2 XS ZS

2(E E,) I 2gE E— E+2AE'/XS—
its 2 }S iaaE

(60a)
after insertion of the primary spectrum (57) and the loss function (20). It is seen that (60a) describes the
peak shape rather well, in particular in the case of the narrower peak, Fig. 9(b).

The linear approximation (14) to the loss function yields
P r

xS
J(E) =F(E) I+

r r

(E —Et)erfc
2 AS 26E
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large energy losses rather than the complete spec-
trum, and it is obvious that it defines accurately the
asymptotic value ofj (E) below the peak.

The same expression, Eq. (61), follows if (18') is
replaced by (18).

As a reasonable first-order approximation, we can
adopt (60) and (61) above and below the crossing
point of the two spectra, respectively.

The fact that (60) describes the central parts of the
peak rather well, especially for narro~ peaks, sugests
that the inverse relation to Eq. (56), can also be
truncated at lowest order, i.e, ,

F(E) =J(E) JdE,—J(E,)uC(E, E) . -(62)

This relation allows, in principle, deduction of the
primary spectrum F(E) from a measured electron
current j (E).

The main attractive feature of Eq. (62) is the fact
that only the relative loss function )tE(Ep —E), rath-
er than the absolute one, occurs. Indeed, in view of
(ll), we have

dTAE T =1 (63)

E-E,
IZ hE

FIG, 9. Calculated electron spectrum in the near-peak re-
gion for Gaussian primary spectrum, Eq, (57). For a loss
function (20), the "measured" spectrum is given by Eq.
(58). The difference between that spectrum and the primary
one, i.e., the correction term in Eq. (58), is labeled "back-
ground. " Curves labeled "single scattering" refer to Eqs.
(60) and (60a), while the linear approximation reflects Eq.
(60b). Curves labeled "csda" (continuous-slowing-down

approximation) are based on Eqs. (61) and (61a). AEis the
width of the primary spectrum (57), and A.S the mean ener-
gy loss per inelastic scattering event. (a) AE = XS/2; (b)
AE = XS/4.

instead of (60a), under otherwise identical assump-
tions. It is seen that this approximation only
describes the high-energy side of the peak. It will

have to be discarded for most applications.
Finally, we have also included a curve based upon

the continuous-slowing-down approximation (18')
where

Eq. (6) yields

Jl dR G(Ep, R;E) =-—
J ds e

(65)

Insertion of (65) into (64), and Fourier transform
with respect to E yields

)tX(s) J~ dE e"j (E) = Jl dEp F(Ep) e (66)

Fourier transform with respect to s yields, then,

Thus, if only the shape of the energy-loss spectrum is
known within the range of energy losses that contrib-
ute substantially to the total inverse mean free path,
Eq. (62) allows an inversion of j(E) into F(E).

Finally, we demonstrate that unlike (60), which is
a first-order approximation, Eq. (62) is actually
ngorous within the near-peak region, i.e., so long as
angular deflections can be ignored. Starting from Eq.
(40) for Rt=~, we have

1 f oo

J (E) = —
J dEp F(Ep) J dR G (Ep, R;E)

J(E) = „I, dE, F(E,),1 (61) F(E) = Jl ds e "s) X(s) J dE'e"sj (E') . (67)

i.e.,
t

j (E) = — erfc
1 2E (61a)

in the case of the primary spectrum (57). This spec-
trum is, by the very nature of its origin, more ap-
propriate to characterize the background signal at

After insertion of Eq. (8), the integral over s can be
performed, and the result is

F(E) =j (E) —Jt dE'j (E')) K(E' —E), (68)

which is identical with (62), except that we now deal
with a much more rigorous relationship.

Equation (68) has formally a similar appearance to
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Shirley's inversion formula' which, in the present
notation, reads 100--

F(E) =J(E) —
J dE'j (E')K

where x is a constant,

K =j (E2) dE'j (E')

(69)

(69a)

10-

and E2 the lower energy limit at which the primary
spectrum F(E) has dropped to zero. We may con-
clude that Eq. (69) represents an accurate procedure
for background subtraction only in case of a loss
function that is uniform in energy loss over an inter-
val comparable to the width of the primary spectrum,

VIII. DISCUSSION

I

l00
I

100010
8 ma'

FIG. 10. Ratio between transport mean free path X~ for
angular deflection, Eq. (26), and mean free path for angular

deflection, ), = [iV fd rr(g) l ', calculated for elastic
scattering on screened Coulomb potential, V(r) = const
& r 'exp( —r/a) by first Born approximation.

It may be appropriate at this point to comment on
the various mean free paths entering our treatment,
i.e., primarily the inelastic mean free path ), the
transport mean free path A. ~, and the escape depth,
A=(itic /3)' ' [cf. Eq. (52)].

Calculations have been performed of the in-
elastic mean free path X, mainly on the basis of the
dielectric theory of the electron gas, ' but in some
cases with the inclusion of atomic core excitations.
The dependence of A, on electron energy turns out to
show a characteristic minimum at an electron energy
around 50 eV, which is also observed for experimen-
tal values of the escape depth A." Nevertheless, the
identification of the measured escape depth with the
inelastic mean free path" is conceptually an oversim-
plification, as follows from Eq. (52). To what extent
there exists a quantitative similarity depends on the
behavior of the transport mean free path, A, ~.

The transport mean free path is determined by the
frequency of angular deflections and is thus depen-
dent on both inelastic and clastic scattering events.
Although the importance of the latter has been well
established in connection with the slowing down of P
particles, ' ' it has not always been fully appreciated
in the field of electron emission and electron spec-
troscopy. " Calculations for a random scattering
medium" indicate that the mean free path for elastic
collisions, A,„for Al is smaller than A. at all energies;
the difference is particularly pronounced at energies
below the minimum in X. Similar conclusions em-
erge from calculations on crystalline media.

In addition to some uncertainty about the mechan-
ism of elastic or quasielastic (phonon) scattering in a
solid at electron energies in the range of 50—1500
eV, there is also a difference between A,, and P 1, due
to the cosine term in Eq. (26). Figure 10 shows the
ratio lent/h. , calculated for exponentially screened
Coulomb interaction with a screening radius a, based
on Born approximation. It is seen that the differ-
ence is negligible at low energies, but is substantial

for
g2 Z2/3

Sma2 4
(70)

where Z is the atomic number and (R =13.6 eV.
This, in fact, makes A. ~ approach the inelastic mean
free path A. at energies above the minimum of X.
Still, the behavior at energies below the minimum of
A. is very different. ' This, as well as the numerical
factor 1/J3 in Eq. (52), suggests that the apparently
good agreement between measured escape depths and
calculated mean free paths ' may be fortuitous.

At this point, we should like to put emphasis on
the fact that our energy-loss function (20) was
chosen for analytical convenience in order to test the
validity of various approximations. Although the
qualitative features of this function reflect the general
behavior of simple systems, the quantitative features
definitely do not. The peak shape expressed by Eq.
(20) may well be much too broad in comparison with
the predictions of Refs. 18 and 22; conversely, the
dropoff at higher energies is too rapid in comparison
with the T ' dependence expected for Coulomb
scattering. Moreover, all complex structure has been
smeared out in Eq. (20). Thus, while we find this
spectrum very well suited for qualitative considera-
tions such as those expressed by Figs. 4, 6, 7, and 9,
we wish to express strong reservations with regard to
the prospects of extracting, e.g. , primary spectra from
measured currents on the basis of Eq. (20) with A

and P determined by "experimental" values of X and S.
We note that a considerable amount of information

on slowing-down parameters is contained in the off-
peak region as well as the region far below the
peak. ' " In particular, we believe that proper
analysis of electron spectra is one of the few possibili-
ties to determine A. ~ for electron scattering in solids
experimentally in the energy range under considera-
tion. We intend to follow up on the problem of ex-
tracting both the primary spectrum and the slowing-
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down parameters in a consistent manner from mea-
sured electron spectra in subsequent work.

IX. SUMMARY

(i) We have analyzed theoretically the spectrum of
electrons emitted from solids in the case where the
primary spectrum is narrow, such as is the case in x-
ray photoelectron and Auger electron spectroscopy.

(ii) We distinguish between the near-peak region,
the off-peak region, and the region far below the
peak. The near-peak region is dominated by elec-
trons emitted from shallow layers that may have lost
energy but have not undergone substantial angular
deflection.

The off-pcak region is dominated by electrons that
have undergone angular deflection but have lost only
a small fraction of their initial energy.

The region far below the peak is made up by elec-
trons coming from deeper layers that have lost a sub-
stantial fraction of their energy. At thc lowest ener-
gies secondary electrons also contribute to this group.

(iii) Unlike in our previous work, '6 we considered
only the near-peak and the off-peak region. There-
fore, all variations of slowing-down parameters, i.e.,
inverse differential mean free path E( T), inelastic
mean free path X, stopping power S, straggling
parameter W, differential scattering cross section
da ($), and transport mean free path k~, with the en

ergy of the moving electrons was ignored. This is an
essential condition for validity both of the Landau
formula of energy loss, Eq. (6), and the evaluation of
the scattering distribution, Eq. (25).

(iv) For a homogeneous and isotropic source
strength, the electron spectrum is given by Eq. (40)
where R~ is the critical traveled path length separat-
ing the regimes of negligible and non-negligible angu-
lar deflection, respectively. G(EO,R;E)dE is the pro-
bability for an electron with initial energy Eo to have
an energy (E,dE) after traveling a path length R.

(v) The critical energy loss e~ separating the near-

peak from the off-peak region is of thc order of
e~ = 2lt~S [cf, Eq. (41) and Fig. 7 which has been cal-

culated on the basis of a specific model for the ener-

gy loss].
(vi) The function G(EO,R;E) is discussed in Sec.

III. Wc distinguish between a low-energy-loss region
where 6 is dominated by structural features in the
cross section K( T) [see Eq. (12)], and a higher-
energy-loss region where a continuum description of
energy loss is appropriate, see Eqs. (18) and (18').

(vii) Energy spectra in the near-peak region have
been investigated in some detail (Secs. V 8, V D, and
VII), both as a function of traveled path length (Fig.
4), and as a function of emitted energy; the latter
spectrum is shown for a primary excitation of zero
width (Fig. 6) as well as two examples of Gaussian
excitation profiles [Figs. 9(a) and 9(b)]; in both

cases, the half-width at half maximum is smaller than
the mean energy loss per inelastic scattering, A.S. All
calculations refer to a specific model for the loss
function.

(viii) Energy spectra in the off-peak region have
been discussed less extensively, see Fig. 6 and Eqs.
(45) —(45c). This region has been treated on the
basis of the familiar diffusion approximation for the
scatter distribution of electrons. The main feature is
a decreasing contribution of deeper layers to the spec-
trum at any given energy and, therefore, a decrease
in the spectral density with increasing energy loss. A
logarithmic variation, Eq. (45c), is predicted in the
region next to the near-peak region.

(ix) A formula has been derived, Eq. (68), that al-

lows direct inversion of a measured electron spec-
trum into an (unknown) primary excitation function,
provided that the normalized loss function AE( r) dT
is known, T being the energy loss in an inelastic
scattering event. The inversion formula is rigorous
within the near-peak region.

(x) With a view to the physical significance of pub-
lished values of the escape depth of Auger and pho-
toelectrons, we also evaluated the intensity of the
zero-loss peak as a function of the thickness of a pas-
sive overlayer on an homogeneous target. The over-
layer was assumed to have the same slowing-down
parameters as the matrix. We find the attenuation to
be dominated by the inelastic mean free path A, only
within a very shallow range of thicknesses, while the
major portion of the attenuation function is found to
be exponential with a decay length A = (XXt/3)'i' [cf.
Eq. (52)], where A. ~ is the transport mean free path
for elastic scatteting.

(xi) Figure 9 shows that the attenuation function
deviates from a strict exponential in a thickness range
of the order of X.

(xii) A qualitative discussion of mean free paths
based on existing theoretical literature suggests that it
is not in general justified to identify the escape depth
measured by means of overlayers with the inelastic
mean free path.
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APPENDIX A: DERIVATION OF Eg. (25)

We consider the motion of an electron in an homo-
geneous, infinite medium. The motion is character-
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ized by a distribution function G(vp, v, r, t) d'vd'r of
the velocity and position vectors v and r at time t;

vp is the initial velocity at t =0 where the electron is
assumed to be at r =0.

The function G obeys Boltzmann's equation which
we use in the backward form, "

and

GI(R) =Jt d x"(G,(x,R) .

Then, Eqs. (AS) and (A4) readily read"

gGn—(2l +1) + n!GP:t' + n(l +1)Gt+&'

(A6)

t

vp '7 G(vp, v, r, t)
Vp Bt ~p

=N J da. (G(vp, v, r, t) —G(v, v, r, t))

and

GP(0) = 8.o8to ~

= (2l +1)NotG/' (A7)

(Ag)

(Al)
I

where v is the velocity after a scattering event
characterized by a cross section do. (v, v ). Further-
more,

where

a t
= JI do [I —PI(cosg) ] (A9)

and $ is the scattering angle in the laboratory frame.
For n =0, Eqs. (A7) and (A8) yield

G(vp, v, r, o) =8(v —vp)8( r ) (A2)
Gto(R) = 8,o

For planar geometry we integrate over all directions
of v to obtain an equation with the energy E as a
variable. Further if we assume that the cross section
for angular deflection depends only weakly on electron
energy within an interval of, say, 0.75Ep & E & Ep,
we may integrate over E and write

and

BG)' 1

9R
+Per)G) =—

3
(Alo)

i.e., conservation of particle number. For l = n =1
and l =0, n = 2, we obtain the differential equations

—
qp G(gp, xR) =N J d(r(G —G') (A3)

8R Bx

and

BGp

BR

respectively, which are readily solved.
For an isotropic source

(A11)

G(&,,x, O) =8(x), (A4)

where qp and q' are directional cosines with respect
to the x axis, G' stands for G with qp = q', R is the
travelled path length, and do. is now the cross section
for angular deflection.

Now, expand G in terms of Legendre polynomials
and take spatial moments, i.e.,

1

(x2)2=Gp2 = R — (1 —e ' ), (A12)
3$(r) N(r)

where the right-hand expression results from (A 10)
and (A11) with the initial condition (AS).

APPENDIX B: RANGE OF VALIDITY OF EQ. (50)

G(&,,x,R) = X(2l+1)G, (x,R)~,(&,)
lW

(AS) The propagator function is according to Eqs. (3S)
and (36) given by

pR
' 1/2 1

1 1 3x 3x&(x, II) =
I e ""8(R x/rt) + ~— dRe ~ "R exp-
p 4~'~& R& 4~&R

t t

(Bl)

where q =cos8 and R~ is given by (41). For the
second integral we have

&/2

g(x) ~m
R)

t 1/23xqk Ri
exp —,for R~ ) X . (B2)4~'Z, R'

I

Then, for x &&R~ we find

f R)
r(x, n) = J e ""8(R—x/~)-

4m

1 xexp—
4~

since according to (B2),
1

8 (x) « exp — for x « R t

(B3)



For x && A~, the first integra1 is zero, and because the maximum in the second integrand occurs for 8 &~ 8& we
may extend the lower bound of this integra1 to zero. Thus,

1~2 ~
2 t~i f

&(x, 0, ) = ",~ j dRe ~'"R '"exp ——" — =~exp —-- — "-
() ),/3)'~'
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