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Stopping power for energetic ions in solids and plasmas
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The stopping power for heavy ions in several ionized materials is determined over a range of
densities and temperatures using a generalized stopping-power formula and an effective charge

chosen to give an agreement with stopping power in cold materials. The stopping power can be

increased or decreased relative to cold material, depending on the atomic number, the density,

temperature, and ion energy.

The stopping power for heavy ions in materials
over a range of temperatures and densities is of im-

portance for the determination of beam requirements
for heavy-ion fusion targets. Semiempirical estimates
have been given for cold materials by Northcliffe and
Schilling, ' extrapolated and interpolated from a large
amount of experimental data. The predictions for
heavy ions (A = 200) are, however, based on low-

energy data (less than 80 MeV in high-Z foils and
less than 150 MeV in low-Z foils). The extrapolation
to higher energy therefore is uncertain, although
probably correct within a factor of order unity. De-
tailed reviews of experiment and theory of the energy
loss and of the equilibrium charge state of fast heavy
ions in solid and gaseous media have been given by
Betz' and Ahlen. ' For partially ionized media these
results must be properly generalized to take into ac-
count the effects of finite temperature and dielectric
polarization of medium. Estimates of the stopping
power for the specialized cases of protons in gold at 1

keV, 4 or heavy ions at very high energies, "typically
greater than 10 MeV/amu have been reported.
These calculations are based on the approximation
that the stopping electrons can be divided into two
groups: those bound to the plasma ions and those
which constitute the plasma free electrons. Then the

contribution of each group of electrons is calculated
separately. This approximation cannot be justified
for arbitrary temperatures and projectile energies.

The stopping power in ionized media depends on
the effective charge and energy of the heavy ion and
on the dielectric polarization of the mediuni. To
predict the stopping power, we have used a relatively
simple model which has been checked against North-
cliffe and Schilling's results and then used to predict
the results for ionized media over a range of tem-
perature and density. A novel feature of our work is
that we have not made the approximation of calculat-
ing the contributions of the plasma electrons and
bound electrons to the stopping power separately.
%e have used a simple model for the dielectric prop-
erties of the ionized medium to take into account the
effect of both groups at the same time.

A charged particle passing through an ionized
medium will induce an electric field by polarizing the
medium. The induced electric field will then act back
on the particle, resisting its motion, and cause it to
lose energy. This field can be related to the dielectric
function e(k, ru) of the medium through its Fourier
transform. Then, assuming the fast ion moves in a
straight line in the x direction, the energy loss per
unit distance is given by'

dE Z'e=2 d k ') da)8(o) —k„v) —"Imk„
dx 277 k' e(k, ru)

where k = k„+kq, Z' is the effective charge and v

is the velocity of the projectile ion.
A basic assumption in the model is that the dielec-

tric function e(k, cu) of the ionized medium can be
expressed as the sum of separate contributions of the
plasma electrons apd the bound electrons. Thus we

have
N2

e(k, o)) =l-
eo(m +i v, ) —(k u, ) '

~,'i(j)
Cd (Ql + I I g ) —Ojj

(2)
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In Eq. (2) the second term represents the contribu-
tion of the plasma electrons to the dielectric function.
The effect of collisional damping is included through
the collision frequency v„while (kv, ) (with
v, = 8/m) is a frequency associated with thermal
motions of the plasma electrons, and co~ is the plas-
ma frequency. The third term represents the dielec-
tric function of the bound electrons, which is calcu-
lated by using a simple model of the atom whose jth
shell electrons experience a harmonic force of fre-
quency co~, and a phenomenological damping
force measured by I,. The frequency ~,', (J')
=4m N, e2n, /m, where N, is the number density of
atoms and n, is the dipole oscillator strength.

The expression for e(k, cu) is complicated because
of the discrete sum which requires a knowledge of
atomic shell structure, the binding energies and the
oscillator strengths. For simplicity we make a contin-
uum approximation by ui~ng the Thomas-Fermi
model of an atom to estimate bound electron ener-
gies and densities. First we consider the contribution
to e(k, co) from the bound electrons. Let Zp be the
atomic number. In the continuum approximation we
assume the jth shell to be of width dr and at a dis-
tance r from the respective nucleus. Then the oscil-
lator strength nj can be expressed in the form

n&=4rrr p(r)dr

In Eq. (4), X(s ) is the universal function appearing
in the Thomas-Fermi equation; b =—(3m/4) 2 3it /
2me, and the dimensionless parameter s is defined
by the expression

r =s bZD'~

For the frequency ruj we take @co& =1(s) with I(s)
representing the average over the momentum distri-
bution of the local ionization energy of a bound elec-
tron. In the Thomas-Fermi approximation I(s) is
given by

I (s) tcu=p ———2 x 1 dx
5 s 2$ ds g go

I

where rup=(4Zo/3n)'I'I/it(2me'/il'), and sp

denotes the atom boundary. Thus, using Eqs.
(3)—(5), the sum over l in Eq. (2) can be replaced by
an integral over s.

Next we consider the plasma contribution to the
dielectric function. %e assume the sole contributors
of electrons to the plasma are the (Zp —Z) times
ionized atoms of the medium where Z is the average
number of bound electrons in an ion. Then the plas-
ma frequency can be written as

where p(r), the local electron density, is given by

Zo x(s') '"
p(r) =

4mb s
(4)

4mn, e' 4mN, (Zp —Z) e
Mp =

m m

Using these results, Eq. (2) now becomes

(6)

(
—

)
4n Nu Zoe'

P?l

1

1 —Z/Zo t'o s'X't ifds

ru(co+i v, ) —(kv, )2 ~o ra(ca+i I,) —[1(s)/it]2

The above model of e(k, ou) gives a complete
description of the bound and continuum electrons,
including collisional damping; collective and screen-
ing effects. To see the latter, let us suppose the pro-
jectile velocity v « v, where v, is the thermal speed
of the plasma electron. Then, since co = km « km„
the plasma contribution to e(k, cu) is just (kD/k)',
where ko = (4rrn, e'/8) 'i' is the Debye wave vector
that determines the screening.

The numerical calculation of Eq. (I) using Eq. (7)
is still complicated as it involves three-dimensional
integration. To proceed further we will consider
cases with low enough plasma temperature and large
enough v such that v && v, . Then kv, is generally
very small compared to ~ and the dielectric function
can be approximated by an expression independent of
k, i.e., e(k, cu) = e(fu), which means we have a cold
plasma with damped nonpropagating plasma oscilla-
tions and no Debye screening. In this approximation

the k integration in Eq. (I) is straightforward and we
obtain

dE (Z".)',— (q. )'+ '
~d~ ln Im

dX mv2 4o 60 e(~)

The cutoff wave vector q is necessary to prevent the
logarithmic divergence when q'= k~'+ k,'= ~. This
divergence is a result of the breakdown of the classi-
cal dielectric function at small distances. Now, since
most of the contribution to the integral in Eq. (8) is
from regions with co & q e, the upper limit of in-

tegration is essentially q v.
It is easy to show that if we assume v, && 1 and

neglect the bound electron contribution, the present
formula reduces to the formula for stopping power in
an electron plasma. ' Also if we assume I'& « 1 and
neglect the effect of other electrons when considering
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the contribution from a bound electron in shell j, our
formula for energy loss reduces to the Bohr or Bethe
formula depending on the choice of q . Thus since
(1/q ) is essentially the minimum impact parameter
we have used a q value corresponding to the Bohr
formula if q = Z'e /tv ) 1, and a value correspond-
ing to Bethe's formula if q & 1.

The evaluation of (dE/dx) is now straightforward
if the effective ion charge Z', the plasma collision
frequency v„and the phenomenological damping
constants I"~ are known. The I ~ are generally very
small compared with the binding or resonant fre-
quencies so~ and the result is independent of 1. So
to make the numerical integration in the resonance
regions converge with a choice of reasonable number
of points, we will assume I J to be a few percent of
ao&. The coHision frequency v, which gives the col-
lision rate of electrons with neutral atoms and ions in
the medium is very small at low temperatures. At
finite temperatures v, is essentially given by the col-
lision rate of electrons with ions. %e have tested this
model for the well-known cases of protons on alumi-
num and gold. The results are within 10% of the
corresponding semiempirical values. 'The stopping
power from our model being smaHer in the case of
protons on aluminum and larger for protons on gold.

Northcliffe and Schilling' estimated the stopping
power for heavy ions in various cold materials by in-
terpolation and extrapolation from experimental data.
For a given ion they made the basic assumption that
the ratio of stopping powers for different materials
was a function of ion velocity and independent of the
ion. This assumption is valid providing that the ef-
fective charge Z' is independent of material and the
Coulomb logarithm is the same for different ions.
Neither of these assumptions is literally correct. Ex-
periments with gases and foils show an apparent
difference in Z' for a given ion. The Coulomb loga-
rithm is a function of ion velocity only if the quan-
tum distance of closest approach is used for q '. If
the classical minimum distance is used, however, the
logarithm is also a function of Z' and therefore ion
dependent.

Since Z' has not been obtained from first princi-
ples semiempirical expressions have been used. A
formula for the effective charge can be obtained by
utilizing experimental stopping power data or by
direct measurement of the charge state of ions pass-
ing through foils.

An effective charge was obtained by Brown and
Moak from stopping power measurements in foils.
They also assumed that the Coulomb logarithm is a
function of ion velocity only and hence the same as
for protons. This is incorrect if.the classical
minimum impact parameter must be used. In addi-
tion to the Brown and Moak semiempirical formula
for Z', which is identical to that given by Betz, stop-
ping power data have also been used to derive other
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FIG. 1. The cold stopping powers for (a) xenon and (b)
uranium on aluminum. (curve B~) using Betz's Z and the
classical q~

' if g = Z e2/fv & l and quantum q~
~ if q & 1;

(curve 82) using Betz's Z' and the quantum q ', (curve
ND) using Nikolaev and Dmitriev's Z"; (curve NS) North-
cliffe and Schilling's result.

effective charge formulas'0; the Betz formula, howev-
er, has been commonly used.

To decide on which expression for Z" to use in our
model, we have calculated the cold stopping power of
xenon and uranium iona on aluminum (Fig. 1) using
both the Betz formula and the effective charge mea-
sured" directly from the charge state of ions after
passing through low-Z foils. According to Ref. 11,
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sity, as a function of energy per amu. The curves are labeled

In addition we have used Thomas-Fermi ionization
energies and the classical or quantum expression for
q~ as appropriate. The Thomas-Fermi approximation
gives zero ionization energy for the outermost elec-
trons of a neutral atom. The presence of such weak-

ly bound electrons somewhat increases the stopping
power; we therefore have used the ad ho@ correction
of choosing an ionization state for which the

Z' is given by the serniempirical formula
' 1lk -k

ZZy Z I+ Z

u =0.45, u'=3.6 x 108 ctn/sec, k =0.6,
%e could also have considered other values for Z'
but have found that this is unnecessary (see below).
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Thomas-Fermi equation for ions, but with the ap-
proximation made of evaluating the Thomas-Fermi
equation at zero temperature. This neglects excited
states of the ions and hence introduces an error
(which we believe to be small) in the stopping power.
From the ionization energies so obtained, we have
used the Saha equation to determine the equilibrium
charge state of the target material as function of tem-
perature and density.

The stopping power for xenon and uranium ions in

aluminum, silver and gold is given in Figs. 2—5. The
variation with temperature is in general nonmonoton-
ic. As bound electrons are ionized, their contribution
to the stopping power increases, provided that col-
lisional damping is small. The damping is weaker in
low-Z materials; hence the stopping power increases
with temperature. For high-Z materials, the collisional

damping is more important and the stopping power
can be reduced (relative to the cold material) for

temperatures up to severa1 hundred electron volts.
In order to test the effect of collisional damping we

have recalculated the stopping power of xenon on
gold, arbitrarily reducing the collision rate by an or-
der of magnitude. %e found that the variation of the
stopping power with temperature becomes monoton-
ic, similar to the case of the low-Z materials.

These results are valid only when the average elec-
tron thermal velocity is appreciably less than the ion
velocity. For uranium ions, this requires
e ( 2320E(GeV) electron volts. The results also are
approximately correct only when degeneracy correc-
tions to the plasma electron equation-of-state can be
ignored, i.e., 8 ))8(degeneracy) which is satisfied
above 10 to 20 eV.
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