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Ab initio calculation of the phonon dispersion relation: Application to Si
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%e demonstrate that by using atomic numbers and masses of constituent elements and crystal

structures as the only input information, phonon dispersion curves of crystals can be calculated

from first principles within the local-density-functional formalism. As shown by an exemplary

calculation for the t001j-direction phonon dispersion curves of Si, the agreement with experi-

ment is excellent. The calculation is carried out using the ab initio pseudopotential method and

the Hellmann-Feynman theorem.

An abinitio calculation of the phonon frequencies
for Si at high-symmetry points has recently been
demonstrated' to yield results in excellent agreement
with experiment. The calculation was carried out us-

ing the pseudopotential method within the local-
density-functional formalism. A frozen-phonon ap-

proach was employed, and the phonon frequencies
were obtained by comparisons of total energies of the
ideal lattice and the phonon-distorted lattices. In
principle, this approach can be used to calculate the
phonon frequencies at nonsymmetry points. Howev-

er, the calculation ~ould be very difficult computa-
tionally because of the large supercell size involved.
In this Communication, we use another approach and
show that, by calculating the force constants between
atomic layers, the phonon dispersion relation along
the direction normal to the atomic layers can be ob-
tained from first principles.

Si is chosen as a prototype material. One of the in-

teresting features' of the phonon dispersion relation
of Si as well as other semiconductors in diamond or
cubic ZnS structures is that the TA dispersion curves
are low lying and become flat away from the zone
center. It is shown from the phenomenologic force-
constant model that the interatomic forces extend to
fifth-nearest neighbors, and it takes 15 parameters to
achieve a reasonab1e fit to the dispersion curves.
Successful fittings of the dipersion curves of Si have
been reported using six parameters in the valence
force field model' and four parameters in the adiabat-
ic bond charge model. A microscopic calculation' of
the phonon dispersion relation of Si has been carried
out using dielectric matrix formulation, ' and the
agreement with experiment is fair. However, the ac-
curacy of the use of a continued-fraction series in the
dielectric matrix calculation is not known, and the
results are sensitive to the choice of the pseudopo-
tential as well as the value used for the first mo-
ment. ' In the present study, the phonon dispersion
relation of Si along the [001] direction is calculated
using only the Si atomic number, atomic mass, and

the diamond crystal structure as input information.
This represents the first abinitio calculation of pho-
non dispersion curves of Si.

In our calculations, we use the pseudopotential
method' within the local-density-functional formal-
ism. The abinitio pseudopotential of Si is generated
through the Hamann-Schluter-Chiang scheme and is
shown to give ground-state structural properties in
excellent agreement with experiment. A 12-(001)
layer supercell geometry is chosen. To preserve the
inversion symmetry of the system which facilitates
the computation, we displace two inversion-
symmetry-associated atoms (instead of just one
atom) from their ideal crystalline positions by an
equal amount (about 1'/0 of the lattice constant) in
opposite directions, Plane waves up to E,„=6 Ry in
kinetic energy are included in the basis set for the
wave-function expansion. ' This corresponds to
about 400 plane ~aves in the supercell calculations.
The Schrodinger equation is solved iteratively to
self-consistency at which point the input and output
screening potentials differ by only 10 Ry and the
Hellmann-Feynman forces on each atomic layer sta-
bilize to 2 x 10 ' Ry/a. u. The calculations of
Hellmann-Feynman forces are conveniently per-
formed in the momentum space. " The signer inter-
polation formula' for exchange and correlation ener-
gies is used.

The interlayer force constants for longitudinal
(transverse) phonons are deduced from the
Hellmann-Feynman forces acting on individual atom-
ic layers when dual layers are displaced along the
[001] ([110])direction. Figure 1 contains definitions
and calculated values of interlayer force constants.
Here we make an assumption that interlayer force
constants are negligible beyond the third-nearest
layers. " This assumption is checked in four ways:
(i) The translational invariance condition' is satisfied
to 0.5/o (see Fig. 1); (ii) if different dual layers are
displaced, the Hellmann-Feynman forces calculated
from solving the Schrodinger equation agree to
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FIG. 1. Interlayer force constants (k) of Si. (The sub-

scripts represent the order of nearness; e.g. , k~ is the first-
nearest-layer force constant, etc.) The atomic positions in

the (110) plane are denoted with black dots. The solid lines

denote the atomic chain on the plane. The open dots and
dashed lines denote the projections of the atoms and atomic
chains a distance J2a/4 away from the plane where a is the
lattice constant. The upper central atom is displaced in the
[001] direction in the longitudinal (L) case and in the f110]
direction in the transverse (T) case. The corresponding in-

terlayer force constants in Rydberg units are given on the

right, The positive sign means the force is in the direction

opposite to the displacement.

within 3% with the results obtained using the force
constants; (iii) the calculated frequencies of LO(1')
and TO(1') agree to less than 1%; and (iv) the calcu-
lated phonon frequencies of LO(1'), TO(I'), LOA(g,
and TO(X) agree to within 1% with the corresponding
results calculated using the frozen-phonon approach
in which all the interlayer force constants are taken
into consideration (see Table I). The 4% difference
in the TA(X) mode is also rather small considering
the small magnitude of the TA(X) frequency itself.

By symmetry, the longitudinal (interlayer) force
constants are symmetric with respect to the displaced
layer, and the second-nearest-layer force constants in
the transverse case are the same (k2=k2). The
longitudinal force constants die off rapidly with
respect to the interlayer spacing. The value of the
third-nearest-layer force constant (k3) is only 1% of
the first-nearest-layer force constants (kt). The
transverse force constants show' large variations. One
of the first-nearest-layer force constant (kt) is much
larger than the other one (k-, ) because only the
bond-bending forces are involved in k-, , which are
small compared to the bond-stretching forces in-
volved in k~. The negative value of the second-
nearest-layer force constant (k2, k-, ) is a manifesta-

tion of the bond-bending forces which tend to
preserve the regular tetrahedral angles. The large
difference between k; and k3 can be interpreted in

the valence force field picture' where the fifth-
nearest-neighbor interatomic interaction is modeled
through the bending of bond angles in the atomic
chain connecting one atom and its fifth-nearest
neighbor. This interatomic interaction is transmitted
more effectively for atoms associated with k-, than

the atoms associated with k3.
From these abinitio interlayer force constants, the

phonon frequencies of Si in the [001) direction can
be readily calculated. As shown in Fig. 2, the calcu-
lated dispersion curves (dash lines) reproduce prom-

TABLE I. Comparison of the calculated phonon frequencies (in THz) at I and X with experi-
ment. The first row gives values calculated in the abinitio force constant (FC) approach using a

plane-wave expansion with a kinetic energy cutoff (E~„) of 6 Ry. The second and third rows are

obtained in the frozen phonon (FP) approach with E~„= 6 and 10 Ry, respectively. The experi-

mental values are given in the fourth row.

LO(r) TO(r) LOA(X) TA(X) TO(X)

FC (6 Ry)

FP (6 Ry)

FP (10 Ry)'

Expt. '

14.32

14.33

15.16

15.53

14.25

14.33

15.16

15.53

11.79

11.73

12.16

12.32

4.82

5.02

4,45

4.49

12.73

12.75

13.48

13.90

'See Ref. 1. See Ref. 3.
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FIG. 2. Phonon frequencies from I to Xin the [001]
direction. The dashed lines are calculated from the abinitio

force constants with Ep„=6 Ry (see text). The solid lines

are calculated using the abinitio third-nearest-layer force
constants (Ep„6 Ry) and the frozen-phonon results at I
and X(Ep 10 Ry) The experimental points (Ref 3) are

denoted by dots (transverse) and triangles (longitudinal).

inant experimental features': The TA modes are low

lying and flat near the zone boundary, and the TO
and LO modes cross each other. The calculated fre-
quencies agree with experimental values to within
10%. A major source of errors comes from the limit-

ed number of plane waves in the basis set (E,„=6
Ry). This is confirmed by frozen-phonon calcula-
tions at I and X. When the kinetic energy cutoff
(E,„) is increased from 6 to 10 Ry, the calculated
frequencies at I' and Tin the frozen-phonon ap-
proach change by 5% and become in better agree-
ment with experiment (Table I). Without actually
carrying out abinitio force constant calculations

E,„=10Ry, which involves diagonalization of rather
large matrices (850 && 850), we may instead make a
good estimate of these force constants in the follow-

ing way. Because the third-nearest-layer force con-
stants do not change appreciably when E,„is in-

creased, the values for E,„=6Ry can be used. The
other force constants are adjusted such that the
frozen-phonon results at I and X for E„„=10 Ry are
reproduced since it is expected that both the force-
constant approach and the frozen-phonon approach
yield practically the same results for Ep„=10 Ry as is
the case for E,„=6Ry (see Table I). The resultant
phonon dispersion curves, as indicated by solid lines
in Fig. 2, are considered to be better converged with
respect to E„„.' They are in excellent agreement
with experiment. ' Here we emphasize that the only
input information in the present calculations is the
atomic number, mass, and the diamond crystal struc-
ture.

The peculiar features of the TA dispersion curves
merit some more detailed discussion. The small
values of the TA modes are mainly due to the large
differences in the transverse first-nearest-layer force
constants (k~ and k-, ). This is consistent with the

physical picture that the bond-bending forces are
quite small compared to the bond-stretching forces.
The flatness of the TA modes can be attributed to
the non-negligible value of k;, which is important for
TA modes near I but has little effect on TA modes
near X. The fact that k3 is not negligible also demon-

strates the long-range nature of the interatomic in-

teractions. '

In summary, we demonstrate that the phonon
dispersion curves of Si along the [001] direction can
be calculated from first principles using abinitio in-

terlayer force constants. The excellent agreement
with experiment suggests that both the pseudopoten-
tial and the local-density-functional formalisms can
be used to obtain accurate information about lattice
dynamical properties. The approach of abinitio inter-
layer force constants can be applied to various sym-
metry directions in the Brillouin zone or to different
materials' and is expected to facilitate important mi-
croscopic interpretations of lattice vibrations of solids.
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