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Spontaneous violation of reflectional symmetry in solids
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A model is suggested in which the reflectional symmetry of the electron Fermi liquid in met-

als or semiconductors is spontaneously violated. The properties of the asymmetric phase and

the possibility of its experimental detection are discussed.

Rcflcctional symmetry imposes cci'tain restrictions
on the possible form of physical laws. It requires, for
example, that in all vector relations like A =8, A and
8 should be both polar or both axial vectors. As we

know, reflectional symmetry is violated in weak in-

teractions. However, at ordinary energies this viola-
tion is very weak and is totally negligible on a macro-
scopic level. It has been recently suggested' that re-
flectional symmetry can be violated spontaneously as
a result of a spin-dependent effective interaction of
electrons in metals. Using Fermi-liquid theory, the
authors have shown that if the interaction is strong
enough, it may become energetically favorable for
electrons to develop a nonzero average heliciiy,
(cr ~ k) %0. In the present paper we suggest a sim-

ple microscopic model with spontaneous violation of
reflectionsl symmetry and discuss the physical prop-
erties of the asymmetric phase.

Our model is described by the Hamiltonian

H = X~»a»' a» + U,
k

U ——g X (k ~ k ) ( o p. Pr, , ) a»t a„t a a»p,
k,k

and the angular brackets mean quantum statistical
averaging. The quantity (a» a»p) can be represented
as

(a»t a»p) = —,'(Sp +crp, k)n»p

+ —,'(Sp —Prp k)n»

where Pfk+ snd Elk arc thc occupation numbers of
states having definite helicity, cr -=(Pr k) = +~ l.
Then we obtain

X»=k(n»+ —n» )

(H) = Xa»(n»++ n» ) ,' g X(n»+——n„)—
k k

To find the equilibrium occupation numbers nk,
we have to minimize the thermodynamic potential,
0= (H) —TS —gN, where

S =—X[n» inn» +(I —n» ) ln(1 n» )], —

k = k/'k, k =
I k I, ~.'p «e the Pauli m««ccs, and

g & 0. Here, and below, we assume summation over
repeated spinor and vector indices. The electron-
electron scattering amplitude is proportional to
(k k ) ( o ~ o ), and we have included only terms
corresponding to the forward scattering (i.e., scatter-
ing does not change the moments of the electrons,
but can change their spina). The interaction (2) is to
be understood as an effective interaction between
quaslpsl'tlclcs, its spin dcpcndcncc being attributsblc
to exchange forces between electrons. 2

In the Hartree-Pock approximation, the average in-

teraction energy of the system equals

U= ——g X(k k)(X» X„),
k,k

k, cr

and f is the chemical potentiaL This gives

n» =f (a» —oA, )

&- —,g X(n»+ n»)-
) = ——,'g Jl If (a+a) -f (a —x)]l (a) da, (12)

wllcrc P(4) ls thc dc11sity of states 111 'thc llorIIlal
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and f (a) = Iexpi (a - ()iT] + I } ' is the Fermi func-
tion. From Eqs. (10) and (11) we find an equation
for A.,
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phase (X=O).
Equation (12) has a trivial solution, X =0, but it

can also have othcl solut1OQs 1f g ls sufflc1cntly laI'gc.
A nonzero value of A. means that the numbers of
particles with positive and negative helicity are not
equal, Rnd thus reflectional symmetry is violated.
The quasiparticle energy is given by

8(e)
~ae = = eg —ark = eg —X( a. k)

5fly~
{13)

where»= v(f). It has nonzero solutions only if
g vo P 3, 1.c., 1Q thc case of strong interaction and/or
narrow bands. It can be verified that for g vo & 3
there are two nontrivial solutions of equal magnitude
and opposite sign and that these solutions provide
smaller energy than the normal solution ) =0.

The broken symmetry can be restored at sufficient-

ly high temperatures. Assuming that X, T && ( and

a~ =k'/2m, Eq. (12) gives

l '=24~'(1-3/g») -~'T' .

The symmetry is restored at T & T„where

T,'=24m '('(I —3/g»)

The phase transition is of the second order. Equation
(16) is valid only if T, &( (, i.e., (1 —3/g») (& 1.
In general case one can expect T„X,and ( to be of
thc same ordcI' of magnitude.

Let us now discuss the physical effects which are
characteristic of the state with broken reflectional

symmetry. If a magnetic field B is applied to the sys-

tem, the spins of electrons align with the magnetic
field, and since ( o k) & 0, one could expect an elec-
tric current to flow in the direction parallel or an-
tiparallel to B. It will be shown, however, that such
an effect does Qot occur in thermal equilibrium.

%C shall assume that the quantization of electron
orbits in the magnetic field is unimportant. Then the
current density equals

%C see that for P &0, the band splits into two bands
with different helicities. The bottoms of these bands
are separated by 2X.. For small A. the two bands over-
lap, but for sufficiently large A. they can be separated
by a gap. If thc original band was half full, this cor-
responds to an insulating state. In general, the
broken-symmetric state can be metallic, insulating,
semiconducting, or semimetallic, depending on the
band structure and on the magnitude of A. , In the
case of small X Eqs. (12) and (13) were obtained in
Ref. 1.

At zero temperature, and for a parabolic band with

6g = k /2m, Eq. (12) reduces to

i /~ = —,
'

g ~,[(I + ~/()'" —(I —l /()'"j,

where e is the electron charge, v A. = V qEq is the
quasiparticle velocity,

bg=eg —) {cr k) —p, (cr B) (18)

sa ( —ba
P(bq) = f (e) de = —T ln 1+exp

dp, T
J

(20)

Although an electric current parallel to B is Qo longer
prohibited by reflectional symmetry, the symmetry-
breaking terms in Eq and vq conspire to make j
equal to zero. ' On the other hand, the (quasi-)
momentum density of electrons is not equal to zero:

g p,B
P =Tr gk f (by) = nkF—

a

Here thc last cqual1ty col'responds to thc case
eq = k /2m; A. , T &( $, n is the electron density, and
kr = (2m f)'t' is the Fermi momentum. There is no
contradiction between (19) and (21), because
vq = V~b~ & k/m. Since the total momentum of
electrons plus the lattice is conserved, we expect the
whole sample to recoil when the magnetic field is
turned on.

An electric current parallel to B does occur in a
number of nonequilibrium situations. In a time-
varying magnetic field, B(t) =Be '"', the Boltzmann
equation can bc wr1ttcn as

0nt na f (ba)
Bt 7'g

where nq is the electron distribution function and Sq
is given by Eq. (18) with B =B(t); nq and bq are spin
matrices. %c shall assume for simpbcity that the re-
laxation time 7A is a c number and that it depends
only on eq = k'/2m. On the left-hand side of Eq.
(22) we have neglected terms corresponding to the
magnetic part of thc LorcQtz fol'cc Rnd to thc sp1Q

precession around the direction of () k +pB). These
effects arc unrelated to thc alignment of o- with B
and of a with k and thus do not contribute to the
current in the approximation linear in X. and B. In-
tro duc1ng

is the quasiparticle energy, and p, is the electron mag-
netic moment. (Note that St, and vq are spin ma-
trices. ) Strictly speaking, k in Eq. (18) has to be re-
placed by k —eA/c, but the additional term does not
contribute to Eq. (17), since it can be transformed
away by shlftIng thc 011g1Q of the k. space. Intcglat-
ing by parts we obtain

j =e Tr X'V~&(bg) =0,
k

j =e Tr /vs (bg),
na = na f (ba) &«a (23)
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and assuming that ~ok && 1, we obtain

A

nk rkp o f'(eg —&o k)
dk

(24)

inE:

e 2 ~2„(O)nkj,=, , (E E„),„Tr $u;
M +t ~&m~&n

(28)

The current density is given by

j =e Tr Xvt, nl,
'

k

where we have assumed that 7 =const. It is easily
seen that the current (28) vanished for a parabolic
band. We therefore take

dB=ep Tr Xrg ~ &If (eg —X~ k) .
dt

(25)
eg= + —,Pk

1 4

2m 4! (29)

A, dv dBj = ——envF — p,
g dg dh

(26)

Integrating by parts and assuming that A., T « ( we
find

(30)

For a nondegenerate semiconductor with cov )& 1

and with the light flux parallel to the magnetic field,
Eqs. (28) and (29) give4

32 e2Pnlj=+.
C 'U T(iO

where up= k~/m is the Fermi velocity and dr/df
= (drq/deq) ~, t. Although Eq. (26) was derived for

A. « g, it should give a correct order of magnitude
of the current for A.

—f An e.xperimental observa-
tion of the sytnmetry-violating current (26) may turn
out to be very difficult, because of the presence of
much greater currents induced by a time-varying
magnetic field.

A current parallel to B can also occur in a constant
magnetic field in the presence of electromagnetic ra-
diation. Since light practically does not penetrate in
metals, we consider a semiconductor with co~ & co

& 5, where eo is the frequency of light, co~ is the plas-
ma frequency, and 8 is the gap between the valence
and conduction bands. We assume for simplicity that
free-charge carriers are present only in one of the
bands and that the bands of opposite helicity are
completely separated. The corresponding Boltzmann
equation is

~nk ~nk nk nk
(0)

+eE
8k

(27)

A

where ni, =
2 (I + o. ~ k)f (eg —jlla B). A nonzero

symmetry-violating contribution to the current ap-
pears only in the second order of perturbation theory

where n is the density of charge carriers, v T
= (8 T/rrm) '~' is the thermal velocity, and
I = c (E ),„/ 4m is the light intensity inside the sem-
iconductor. To estimate the current (30), we take

p —(m'5) ', where 5 —I eV is the bandwidth
n —10is cm 3, T -300 K, co -3 x 10' s ', I —10
W/cm' (such light intensities can be produced using
a laser), and 8 —104 G. This gives j—10 8 A/cm2.
Observationally, the symmetry-violating current can
be obscured by the "photon drag" of the charge car-
riers (Dember effect). To get around this difficulty,
one can use the fact that if B slowly (to avoid in-
duced currents) changes in time with a frequency coo,

then all reflectionally symmetric contributions to j
will change with frequency 2coo, while the frequency
of the current (30) will be coo.

Other symmetry-violating effects including electron
polarization in autoelectronic emission from metals
and the rotation of the plane of polarization of light.
These and other effects will be discussed elsewhere.
It is interesting that, although the symmetry violation
can be strong (h. —(), the associated physical effects
are extremely small. For this reason, spontaneous
violation of reflectional symmetry may have passed
unnoticed even in well-studied materials, and its ex-
perimental detection may prove to be a challenging
task for experimentalists.
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