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Anomalous masnetoresistance of thin metallic films
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Magnetoresistance observed recently in such thin metalhc films as Cu, Pt, Pd, and Pd-Au al-

loys are analyzed in terms of interplay between spin-orbit interactions and Coulomb interactions
in tao-dimensional localization theories.
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where gi —I, g2 =g3 =g4+ 2 F, T~ =Max( T,

I/2n r,), and F is the average matrix element of the
Coulomb interaction across the Fermi sphere, The
first term of the right-hand side of Eq. (1) is due to
usual localization but with a different sign from that
of the normal impurity scattering. " On the other
hand, the second and the third terms are because of
interactions, the former from particle-hole diffusion
processes and the latter from particle-particle dif-

After the scaling proposal by Abrahams et al. '~
there has been a great deal of interest in the trans-
port properties in two-dimensional systems. There
are several experiments to date for the meta11ic
films, 3 '0 which observed the logarithmic temperature
dependence characteristic of the weakly localized re-
gime. " Irrespective of this common feature in the
temperature dependence, the magnetoresistancc
(MR) behaves very differently from system to sys-
tem, and both positive and negative MR have been
obscrvcd.

In this Communication we will discuss these exper-
imental results by considering the effects of spin-
orbit scattering and Coulomb interactions. The
theoretical results of the MR for a case with only
spin-orbit scattering are already given elsewhere. '2

The effects of Coulomb interactions in the absence of
spin-orbit interactions have been examined" "and
shown to play important roles in the weekly localized
regime. In the presence of strong spin-orbit scatter-
ing, i.e., v„&& ~„where v„and v, arc the lifttimes.
due to spin-orbit scattering and the inelastic scatter-
ing, respectively, the Coulomb interactions play dif-
ferent roles and the results for the conductivity are
as follows:

fusion processes. It is noteworthy that in the
particle-hole diffusion only parallel spin electrons give
singular contributions, while electrons with antiparal-
lel spins contribute to the particle-particle dif-
fusion. By these facts the MR has the following
characteristic features. The MR in a perpendicular
field and for a field strength a =4sFreH—/mc » I/r,
and T, where e~ and 7 are the Fermi energy and the
rclaxatlon t1IYlc, rcsPect1velys 18 given by

~ '(H)= '(H) — '(0)=- ' -'+ inH . (2)2@k 2

The MR is positive. The saturation at a & I/r is
given by

ho (~) -—
2

ln —+Fine ~a h

4m eke T~

In a parallel field the MR ls also positive and 18

given by Eq. (3) once p, sH » ksT and g/r, If.
KFT » 1 and T & g/T we can expect anisotropy ln
the MR for the field region (4e~rr, e/mc) '

& H & g/ps', with a larger MR in the perpendicular
field. It is interesting to note that even a parallel
field suppI'csscs thc loallzation term, since it is duc to
the particle-particle diffusion proccsscs with antlparal-
lel spins. '2" '8

%e now analyze the following experimental data
a d.

a. Very metallic Cu with R~ ranging approximately
between 1 0/2 and 10'0/U. '~ The prefactor nq of
the logarithmic temperature dependence defined by

(4)

takes a value ar =2." The MR is observable only if
the field is applied perpendicularly, in which case it is
negative and its field dependence is nicely rcprescnt-
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ed by that of localization theory' '
e' 1 14(r'(H) =, eH Inar, +i' —+

2m' 2 a v,
t

(a) hd(H)

with empirical parameter v, and nH -0,75 +0.05.
Here P(Z) is the digamma function. This is a good
example of a system in the weakly localized regime
where both effects of localization and interactions are
seen, " The theoretical value' for uH =1+g2 —2g4—1 —

2
F is in perfect agreement with the experimen-

tal result since F is estimated to be I' -0.6.4 Spin-
orbit interactions hardly play any role, since Cu is not
a heavy metal and the films are clean.

b. Granular Cu film with R o ranging approximately
between 1020/U and 10 D/O. In a perpendicular
field the MR is positive for very weak fields and
turns negative at higher fields, H ) 1 T. The field
dependence at H ) 1 T is close to Eq. (4). In a
parallel field the MR behaves similarly to that in the
perpendicular orientation. However, the field at
which the MR changes sign is larger; i,e., H —7 T.
A moderate spin-orbit interaction due to the granu-
larity of these films is sufficient to explain the aniso-
tropy of the MR in the weak-field region. " In the
parallel field the saturation value of the MR is essen-
tially proportional to r,/r„as far as rJ'r„( 1."

One noticeable fact in this system is that the tem-
perature dependences, i.e., nr of Eq. (4), are almost
the same in H =0 and 7 T applied perpendicularly. '
This behavior can be understood if we assume that
the value of F in such granular films is reduced com-
pared to that in genuine metallic films. The lnT
dependence, then, comes from gi in Eq. (1). More-
over we argue that v, is weakly temperature depen-
dent, may be, because of a small amount of paramag-
netic impurities.

c. Pt film with R =7.6 kO/0. 9 The experimental
example of this system is not so metallic: ~Fr =1.7.
The prefactor of the temperature dependence, a T, is

nT =1.50 +0.30. The MR in a perpendicular field is
essentially negative with an unexplained positive
background. The maximum change of the conduc-
tivity is because of the small field, i.e., 1.4 x 10~
mho/0 compared to e'/2m' =1.2 x 10 s mho/O.
%e think that the spin-orbit interaction in this case is
stronger than in b, but not strong enough to
overwhelm the inelastic scatterings completely.

d. Pd film with R o asymptotically equal to several
k 0/o. '0 The slope of the temperature dependence is

nr =0.63 for a sample R (3 K) =20430/CI. The MR
is positive for both orientations of the field and ~nH~

is around unity. Films of alloys with Au (Pd, 42
wt. %; Au, 58 wt. %) show essentially the same
features; ur —0.8 and ~uH~ around unity. This is the
behavior expected when 7„((v „as is seen by Eq.
(3).

In summary we have analyzed the experimental

Hc

( b) hd(H)

0--

tc) M(H)
Hc Hs

FIG. 1. Schematic representations of the field dependence
and the anisotropy of the magnetoresistance when

AT (0/v, . (a) Very weak spin-orbit scattering, 7' (( Ts,.
Here v, and v „are lifetimes due to the inelastic and spin-
orbit scatterings, respectively. The characteristic field, H„
above which lnH behavior is expected is H, = mc/~Fr 7,e.

(b) Moderate strength of esp 7. Tsp The characteristic
field, H„ in the parallel configuration is H, -h/p, ~~,. (c)
Very strong spin-orbit scattering, T )0 esp.

data on thin metallic films in terms of the strength of
spin-orbit scattering in the presence of Coulomb in-
teractions. Typical field dependences and anisotropy
of the MR are schematically shown in Fig. 1.

As regards the temperature dependence one may
remark that there is a systematic decrease of n T as
one goes from light clean metal films (pure Cu films,
ar —2) to heavy granular ones (Pd and Pd-Au films,
ar (1). This change in nr correlates well with the
change in the behavior of the MR and confirms our
interpretations.
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