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A randomly interrupted strand model of a one-dimensional conductor is considered.

An exact analytical expression is obtained for the temperature-dependent ac mobility for a
finite segment drawn at random, taking into account the reflecting barriers at the two

open ends. The real part of mobility shows a broad resonance as a function of both fre-

quency and temperature, and vanishes quadratically in the dc limit. The frequency (tem-

perature) maximum shifts to higher values for higher temperatures (frequencies).

i

Spectral diffusion of an excitation in general, and
of a charged carrier in particular in disordered
one-dimensional conductors has received much at-
tention in recent times. ' Most theoretical treat-
ments of the problem envisage a model of the
disordered one-dimensional conductor as a chain of
sites, connected by bonds, between which the
charged carrier or the excitation hops incoherently
and instantaneously. Other lattices without closed
loops such as Bethe lattices, have also been con-
sidered. Only the nearest-neighbor elementary
hops are usually considered. Disorder is then in-

troduced by making the associated intersite jump
rates spatially random but symmetrical. The mo-

bility, or the diffusion constant, is then calculated

by solving a classical master equation governing
the random walk process. The low-frequency (or
the long-time) behavior turns out to be mathemati-
cally related to the low-lying eigenvalue spectrum
of the random cocAicient matrix, and much of the
analysis to date has gone into this limiting aspect
of the problem. ' Very recently, however, Odagaki
and Lax have obtained an exact expression for the
ac conductivity valid over the entire frequency
range for a nontrivial realization of randomness.
The latter corresponds to the so-called bond per-
colation model (BPM) in which the jump rates
have a nonzero probability of being strictly zero,
thus partitioning the chain into a class of disjoint
sets of connected sites (clusters) of random lengths.

The ac mobility of a finite cluster is then averaged
over the statistics of cluster size. A notable feature
of their treatment is that it takes into account ex-

actly the boundary conditions appropriate to the

open termination of the finite clusters. The results
are significantly different for the other simpler but
approximate choice of the boundary condition,
namely, the periodic-boundary condition. '

In this work, we present the exact solution of yet
another nontrivial model of one-dimensional disor-

dered conductors. This is the interrupted strand
model (ISM) and may be regarded as a continuum

analog of BPM, where the discrete sites and inter-

site bonds have been replaced by the segments of a
continuous strand. In our mesocopic treatment,
the stochastic motion of the carrier on a finite seg-
ment is described by the Langevin equation.
Again the point crucial to the treatment is that of
the termination of the segment. The boundary
conditions appropriate to the two fixed open ends

of a segment are those of the reflecting barriers.
These we have treated exactly by the method of im-

ages generalized to the case of the bivariate (posi-
tion and velocity) distribution function. In addi-
tion to the expected frequency dependence, the cal-
culated mobility also shows a pronounced tempera-
ture dependence explicitly. It must be noted in
this connection that in the earlier treatments, ' any
temperature dependence had to be introduced im-

plicitly through the phenomenological jurnp rates
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which were taken to be thermally activated with an
assumed distribution of barrier heights. In the fol-

lowing we give the main steps of our derivation.
Consider a segment of length L drawn at ran-

dom. The stochastic motion of the carrier is
described by the Langevin equation

X= yX—+f(t), O&X«

with the reflecting boundary condition at x =0 and
x =L. The friction coefHcient y and the concomi-
tant Gaussian white noise f (t) are related as

such that Wt, (x,u, t;xp, up, tp)dx du is the probabil-

ity of finding the particle in the phase-space ele-

ment dx du at time t, given that it was at the phase

point xp, up at time tp &t. Here u: (dx—ldt) is the
velocity. This will normally involve solving an

initial-boundary-value problem. However

Wt (x,u, t;xp, up, tp), subject to the above reflecting

boundary conditions can be readily expressed in

terms af W„(x,u, t;xp, up tp) the well-known fun-

damental solution of the Fokker-Planck equation
associated with Eq. (I) for an infinitely long seg-

ment. The expression for W„(x,u, t;xp up tp) is
too long to be reproduced here, but we should note
the normalization:

so as to be consistent with the condition of thermal
equilibrium with the substratum (bath) at tempera-
ture T. Here kB is the Boltzmann constant and m

is the mass of the carrier.
An important quantity in terms of which the

carrier mobility can readily be expressed is the con-
ditional probability density Wt (x,u, t;xp up tp)

+00 +00

f f W (x u, t'xp up tp, )dxdu=l

Now, we invoke the method of images and note
that every time the position is "reflected" at a
boundary, the velocity gets reversed in sign. We

get at once

(3)

+ 00 + 00

Wt(x, u, t;xp, up tp) P W (x+2nL u~tixp~up, tp)+ g W„(—x+2nL, —u, t;xpiup, tp} (4)

We see from Eqs. (3) and (4) that Wt (x,u, t;xp, up, tp) is correctly normalized:
L +00

dx f du Wz(x, u, t;xp, up, tp) —I

We note here that the infinite series on the right-hand side of Eq. (4) is absolutely, and uniformly convergent

and thus interchange of summation and integration (term-by-term integration of the series) is permitted.

Now, the frequency- (tp) and temperature- (T}dependent complex mobility pt, (co, T) for the segment of
length L is given by

pl. (pi, T)= f (u (t)u (0) ) re'"'dt
kBT

L L + 00 + 00

f dx f dxp f du dupuupWI(xiu~t'xp up. ,O)fr. (xp~up~O) ~

k T 0B 0 00 00

where q is the charge on the carrier. Here fr(xp up 0) is the initial position-velocity distribution function

which must be taken to be the equilibrium distribution function as the process is assumed to have been

ongoing from the infinitely remote past. Indeed, one verifies from Eq. (4) and the explicit farm of
W„(x,u, t;xp, up, tp) that

fg ( xupp, )0= lim W(x, u, O' xp, up~, tp )
'0

=—f„(up),1

(6)

(7)

where f (up) is the Maxwellian velocity distribution function at temperature T. Substituting from Eqs. (4)

and (7) into Eq. (6) and using the known expression for W„(x,u, t;xp, up, tp) from Ref. 5, we get, after some

reduction, for the real part of mobility
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Repg(0, 8) =8 dx
P~

—x
e(1 e —x)2 e

—n e e(x —i+e )cosQx
2

n =1,3,5,

(8a)

Q2 1 z —x=8 dx —dn e(x —&+e )

p ~ 4 4
n=&, 3, S, ... & &

(Sb)

P(L)= e
Lp

where Lp is the mean length. We note again that
the series in Eq. (8) is uniformly convergent as a
simple M test shows, and hence both the x integra-
tion as well as the L integration involved in

averaging can be performed term by term. Thus
the problem is reduced to quadrature.

The essential features of our exact solution are
all contained in Eq. (8). These features remain

(10)

where p„=q/my, the classical dc mobility on an
infinitely long segment. Here we have introduced
dimensionless frequency 0=co/y and temperature
e=ksT/my L The. physical mobility, of course,
is obtained by averaging pL (Q,e) over the proba-
bility distribution P(L) of lengths L, i.e.,

Re@(0,8)= I Reive& (Q, e)P(L)dL . (9)

The continuum analog of the uncorrelated inter-
ruptions of BPM will be

unaltered by the averaging over L so long as P(L)
has finite support. First, from Eq. (Sb), in the dc
limit (0=co/y~o) the mobility vanishes quadrati-

cally with frequency as also found by Odagaki and
Lax. From Eq. (8a) the mobility is also seen to
vanish in the high-frequency limit (0—+ ao ) as a
direct consequence of the Riemann-I. ebesgue
theorem. Physically, this is expected since in this
limit the inertia m of the particle dominates the
motion and the system behaves inductively. This
is not so in the case of the BPM where jumps are
taken to be instantaneous and inertial effects are
not incorporated. In point of fact, the treatments
based on the master rate equation' go over to the
diffusion equation in the continuum limit which
shows no inertial effects. On the contrary, Eq. (1)
describes an Ornstein-Uhlenbeck process and has
a ballistic regime dominated by inertia. In the lim-
it 8~0 (i.e., L~ ao, or T~O) for fixed 0, it fol-
lows from Eq. (8a) that mobility tends to its well-

known classical value
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FIG. 1. Plot of real part of normalized mobility RepL, (0,6)/p„against normalized frequency A=co/y for different
values of normalized temperature e=k~T/my L'.
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FIG. 2. Plot of real part of normalized mobility Repr, l Q, B)/p„against normalized temperature B=ks T/my L
for different values of normalized frequency A=co/y.

For this we have noted that
l/n =6/8. This is understandable

since in this limit the particle is unable to make an
excursion to the boundary, and thus interrogate the
boundary conditions, within the period 2m. /co of
the ac probe. In Figs. 1 and 2 we have plotted,
respectively, the frequency and the temperature
dependences of ReIzL, (Q,e) obtained from Eq. (Sb)
numerically. The series is indeed very rapidly con-
vergent. The plots show the frequency (tempera-
tures) maxima that shift to higher frequencies
(temperatures) for higher temperatures (frequen-
cies). This feature is absent in the BPM referred
to above. For 8, 0 &~ jI it is possible to approxi-
mate the exponent (x —l+e ") occurring on the
right-hand side of Eq. (8b) by x /2 and then in-
tegrate the series term by term. We get

2 1 0 —Q2/2e/n
9/2 5 e3/2n=1, 3,5, ... ~

(l2)

The series is again highly convergent and one may
simply retain the first term which shows the fre-
quency and temperature peaks as discussed above.

Finally, we expect the ISM, and hence our solu-
tion, to be relevant to such nondegenerate electron-
ic or even superionic conductors where the mobili-
ty is unactivated and the carriers are delocalized,
just as the BPM is relevant to the low-mobility
systems with activated hopping conduction via lo-
calized sites.
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