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We propose a continued-fraction technique which relates logarithmic derivatives of a
function defined by a second-order differential equation at a matching 'surface. We use
this method as a general scheme for finding the dispersion relation for surface excitations.
As a particular example we show that the dispersion relation for surface plasmons in an
inhomogeneous conductor arises naturally without assumptions about the dielectric func-
tion chosen, or the validity of a power-series solution near a singularity.

I. INTRODUCTION

Given the atomic nature of matter, an interface
between two phases must have nonzero thickness.
It then follows that the properties of a phase close
to an interface must be inhomogeneous to some ex-
tent, e.g., the conductivity of a liquid metal is like-
ly dependent on distance from the surface in some
transition zone at the surface. The study of sur-
face plasma waves at a dielectric inhomogeneous
conducting interface! ~3 has generated a novel
prediction. An analysis of the local behavior of
surface excitations leads to two branches in the
spectrum, whereas when the conductor is homo-
geneous only one branch can exist. The existence
of the second branch in the surface-plasmon
dispersion has been attributed to the interference
between two kinds of excitations at the interface.
Experimental verification for the existence of this
second branch has been obtained from studies of
attenuated total reflection from the liquid alloy
Hg-Cs.}

The theoretical interpretation of the attenuated
total reflection follows from an examination of the
solutions of Maxwell’s equations on either side of
the inhomogeneity, and the conditions that each
solution must satisfy at the interface. To be more
specific, the discontinuity “seen” by the photon is
due to the change in the dielectric properties of the
composite dielectric-conducting alloy system. It
has usually been assumed that the conductivity of
the alloy changes from its value at the surface to
its value in the bulk with an exponential depen-
dence on distance from the surface, where surface
refers to the plane of contact between the alloy and
the dielectric. The permittivity of the nonconduct-
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ing dielectric does not vary with distance from the
surface, and it has a value which is different from
that of the alloy at the surface. Elementary elec-
trodynamical arguments predict reflection at this
surface with changes in the field amplitudes
governed by the boundary conditions. Discontinui-
ties of waves across a surface produce dispersion
relations which, for this problem, will relate the
wave vector to the frequency of the field ampli-
tude.

A second-order differential equation describing
the magnetic field amplitudes provides a general
description of the system described, including the
relevant physics.> Following the introduction of a
specific form for the dependence of the dielectric
function on distance from the surface—an ex-
ponential in the case previously studied—this dif-
ferential equation is analyzed by means of locally
valid representations of the solutions on both sides
of the discontinuity. From the matching relations
for the electric and magnetic fields at the surface,
the relevant dispersion relation is obtained; for the
case cited this dispersion relation displays a new
branch in the plasmon spectrum.

The purpose of this report is to show that an al-
ternate means of representing the dispersion rela-
tion exists, namely as a continued fraction, and
that the dispersion relation with a second branch is
valid for more general choices of the spatial depen-
dence of the conductivity than that previously
studied. In addition, the continued-fraction repre-
sentation does not necessarily depend upon a local
analysis, it readily generates successive orders of
approximations to the dispersion relation, and it
may possess the rapid convergence which is
characteristic of resummation methods.
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The technique we propose follows from the ob-
servation that the surface-plasmon dispersion is de-
fined by matching a function and its derivative
across a discontinuity. By applying a well-known
method from the theory of ordinary differential
equations, a continued-fraction representation may
be established for the ratio of the solution to its
derivative.

II. BACKGROUND

Using Ince’s notation® a general linear second-
order differential equation,

y"(2)+p(2)y'(z2)+q(2)y(2)=0, (N
may obviously be reexpressed in the form
y(2)=Q(2)y'(z)+P(z)y"(2) (2)

for nonvanishing p(z) and ¢ (z). Differentiating (2)
once and solving for y'(z) yields
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In general, the recursion relation for the derivatives
of y(z) is

y"(2)=Q,(2)y " *V(2)+ P, L 1(2)y " +?(2) , (4a)

where
_ P,
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for integral n. To generate a continued-fraction
representation for the ratio of the function to its
derivative, rearrange Eq. (2) by dividing y'(z)
through:

y(2) ( y"(z)
———=0,(z)+P;(2) . (5)
yl( 2z) QO + P y " Z)
Clearly, the solution y (z) is related to its derivative
by ratios of higher derivatives. Using the recur-
sion relation for the derivative, this process may be
continued. That is, (3) may be used to form y'/y"
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which is then substituted into (5) to‘give
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This process, which may be continued to any order
by use of (4a) and (4b), generates the desired
continued-fraction representation for the quantity
y/y'. The convergence criteria for the nonter-
minating case are given by Ince.®

III. APPLICATION TO THE
SURFACE-PLASMON DISPERSION
RELATION

The prescription for finding electromagnetic sur-
face modes follows from matching conditions on
the y component of the magnetic field H, and the
x component of the electric field E, across an in-
homogeneous dielectric layer at the boundary
z=0.3 Specifically, H,(z) is given by the linear
second-order differential equation

H)' _Ee(izz-,’c%)H; (2)—K*DH,()=0, (7
and E, (z) is expressed in terms of the derivative of
Hy(z),

—i€e
welz,w)

E(2)= H(2) . (®)

The dielectric function E (z,w) will be different for
z<0and z>0. These functions will be designated
as EXz,0) and E"(z,w), respectively, as will the
solutions H;I(z), EXz), H;(z), and EX(z). The
matching conditions become

H,(0)=H}Y0), EX(0)=EO0) )
or, combining these conditions,

1 Hj0) 1 HY0)
() (H#)(0)  €%0) (H'(0)

(10

So, by finding the ratio H,(z)/H, (z) and matching
at z =0, the dispersion realtion is readily ex-
pressed by the continued-fraction technique of Sec.
IL

Before proceeding with this construction, it is
convenient to rewrite the basic differential equation
(7) by separating out the constant term in the
dielectric function. Since K*(z) has the form

K} (2)=k}(2)—a;él(z,0), j=LII
the required separation is

K} (2)=k{*(2) +gj(z,0) . (11)
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With this notation, the differential equation (7) has
the form

on either side of the inhomogerllceity. Now apply
the transformation Hj(z) =e fzuj(z) so that (12)

j\rr (el),(za ) j\r j bec
(Hy) (Z)——e’.—(z,‘a“:i;—(Hyj)(z)—ka(H;,')(z) omes
—g;(z,0)(H})(2)=0 (12)
,, (€)(z,0) | , (€)(z,0)
i — [2k;+——>— |u; ———k;—g; i(z)=0.
uj'(z) i+ 0 uj(z)+ Jz.00) ki —gj(z,0) |u;j(z)=0 (13)

At this point, the continued fraction may be constructed by manipulating into the form

(6’.)'(2,0)) K,
élz,w)

gi(z,0)— 2kj+—

—1
] 42+ diz,0)

(¢)(z,0)
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In terms of the function u;(z), the matching condition (10) becomes

1 ui(O) k[ 1 uiI(O)

0,0) u100)  €(0,0) €X0,0) un(0)  €%0,0) ’

(15a)

where the continued-fraction representation for u'(z) /u (z) is given entirely in terms of the coefficients of
the differential equation. Specializing this result to lowest order, we find

1 (€)(0,0) / (€)'(0,0) ki
2k L
€(0,0) | €(0,0) 1+ €(0,0) €(0,0)
1 (€")(0,0) (e)(0,0) kn
- L 2k 20— . (15b)
d0,0) | eX0,0) O / 1 00 | €X0,0)

Thus, a general dispersion relation is obtained in
continued-fraction form.

As a specific application of this result, the
lowest-order behavior of the given differential
equation which contains the specific choice of
dielectric fucntion

elz,0)=b(w)+s(w)e /4

will be rederived. In this case the field equation
for z >0 becomes™ "

n(n+Du"(n)+2an—u'(n)
—(a+gnu(n)=0, (16)

where n=s/be —2/6_1 and the parameters a, g, S,
and b are chosen to describe the physical system.
Equation (16) holds in the region z > 0; in the re-
gion z <0, (¢!)(z)=0 and the field equation corre-
spondingly simplifies. The general equation
reduces to

-
(H,)"(z)+kiH,(2)=0,

which is trivially solved so that only (16) need be
considered. Now, to lowest order in the continued
fraction,

2ay—1

Qo(m)=0o(n)= atqn

in the notation given above. Thus

1

u'(n) |
0— QO(T’)

u(n)

0
However, from the power-series analysis7’8 of the

solution of (16),

- 2 _ 2a
T g+a® g+a

u(n) 271 ’

so that
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u'(p) | _
u(n) |,

)

and the dispersion relation obtained is identical to
that found earlier.

IV. DISCUSSION

Several comments should be made about the
general dispersion relation (15a). From the method
of derivation, it is clear that an arbitrary €(z,)
may be used for modeling a physical system, pro-
vided the convergence criteria for the continued
fraction are met. Even failing to fulfill these con-
ditions, however, may not necessarily lead to disas-
ter, since the continued fraction may still provide a
useful asymptotic resummation which is an accu-
rate representation of the dispersion in the surface
excitations. In other words, the continued-fraction
representation removes the previous arbitrariness in
the choice of dielectric function. This is an impor-
tant consequence of our analysis, since the method

used by Guidotti, Lemberg, and Rice depends on
the explicit characteristics of the exponential form
of e(z).

Also, the usual power-series expansion technique
for solution of the differential equation has been
compressed, in this case, into the convenient form
above which will be more generally valid. That is,
the form derived above will be valid even in those
instances when the power-series expansion of the
solution may be slowly converging; such as when
z =0 is not close to one of the singularities of the
general differential equation. Finally, it is obvious
that systematic improvement in the orders of ex-
pansion is straightforward if a more accurate
dispersion relation then (15b) is desired.

ACKNOWLEGMENTS

This research was supported by a grant from the
National Science Foundation. We have also beni-
fited from the support of Materials Research at
The University of Chicago by the National Science
Foundation.

IH. L. Lemberg, S. A. Rice, and D. Guidotti, Phys.
Rev. B 10, 4079 (1974).

2D. Guidotti, S. A. Rice, and H. L. Lemberg, Solid
State Commun. 15, 113 (1974).

3. A. Rice, D. Guidotti, H. C. Lemberg, W. C. Mur-
phy, and A. N. Bloch, Advances in Chemical Physics,
edited by I. Prigogine and S. A. Rice (Wiley, New
York, 1974), Vol. 27, p. 543.

4The existence of multiple surface-wavelength (electros-
tatic) limit has been considered by several workers: A.
J. Bennett [Phys. Rev. B 1, 203 (1970)], A.D. Board-
man, B. V. Paranjape, and Y. O. Nakamura [Phys.
Status Solidi B 15, 347 (1976)], and P. J. Feibelman
[Phys. Rev. B 9, 5077 (1975)]. However, these studies
depend upon the validity of a continuum or hydro-
dynamic description of the surface charge distribution
and do not include retardation effects. The existence
of long-wavelength surface-plasmon modes (polari-
tons) is discussed by S. L. Cunningham, A. A. Mara-
dudin, and R. F. Wallis [Phys. Rev. B 10, 3342
(1974)], E. M. Conwell [Phys. Rev. B 11, 1508 (1975)],
and D. Guidotti, S. A. Rice, and H. L. Lemberg (in
Ref. 2). The prediction mentioned in the text con-

cerns this last reference in which the appearance of a
higher-lying mode is anticipated in the long-
wavelength limit. It should be noted that the existence
of this extra mode has been challenged in the work of
C. C. Kao and E. M. Conwell [Phys. Rev. B 14, 2464
(1976)] and E. M. Conwell [Phys. Rev. B 14, 5515
(1976); 11, 1508 (1975)]. The arguments advanced by
these workers rely upon the neglect of certain terms in
the local expansion used in the original analysis of the
field amplitudes equation, and upon a reinterpretation
of the experimental results advanced to confirm the
presence of this extra mode. A reexamination of the
original work in light of these objections is offered by
D. Guidotti and S. A. Rice [Phys. Rev. B 14, 5518
(1976); 18, 5583 (1978)].

SD. Guidotti and S. A. Rice, Chem. Phys. Lett. 46, 245
(1977).

SE. L. Ince, Ordinary Differential Equations (Dover,
New York, 1956), p. 178.

’D. Guidotti and S. A. Rice, Phys. Rev. B 14, 5518
(1976).

8D. Guidotti and S. A. Rice, Phys. Rev. B 18, 5883
(1978).



