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A scheme is devised which drastically reduces the number of iterations required to
reach self-consistency in electronic-structure calculations. This scheme is particularly

helpful in calculations for systems with large unit cells.

In a self-consistent electronic-structure calcula-
tion, the one-electron wave functions are obtained
from the Schrodinger equation

'I'+ v)it—'. k =E. i, 4. k

where the crystal potential V is constructed as the
sum of three components V;,„,VH, and V„,. V;,„

is the superposition of the potentials due to the
bare ions on the various atomic sites. V;,

„

is
screened by the Hartree potential V~ and a local
exchange-correlation potential V„,. They are ob-
tained from the electronic density p by

V' VH(r)= 4tre p(r), —

V„,(r)= Pe'(3ltr)' 'p—(r)' ',
where P can be constant or a function of p(r ).'

Starting with an initial guess V;„for Vtt + V„,
(V;,

„

is given), the electronic wave functions are
obtained from (1) and hence the electron density,

where f„kis the occupation factor and 2 is the
spin factor.

An output potential V«, is then constructed us-

ing (2) and (3). Self-consistency requires that this
procedure be repeated until V;„is equal to V«, .
Usually this is achieved by putting in a new V;„
constructed by mixing the old V;„and V,„,. In the
following let us concentrate on cases where the po-

tentials are represented in reciprocal space. Thus,

V,"„'"(6)=cV';„'(6)+(1—c)V,"„,(6) . (

Improved convcfgcncc 18 obtalncd 1f thc mixing
coefficient c is allowed to be a function of G. This
actually corresponds to screening the charge-
density oscillations by a Fermi-Thomas-type dielec-
tric function. However, for calculations with

large unit cells (e.g., surfaces, interfaces, defects,
frozen phonons) the low 6 components of the po-
tential converge very slowly and, furthermore, the
various Fourier components are found to be
strongly coupled so that the simple mixing scheme
above is no longer adequate. In the following we
will outline an alternate approach that proved to be
much more efficient. Self-consistency within 10
Ry is achieved in three to four iterations whereas
about ten iterations are required with Eq. (5) even

with very judicious choices for the mixing coeffi-
cients.

Suppose the input and output potentials for the
nth iteration are V;„and V,„„respectively. %C
want 5V;„such that

v;„+5v;„=v.„,+5v.„,.
5V,«can be expressed in terms of 5V;„using per-
turbation theory,

5p(6) = g X(G,G')5V;„(6'),

where 0, is the cell volume and

(nk Ie ' ' In'k&(n'k Ie'
' ' Ink)

nk n'i:
n'k nk
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This is a matrix version (i.e., local-field effects included) of the self-consistent-field dielectric function.
Transforming Eq. (2) to reciprocal space, we get

5VH(6)= 2 5p(6) .

g p
i (6—6')5p(6') .

Q I

Putting (7), (9), and (10) into (6), we get

Likewise, 5V„,(6) is obtained, assuming a constant P,
' 1/3

5V„,(G)=
—Pe 3

3
(10)

g e(6,6')5 V;„(6')= V,„,(6)—V;„(6),
G'

' 1/3
4ne2 - -, Pe

e(G,G') =5- -,— X(6,6')+
n, G' g p

i (6—6")X(G",G') .

Thus, given V«„and V;„in Eq. (11), we can ob-

tain 5V;„bya matrix inversion.
Since only the low Fourier components are

strongly coupled, it is only necessary to compute
e(G,G') for the first 50 or so reciprocal-lattice vec-
tors. The higher Fourier components can be dealt
with effectively using Eq. (5). Frequently, it is
enough to couple only those reciprocal-lattice vec-
tors which are perpendicular to the surface or in-
terface. Calculation of the e(G,G') matrix is not
time consuming. If the wave functions are
represented as plane waves, for a typical surface
calculation the computer time for calculating
e(G, G') is roughly one-tenth of the corresponding
time for one iteration. For a mixed basis represen-
tation, this rises to one-third of one iteration.
Moreover, since e(6,6') changes by less than 10%%uo

upon iteration, after the first or second iteration,
there is no need to recalculate e(G,G').

In Table I we illustrate the above iteration

scheme with an example from a nine-layer silver-

surface calculation. Note that the predicted values
for several components of V;„(n+1) do not lie be-

twmn V;„(n)and V,„,(n). This "overshooting" is
caused by the strong coupling between the various
long-wavelength Fourier components of the poten-
tial. The Fermi-Thomas dielectric function e(G)
which is always greater than one cannot "guess"
this overshooting. Table II shows an appli. cation
of the present scheme to a semiconductor surface,
namely, the GaAs (110) surface. Six layers of
GaAs and a vacuum region equivalent to five
layers in thickness are assumed in the unit cell. It
again indicates a very rapid achievement of self-
consistency. In this case, V(6) and e(G, G') are
complex because of the lack of inversion symmetry
in the unit cell. The imaginary part of e(G, G')
here does noI; represent the absorption term. In-
stead it provides a coupling between the real and
imaginary parts of the V(6)'s. It is again clear

TABLE I. Fourier components of V,'„"',V,'"„&,and V,'„"+"as predicted by the dielectric ma-
trix scheme and the resulting V,'"„,+"examples from a nine-layer Ag surface calculation. z is
the surface normal and the potentials are in rydbergs, First five components are shown.

(n&V,„, V(@+1)
Out

001
002
003
004
005

2.6627
—0.1600
—0.0608

0.0188
0.0076

2.6177
—0.1544
—0.0640

0.0189
0.0077

2.6472
—0.1504
—0.0653

0.0181
0.0084

2.6346
—0.1509
—0.0643

0.0194
0.0085
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TABLE II. Second example of fast achievement of self-consistency for the GaAs(110) surface (semiconductor). No-
tations and units are the same as in Table I. Relaxations for two surfaces in the unit cell are assumed different and
V(G)'s are complex in general. For each potential the first and the second subcolumns are the real and the imaginary
parts, respectively. Only five strongly coupled components are shown here.

y(n)
1ll

y(n +1)
1H

y(n+1)
out

y(n +2)
ill

y(n+2)
out

001 —0.0161 7.0463
002 0.4528 0.0094
003 —0.0102 0.1408
004 0.0596—0.0016
005 —0.0033 0.0071

—0.0323 7.0599
0.4507 0.0148

—0.0115 0.1462
0.0608 —0.0002

—0.0035 0.0093

—0.0183 7.0462
0.4514 0.0110

—0.0099 0.1430
0.0609—0.0012

—0.0030 0.0073

-0.0133 7.0464 -0.0171 7.0469
0.4511 0.0070 0.4521 0.0097

—0.0095 0.1411 —0.0103 0.1419
0.0603 —0.0022 0,0602—0.0015

—0.0029 0.0074 —0.0032 0.0074

—0 0170—7 0481
0.4515 0.0103

—0.0100 0.1419
0.0604—0.0014

—0.0030 0.0075

that the Fermi-Thomas e(G), real by definition,
cannot produce results as good as the dielectric
matrix approach. These examples illustrate that
the present scheme is valid for both metals and
semiconductors. Apphcations to frozen phonon
calculations for Nb and Mo, not presented here,
have also been successful.

To summarize, the main advantages of the
dielectric matrix screening method are as follows.

(1) Self-consistency for the electronic-structure
calculation ls achieved extremely fast and no ef-
forts to "guess" the mixing coefficients are neces-
sary.

(2) We obtain the didectric matrix for sophisti-
cated systems such as surfaces or interfaces, which
is an important physical quantity by itself and use-

ful for study of surface or interface responses (e.g.,

phonons, plasmons).
(3) The apparent instability in the self-consistent

iteration for these systems disappears. There is no
intrinsic instability for such systems; it is simply
that the dielectric matrix for them is different
from that of bulk materials.
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