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Observation of second-order quadrupole shift in Mossbauer spectrum
of amorphous YIG (yttrium iron garnet)
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A previously unsuspected quadrupole shift of the nuclear Zeeman lines in amorphous

magnets has been observed by
' Fe NIossbauer spectroscopy in speromagnetic amorphous

yttrium iron garnet at 4.2 K. The distinctive shift pattern is shown to arise theoretically

as a second-order perturbation of the Zeeman levels by the distribution of electric field

gradients in the amorphous state. It is observed to have a form which agrees quantita-

tively with theoretical expectation if the relative orientation of the electric-field-gradient
axes and the hyperfine-field direction at each iron site is random.

In iron-containing amorphous materials the Fe
Mossbauer spectrum at high temperatures consists
of a broad-line doublet. ' The shape and separa-
tion of the two lines are measures of the electric-
field-gradient (EFG) distribution at the iron-
nuclear sites via the quadrupole splitting (QS) of
the excited nuclear state involved in the Mossbauer
resonance. For temperatures below the spin-

ordering or spin-freezing temperature this doublet
evolves gradually into the familiar low-temperature
six-line Zeeman pattern for iron which results from
the hyperfine-field splitting of both the ground and

excited nuclear levels. At very low temperatures
for which the electronic magnetic moments ap-
proach their saturation values, it is a common dic-
tum of the amorphous Mossbauer literature that
the effects of the quadrupole energy are now con-

tained only in the linewidths and line shapes of the
six Mossbauer lines (where they combine with ad-

ditional broadening contributions from the distri-
bution of isomer shifts and of hyperfine fields to
determine the precise details of Mossbauer line

shape) and not in their positions. ' " In fact, a
confirmation of the absence of quadrupole contri-
butions to line position is usually interpreted as
evidence that the material under observation is tru-

ly amorphous rather than microcrystalline. In
fact, the vanishing of the first-order shift is only
dictated by the amorphous state in ferromagnets
where it implies a random orientation of EFG axes
with respect to a unique spin direction. In
speromagnets, for which the spin directions are
random, it is quite possible for local EFG to infiu-
ence local spin orientation (as it does in powders)
and produce a nonzero first-order shift.

In this paper we wish to establish that the low-

temperature quadrupole contributions to line posi-
tion vanish in amorphous materials, if at all, only
in a first-order perturbational approximation and
that an interesting shift pattern for the six
Mossbauer lines, with the symmetry —a, +b, —b,
+b, —b, +a, is predicted to be present in second
order. We also report the first measurement and
observation of such a shift, which has been ob-
tained at 4.2 K in amorphous speromagnetic

Y&Fesoi2, yttrium iron garnet (a-YIG). A vanish-

ing first-order shift combined with an experimen-
tally determined ratio a/b =3 confirms that local
EFG has negligible influence on local spin direc-
tion in speromagnetic a-YIG.

Theoretically, we calculate the eigenvalues of
both iron-nuclear Mossbauer levels in the combined
presence of an EFG and a spontaneous magnetic
field at a probe site in an amorphous environment.
In Fe the ground nuclear level 6 has nuclear spin

1

quantum number I= —, and is therefore perturbed

only by the hyperfine field H. Defining a coordi-
nate system XYZ, with H parallel to Z, enables us
to write the ground-state Hamiltonian

where g~ ——+ 0.1805 is the ground-state nuclear g
factor and p~ —5.050/ y 10 erg/0 js the nu-

clear magneton. It can be immediately diagonal-

ized to provide ground-state eigenvalues

The excited nuclear level E has I = —, and
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X cos8cosg cos8sing
I' = —sin8 cosP

Z sin8 cosP sin8 sing

—sine x
0 y

coso z
(3)

The quadrupole Hamiltonian in system x,y,z has
the familiar form

e Qq
4I (2I —1)

X [3~x —I(I+1)+ri(Ix ~y )] (4)

in which I = —,, q=V Ie where V is the EFG
component of largest magnitude,

I
V

I
&

I V„ I

&
I

V I, and ri=(V —Vs&)/V . In the absence

of a magnetic field the Hamiltonian H~ is readily
diagonalized to give QS eigenvalues

possesses a nuclear quadrupole moment Q which is
perturbed by the local EFG. We define this EFG
by its con1Ponents V~p Vyyp Vzz along its PrinciPal
axes x,y, z which are related to XFZ via polar an-

gles 8 and P in th~ form

plex conjugate. Perturbing Ho with H~ of (7) we

find, to second order, the energy levels

Ei ———( —,)h@+u —(e~e +f~f /2) lh@,

E2= —( —,)hs —u +(e*e f~f—l2)lhE,
t

E3 +(———, )hs —u (e—'e f'f—I2)IhE,

E4 +(—,—)hs+u+ (e*e+f'f /2)lh~,

%'herc AE =gEp~H. 14

The allowed Mossbauer transitions are, in order
of increasing energy, those between Ez of Eq. (2)
and E4, E3, E2, and those between E] and E3, Ez,
Ei. It follows that the six Mossbauer lines

L 1
—L6 have, to second order in quadrupole in-

teractions, the mean energies

I i =5 giiJ~H +—&u &
—0

L ~=5 g2i ~H —&u &+b—

E~ =+3q'(1+q'/3)'", (5)

in which q'=e Qq/12. If we now introduce the
field energy —gEp&Hz, where' gE ———0.1030,
then the total Hamiltonian for level E becomes

L3 ——5 g3p~H ——&u &
—b,

L4=~+g3pwH —&u &+&

I 5 ——5+g2pNH —&u &
—b,

L6 5+gip~H —+ & u &+0

(12)

and in general requires numerical diagonalization.
If, however, Hg can be treated as a perturbation of
Ho= gEp~HIz, —then we can proceed as follows,
working in the coordinate system XFZ for which

the zeroth-order field energy is already diagonal.
Transforming (4) to the system XYZ via the

transformation (3) we obtain

in which 5 is the isomer shift,

gi =(-, )
I gz I

+( , )gG-
g2 =(-, )(

I gz I +gG»

u = &«'e+f'f/2)l
I gz I en H &

b =
& (e~e f*f/2) /

I g@ I
p—&H & .

If (8,$) are random we find from (8)—(10) that
&u &=0 and

(14)

u =(—,)(3c2—I+rp cos2$)q',

e =v 3( —3sc +risc cos2$+iris sin2$)q',

f=(&3/2)[3s +ri(1+c )cos2$

+ 2i ric sin2$]q', (10)

1n %'h1ch c =cosa, s =sine, and lnd1catcs a com-

leading, from (13) and (14), to the expectation that
Q =36, b =6' %'hC1C

e=&E~&l5 IgE I pNH .

The Fe Mossbauer absorption spectra were ob-
tained in a standard transmission geometry with a
conventional constant acceleration spectrometer us-
ing a Co in Pd source. The absorber was a mosa-
ic of small platclets. The room temperature
Mossbauer spectrum of vitreous YIG has estab-
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lished the existence of a broad quadrupole distribu-
tion with peak-to-peak splitting of 1.12 mm/s
(which corresponds to E~ ——0.56 mm/s) and an
isomer shift of 0.31 mm/s (with respect to Fe
metal). The spectrum of vitreous YIG at 4.2 K
displays a well-resolved six-line pattern with good
statistics and many channels per peak (Fig. 1).
The average hyperfine field is 450 kOe and the iso-
mer shift is 0.446 mm/s, indicating that iron is in

the Fe + valence state. '

The 4.2 K a-YIG spectrum of Fig. 1 consists of
well-separated lines, each of which is close to sym-
metric about its peak. This line shape symmetry is
expected for a dense random packed structure like
a-YIG because of the approximately equal' distri-
butions of positive and negative EFG. It is there-
fore not difficult to determine the line positions I.;
(i =1—6) with considerable accuracy by least-
squares fitting the data with symmetric line func-
tions. Even a fit with pure Lorentzians [Fig. 1(a)],
although poor as regards line shape, is quite suffi-
cient to establish the predicted QS shifts. Howev-

er, we also give a quantitatiue fit to the data [Fig.
1(b)] which is obtained by using six independent
lines, each a symmetric Gaussian distribution of
natural width (FWHM=0. 2 mm/s) Lorentzian
lines. Line positions L; in mm/s for the pure
Lorentzian and Lorentz-broadened Gaussian least-
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FIG. 1. Experimental Fe Mossbauer spectrum of
a-YIG taken at 4.2 K. In the upper curve the data have
been fitted theoretically by a computer least-squares pro-
cedure to a model using six independent Lorentzians. In
the lower curve the same experimental data are least-
squares fitted to a model of six independent I.orentz-
broadened symmetric Gaussian lines.

squares fit to the data are given in Table I.
Using Eqs. (12) the isomer shift 5 can be unam-

1

biguously determined from ( —,)(L i+L2+L5+L6)
and is 0.261 (0.261) mm/s, corresponding to a shift
of 0.446 (0.446) mm/s with respect to iron metal at
room temperature (where the pure-Lorentz-
determined values are in parentheses). From

(Li+L6), (L2+L5), and (Li+L4, ) we can now

verify that (u ) =0 to within a rms accuracy of
0.004 mm/s. Even if (8,$) and q' are uncorrelat-

ed, this cancellation does not necessarily imply that
(8,$) are random variables. From (8) it could

equally well imply that (q') =0. The former op-
tion is confirmed only by pursuing the second-
order shifts. The field energy p&H follows from

(L4+L5 L2 L—&) /2—(g2+gi) and is 29.579
(29.530) mmis corresponding to a mean hyperfine
field of 450.4 (449.7) kOe. With these data we can
now compute directly the line positions in the ab-
sence of a quadrupole shift (i.e., as L i

——5

g,pNH, —. . ., L6 5+ging&——H). These are shown

in Table I in the columns marked L;(c) The.
difference &&.; between the observed L;(0) and the
calculated QS=0 line positions L; (c) now give the
experimental determination of the QS shifts; these
are also given in Table I. From these we compute
the mean observed second-order shift parameter
e=(—„)g, I

&L;
~

and find a value a=0.024
(0.031) mm/s. Normalizing with respect to this
value of e we find a measured second-order shift
pattern

—2.8, +1.1,—0.8, +1.3, —1.0, +2.7
( —3.3, +0.8, —0.6, +1.0.—0.9, +3.3),

which is to be compared with the expected theoret-
ical prediction for random (8,$) of —3, + 1,—1,
+ 1,—1,+3. The anticipated pattern is unmistak-

ably present even in the crude Lorentz fit (in

parentheses). Final confirmation of the effect is
obtained from its amplitude e since the latter is
directly rdated to the hyperfine field H and the
quadrupole energy (EP via Eq. (16), and (E&)
can be determined directly from the measured E
spectrum obtained in the room temperature QS
data of Ref. 6; it is 0.383 (mm/s) . The difference
between (E~ ) and (E~) is simply a measure of
the width of the EFG distribution. Substitution
into Eq. (16) now predicts the amplitude of the ex-

pected second-order shift to be 0.025 mm/s and is
to be compared with the experimental amplitude of
0.024 (0.031) mm/s.

In conclusion, we have predicted and measured
the quadrupole energy line shifts in the six-line
Mossbauer spectrum of Fe in a magnetically or-



BRIEF REPORTS

TABLE I. Observed Zeeman line positions L;(0) for YIG at 4.2 K are compared with
those calculated L;(c) in the absence of a quadrupole. The difference AL; =L;(0)—L&(c) is a
measure of the Zeeman quadrupole shift. All measurements are in mm/s.

Pure Lorentz
L;(0) L;(c)

Lorentz-broadened Gaussian

L;(0) L;(c)

L„.

L2
L3
L4
Ls
L6

—7.069
—3.901
—0.904

1.439
4.422
7.593

—6.968
—3.926
—0.885

1.407
4.449
7.490

—0.101
+ 0.025
—0.019
+ 0.032
—0.027
+ 0.103

—7.047
—3.907
—0.907

1A40
4.430
7.567

—6.980
—3.934
—0.887

1.408
4.455
7.502

—0.067
+ 0.027
—0.020
+ 0.032
—0.025
+ 0.066

dered amorphous material. They arise in the
second order of perturbation theory and should be
present quite generally in amorphous iron-contain-

ing ferromagnets or speromagnets. They contain
important information concerning the influence of

local EFG on local hyperfine-field direction and
specifically for speromagnetic amorphous YIG es-
tablish that local crystal-field anisotropy has a
negligible influence on spin orientation in this ma-
terial.
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