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Orientation-dependent extended fine structure in electron-energy-loss spectra

M. M. Disko, O. L. Krivanek, and P. Rez*
Department of Physics and Center for Solid State Science, Arizona State University,

Tempe, Arizona 85287
(Received 2 November 1981)

The near-neighbor atomic environment in graphite is probed in two perpendicular
directions by the selective analysis of the energy-loss spectra of 120-kV electrons scattered
through such angles that the momentum exchange vector q lies parallel and perpendicu-
lar to the graphite c axis. The radial distribution functions calculated from the extended
fine structure above the carbon E edge show excellent agreement with the established

atomic coordinates of graphite.

dial vector to the ith atom and the polarization
vector e~ (for EXAFS) or the momentum-transfer
vector q (EXELFS).

The directional sensitivity arises from the term
cos e;. In the x-ray case it is governed by the po-
larization vector of the incident radiation. In the
EXELFS case it is determined' by the
momentum-transfer vector q, given by q =k' —k,
where ko and k~ are the wave vectors of the fast
electron before and after the collision, respectively.
For a particular primary energy Eo and energy loss
E, k' and hence q are determined by the scattering
angle 8 [see Fig. 1(a)]. Thus different directions in
a crystal may be probed simply by selecting elec-
trons that have been scattered through different an-
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Graphite samples were prepared by peeling
flakes from a large piece of graphite with adhesive
tape. The flakes were separated from the tape in
acetone, washed and centrifuged in order to re-
move any remaining adhesive, resuspended in
acetone, and transferred onto 3-mm Cu grids
covered with a holey C film. Energy-loss spectra
were recorded from a 8-pm diameter graphite re-
gion over a hole in the supporting film using a
magnetic sector energy analyzer (Gatan 607) at-
tached to a Philips EM400 electron microscope
equipped with a La86 gun, operating at a primary
beam energy Eo 120 keV. The th——ickness of the
graphite flake was estimated as 300 k from a con-
vergent beam diffraction pattern' and also low-
loss spectra.

Following Leapman and Silcox' who studied
the orientation dependence of the 1s~+* and
ls~cr* transitions in hexagonal boron nitride and

Orientation-dependent studies of the extended x-

ray absorption fine structure (EXAFS) have been
used as a direction-sensitive structural probe of
2H-WSeq and 1T-TaS2 layered compounds, ' single
crystals of Zn, GeS, ZnF, and Br adsorbed on
graphite. ' The directional sensitivity is due to the
fact that the ejected photoelectron wave is aligned
with the polarization vector e~ of the incident x
rays. In this paper we show that extended
electron-energy-loss fine-structure (EXELFS) stud-
ies can be similarly made direction sensitive by
selectively analyzing electrons that have been scat-
tered through such angles that the corresponding
momentum-transfer vector q is aligned with a par-
ticular crystallographic direction.

Within the dipole approximation appropriate to
this case, ' the EXELFS expression describing the
extended fine structure due to the backscattering of
the ejected photoelectron from near-neighbor atoms
is identical to the EXAFS one "'.

X sin [2kR; +5t (k) ]cos co; .

Here k is the magnitude of the ejected core-
electron wave vector, A;(k) the backscattering am-

plitude from the i'th atom, R; the distance to the
ith atom from the excited atom, 0.; the mean-

square amplitude of displacement of the ith atom
from the excited atom, A, the mean-free path of the
ejected electron, 5;(k) the ejected electron wave
phase shift due to both the excited atom and to the
ith backscatterer, and co; the angle between the ra-

—2k'o,'. ztt,@-.
kg(k) =

2 e 'e
R;
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FIG. 1. Schematics illustrating the experimental

geometry used for the q l
lc case where 8=1.4 mrad (a),

the spread in q due to the spread in 8 (68=+P=+0.6
mrad) (b), and the variation of

l
k ~l with energy loss E

(c).

graphite by electron-energy-loss spectroscopy, we
orientated the graphite crystal with the c axis at
45' to the incident beam [Fig. 1(a)], and adjusted
the beam deflection so that the spectrometer col-
lected electrons scattered through 8= 1.4 mrad (to
gtve q I

lc} or 8= —14 mrad (to give qic). The an-

gular spread of the incident and collected beams
was determined by the finite sizes of the illumina-
tion and collection apertures (each equal to +0.3
mrad). Taking these factors into account, the
spectrometer sampled electrons scattered into a
cone with semiangle P=0.6 mrad centered at
8=1.4 mrad. This relatively large angular range
was necessary in order to obtain sufficiently good
statistics for EXEI FS analysis in a reasonable
time. Thus the cos directional distribution [Eq.
(1}]is broadened by Aced' as shown in Fig. 1(b). A
further complicating factor involves the magnitude

E/2Eo}
I "ol whteh e"anges w'th

energy loss E. This leads to a directional deviation
b,ro" [Fig. 1(c)]. It can be compensated for by ad-

justing the scattering angle 0 continuously as one
scans through the energy loss. However, since the
cos co; distribution is a broad one, we have not per-
formed this adjustment, preferring instead to op-
timize the scattering geometry so that qic or q l

lc
at 50 eV above the carbon E-edge threshold in ord-
er to simply maximize the qlc or q l lc signal in
each case. The combined effects of the finite-
aperture size and variation of k ~ with E produce a
total directional deviation hm of approximately
+ 15' for E=330 eV, and —5', + 25' for E=500
eV (k=7 A ').
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FIG. 2. Background-stripped carbon E-edges for qlc
and q l lc in graphite (a), and the extended electron
energy-loss fine structure kg{k) isolated from the gra-
phite spectra (b). The nonoscillatory background was
removed using a polynomial fit between 2.78 and 10.14
A. ' for q l lc, and between 3.22 and 9.39 A ' for q J.c.

Figure 2(a) shows the graphite carbon K-edge
energy-loss spectra for the two geometries acquired
sequentially into 500 channels for 0.6 sec/channel.
The K-edge signal has been isolated by fitting a
function of the form AE ' to the raw data be-
tween 180 and 280 eV, and then subtracting the ex-
trapolated background from the edge region. ' We
note that the m and 0.* final-state peaks exhibit
the directional dependence described previously, '

but that in our case a small m peak remains when

qic due to the fimte spread of q.
The procedure used for EXEI.FS analysis of the

carbon spectra was similar to that developed for
EXAFS Fourier analysis. ' ' Figure 2(b} shows
the extended fine structure kX(k) extracted from
each spectrum tn Fig. 2(a). In both cases kX(k)
was obtained by mapping the raw energy-loss spec-
trum %(E}onto a k grid after selection of the en-

ergy loss E, that corresponds to the ejected core-
electron wave number k=0, i.e.,
k= [2m (E E,)]'/, t—he smooth background was
removed by fitting a fifth-degree polynomial P(k)
to %(k), and finally normalizing with the smooth
background X(k)=[%(k)—P(k)]/P(k). Prior to
Fourier analysis of X(k), the actual It-space inter-
val analyzed was selected using a square window
convoluted with a narrow Gaussian. ' A lower k
limit must be sct in order to avoid sampling the
near-edge region where valence transition and
plasmon scattering effects predominate. An upper
k limit 1S Qcccssary because of thc incrcaslQg noise
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content at large energies above thc edge. Phase-
shift effects were reduced by introducing a factor
e 's(k), where 5(k) =5,b(k) + 5b,(k), 5,b(k) is the
phase shift due to the ionized atom, and 5b,(k) the
phase shift experienced when the ejected electron
wave is backscattered from a neighboring atom. '

Theoretical values for 5(k) tabulated by Teo and
Lee were used for this analysis. ' The Fourier
transform actually taken to obtain the EXELFS
"radial distribution function" (RDF) was:

I 1 I I 1

IRx
E(R)

" k~(k) e id(k)e2—ikRdk
k I A(k)

where the factor k is introduced in order to cancel
a 1/k factor in the EXELFS formula. No attempt
has been made to remove amplitude effects due to
A (k) in Eq. (2).

The k=0 energy loss E, was chosen in each case

by requiring that ~E(R)
~

and Im[E(R)] peak at the
same radial distance R.' The actual procedure
used involved varying E, and selecting that value

where the strongest peaks in ~E(R)
~

and Im[E(R)]
coincide. This method yielded E,=292 eV for the

qlc case, and 294 eV for q ~
~c, or just past the o'*

peak in each case.
A carbon atom in graphite has 3 nearest neigh-

bors at R I
——1A2 A, 6 atoms at Rz ——2.42 A., and 3

at R I ——2.85 A within the same (002) plane, while

between the planes there are 0 or 2 neighbors at
R I

——C/2= 3.35 A, 12 or 6 at R I ——3.64 L, 0 or 12

at R I ——4.13 A, and 12 or 6 at 4.40 k Thus the

function ~F(R)
~

is expected to peak at 1.42 A for
qlc, and at 3.64 A for q~ ~c. The functions ~F(R)~
obtained from the kX(k) data in Fig. 2(b) are

shown in Fig. 3, and agree quite well with the ex-

pected result. Both R I for qlc and RI for q ~
~c

were accurate to within the real-space sampling
interval of 0.14 A. Peaks at R & 3 A for q ~

~c are
sensitive to the choice of k;„and k,„ in Eq. (2),
but there is no reasonable choice of km;„and km„
that causes the peak near 1.4 A. to dominate that
near 3.7 A. The substantial ~F(R}~ values near 1 4
A for q ~

~c and 3.7 A for qlc reflect the combined

effects of finite-aperture size, variation of
~
ki

~

with E, and the broadly peaked cos m; factor that
gives the directional selectivity of this technique.

It is interesting to note that the magnitude of
the 3.7-A. peak in the q ~

~c RDF was about one-

half the magnitude of the 1.4-A peak in the q J.c
RDF, despite the fact that the average number of
nearest neighbors at 3.6 A is 3 times that at 1.4 A.
This is because the EXELFS oscillation for the

08=3.6-A peak are more strongly attenuated due to

2-
l 1 l I t I

7 8 9 IO
R (A)

FIG. 3. Magnitudes of the Fouriel' transforms of the
kg(k) data shown in Fig. 2(b). Maxima in ~F(R)

~

oc-
curred near 3.6 4 for q ~

~c and 1 4 A. for qlc as predict-
ed.
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—2R, /A,
the e ' and e ' terms in Eq. (1}. The
second term gives a larger attenuation of the
R =3.6-A. peak because o; between the graphite
planes is -0.01 A, while cr; for the nearest neigh-
bors within. the planes is 0.003 A .

Similar to the EXAFS case, orientation-
dependent EXELFS may become a powerful
method for structural analysis. The main Hmita-

tion is that in order to obtain directional sensitivi-

ty, only a small fraction of the inelastically scat-
tered electrons can at present be accepted for
analysis. In the future, however, more sohpisticat-
ed detector designs should make possible a rapid
analysis of several directions in a crystal simultane-

ously by collecting electrons scattered though dif-
ferent angles and energies all at the same time.
We also note that electrons can usually be chan-
neled through a crystal so that the electron-wave
intensity peaks only at particular crystal sites. '

By a ready extension of the present method it
should therefore bc possible to analyze the near-
Ilelg11bol e11v11'onIllent of a partlcQlar type of ato111

located at a particular crystal site in a particular
crystallographic direction.
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