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Relaxation time of lattice waves for a nonideal lattice has been obtained by using the
T-matrix Green's-function method. The T matrix for a defect which affects both the
mass and the short-range interaction is taken into consideration for analyzing the irredu-

cible representations of the point group pertaining to the perturbation. The resonances
from F&„, A l~, and E~ symmetry modes are discussed in detail for anion as well as cation
impurities (Tl+, Br, I, Cs+, Na+, and Ag+) in KC1 crystals. A breathing-shell model

with second-neighbor interactions is employed for a description of the host-lattice dynam-

ics. Maxima are observed in the relative variation of ECI (T)/CI (T) with the tempera-

ture in all the systems except KC1:Na. These maxima are related to the appearance of
quasilocal vibrations in the phonon spectrum of the host crystal due to introduction of
impurities. The dips occuring in thermal conductivity curves appear to be due to the spe-

cialized modes of vibrations. In both studies the resonances appear at nearly the same

frequencies in all the systems. The resonance frequencies observed by optical techniques
are compared with the values obtained in the present work. The variation in force-

constant changes does not affect the position of maxima in relaxation-rates-versus-

frequency curves. The nature of the sodium impurity in KC1 is discussed in detail.
Three-phonon processes having different temperature dependences in the various tempera-

ture ranges have been used in the computations of thermal conductivity. The present

theory shows reasonably good agreement with the experimental measurements on specific
heat as well as with those on thermal conductivity of KC1 doped with monovalent impur-

ities.

I. INTRODUCTION

A small concentration of substitutional impuri-
ties in a crystalline lattice may give rise to excep-
tional (local, gap, or resonance) vibrational modes.
A wide variety of experimental techniques, viz. , the
impurity-induced infrared absorption, Raman spec-
troscopy, neutron scattering, Mossbauer effect,
measurement of superconducting transition tem-

peratures, electrical resistivity, specific-heat mea-

surements, and thermal conductivity, have been
used to study the exceptional vibrational modes in
ionic crystals, in polar and homopolar semicon-
ductors and in metals. The application of several
powerful methods such as optical and inelastic
neutron scattering measurements are restricted to
particular classes of materials and involve only
particular kinds of symmetry modes, whereas the
thermal conductivity and the specific-heat studies
are universally applicable and involve all kinds of
vibrational modes. We, therefore, present in this
paper the systematic theoretical study of thermal

conductivity and specific heat of KC1 doped with
different monovalent point defects using the
Green's-function approach.

In diatomic systems such as ionic crystals or po-
lar semiconductors the substitutional impurities oc-
cupy sites of cubic symmetry. If the substitutional
impurity atom is light enough compared to the
mass of the host-lattice atom, or if it is coupled
much more strongly to the neighboring atoms than
the atom it replaces, one observes the localized or
bound states. The frequencies of the localized
states lie outside the range of the allowed phonon
frequencies of the host crystal. The displacement
amplitudes of the atoms in these modes decay fas-
ter than exponentially with increasing distance
from the impurity site. If there exists a gap in the
frequency spectrum of the crystal, the localized vi-
bration modes appearing in the gap region are
named as gap modes. There is, in fact, no funda-
mental distinction between a localized mode and a
gap mode.

Unlike localized and gap modes, resonance
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modes are not true normal modes of a perturbed
harmonic crystal. If the impurity ion is very heavy
and/or is coupled very weakly to the surrounding
host crystal, then the behavior of its motion in
low-frequency normal mode vibrations of the per-
turbed crystal can be viewed as follows: At very
low frequencies, due to infinitesimal translation in-

variance, the impurity ion vibrates in phase with
its neighbors in the host crystal. However, as the
frequency of normal modes increases because of its
large mass and/or weak binding to the crystal, it
begins to lag more and more behind its neighbors,
until a frequency is reached at which it begins to
vibrate 180' out of phase with the surrounding lat-
tice in a kind of local optical vibration mode. The
frequency at which this occurs is called the fre-

quency of a resonance mode. The mean-square vi-

bration amplitude of the impurity atom as a func-
tion of its frequency is sharply peaked at the reso-
nance mode frequency, but the mode is not spatial-

ly localized in the way that a high-frequency local-
ized mode or gap mode is. In addition, because
the frequency of a resonance mode falls in the
range where the density of vibrational frequencies
of the host crystal is nonzero, it can decay into the
continuum of band modes and acquires a width in

this manner.
The scattering of phonons due to point defects

has been found in several interesting ways. As was
first shown by Pomeranchuk, ' the introduction of
atoms whose mass differs from that of the host
atoms leads to a phonon-scattering cross section
which varies as the fourth power of the phonon
frequency (Rayleigh scattering of phonons). This
result was later calculated in more detail by Kle-
mens, who also showed that impurity atoms
bound by force constants which differ from those
of the host lattice also resulted in a Rayleigh-type
scattering cross section. The mass-difference-only
case has been well verified by earlier workers. The
most complete study of the isotope efFect has been
described by Berman and Brock. The effect of the
force-constant changes on the thermal conductivity
still needs some more study.

The case of point defects bound by different
force constants is a much more complicated one.
As has been shown by many studies in alkali-
halide lattices, such defects usually produce a
resonant scattering of phonons. One must distin-
guish at least three different resonant effects. As
was first shown by Pohl, defects composed of
molecules have a resonant interaction with pho-
nons. This resonant interaction has been found to

be quite complicated, ' with the molecules under-

going free rotations, librations, tunneling, etc., in
the solid. In general, this resonant interaction ar-
ises from the presence of an internal structure of
the molecule.

A second type of resonant behavior comes from
point defects which are composed of single atoms
or ions which are so small that their equilibrium
site is off-center. Such defects have been studied

by Pohl and co-workers. Neither the molecules
nor the off-center defects will be discussed in this
paper.

Our attention is on monatomic point defects of
the sort discussed by Klemens in the paper
described above. From the time of the paper by
Walker and Pohl, with the accompanying theoreti-
cal model of Wagner, such defects have been
known to perturb the lattice spectrum in a
resonant manner. These resonant states have, in

fact, come to be expected almost as a general rule.
They manifest themselves as "dips" in the
thermal-conductivity-versus-temperature plots,
with the dip generally occurring near or above the
peak in conductivity curve. Baumann and Pohl'
and Caldwell and Klein" have reported a broad
spectrum of results in alkali halides. Harrington
and Walker' and Chau and Klein' have studied
these defects in fluorite-type crystals and silver
halides, respectively. On the theoretical side, the
study of such lattice resonances has been a
theorist's playground; a review of the theoretical
work has been given by Klein. ' Recently, many
other workers' ' have considered the problem
theoretically.

Information on such resonances can be obtained
from optical properties, elastic properties,
and more recently from specific-heat studies.
The specific heat represents the state of phonons in
nonmetallic crystals and is thus an important ther-
mal property. Introduction of crystal imperfec-
tions alters the phonon state, and thus the specific
heat is changed to some extent. The measurements
of the specific heat of KC1 doped with monatomic
impurities have been done by Karlsson and by
Kvavadze and August. ' In previous publica-
tions we have studied theoretically the specific heat
of KC1:Tl+ (Ref. 26) and KC1:Cs+, I (Ref. 29)
using a model that includes the effects of mass
change at the impurity site and the nearest-
neighbor longitudinal force-constant change. Here
we have used a better lattice-dynamical model
(breathing-shell model) for calculating the Green's
functions, whereas previously the Green's functions
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were calculated in Hardy's deformation dipole
model. We have applied the theory for six impuri-
ties: Tl+, Ag+, Cs+, Na+, I, and Br in KC1.
The force-constant changes obtained in the case of
specific heat are used to calculate the point-defect
scattering in thermal conductivity. The relaxation
time for the point-defect scattering due to substitu-
tional impurities is calculated using the Green's-
function method. The Green's function is configu-
rationally averaged in the low concentration limit.
The resonance frequencies computed in the study
of calorimetric methods are compared with the res-
onance frequencies obtained for the same systems
through infrared-absorption and Raman
scattering results. ' In some of the systems the
resonances could not be observed through optical
methods, and therefore, the study of these impurity
vibrations by specific-heat methods, supplemented
by thermal conductivity studies is of great interest.

The structure of the paper is as follows: In Sec.
II A wc obtain the relaxation time in terms of
self-energy for the imperfect crystal; in Sec. II 8
the change in specific heat in terms of phase shift
is bricAy discussed, and Sec. II C describes the per-
turbation model used in the present work. Sections
III A, III 8, and III C show the computation of
Green's functions, specific heat, and thermal con-
ductivity, respectively. The main conclusions are
drawn in Sec. IV.

II. THEGRY

A. Relaxation time for imperfect crystal

The time-independent equation of motion for a
pure crystal can be written in the matrix form as

where ~ is the frequency of the normal mode and
P(co ), the perturbation matrix caused by the de-
fects, is explicitly given by

P(~') = ~—M "WMM "+M "SeM

Here the new mass and force-constant matrices for
the imperfect crystal have been denoted by
Mo+51/f and ~C' +64, respectively, and Q ts the
corresponding vector for the imperfect lattice.

The Green's function for the perturbed crystal is
defined by

G(z) =[Lo+P(co ) zI]—
with I as a unit matrix and z =~ +2imq+ as the
complex squared frequency in the limit re+ ~0. It
can also bc cxpicsscd as

G (z) =Go(z) —Go(z)P(co )G(z),

where the Green's function for the perfect crystal is
dcflincd by

Go(z) =(Lo—zI)

After performing a statistical average over all
configurations containing the same number of de-
fects, the configurationally averaged Green's func-
tion (G }has the form

(G}=G,—G,X(G},
where the self-energy X is translationally invariant
like 60. After going over the normal-mode
fcpicscntation, thc pcrturbcd Giccn s function 1s

given by

(G(k)}=G {k)—G (k)X(k)(G(k)},

2
Lotto=~ 4o

where Lo=Mo 'c @oMo '~ is the mass-reduced
force-constant matrix of the pure 1atticc and Mo is
the mass matrix. gp is a vector that is related to
the usual atomic displacement u by

(G(k) }=[co (k,s)+X(k)—zI]

Thus the real and imaginary parts of the self-

energy X(k) determine the shifts and the widths of
the perturbed phonons, respectively.

If we neglect the possibility of the interaction of
neighboring defects, the first-order self-energy is
glvcn by

I.q is a 3Ã X 3X matrix for a Bravais lattice, and X
is the number of nuclei in the crystal.

For a crystal containing a finite concentration of
defects that have different masses and different in-

teractions with its neighbors than the host atoms,
the equation of motion may be written as

[Lo+P(co )]/=co P,

X) ——et [I—cGot]

where c is the fractional concentration of defects in
the crystal. The t is the T matrix for a crystal
containing onc dcfcct and 1s g1vcn by

t (z) =p(co')[I+g (z)p (co')]

Here the p(co ) and g (z) are the perturbation and
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Green's-function Inatrices that lie in the subspace
of a defect 3b && 3b (b is the total number of atoms
directly disturbed by the presence of a single defect
including the defect site itself}. For the lowest or-
der of concentration of defects Eq. (11) may further
be approximated by

then be written as

(k,s
~
t(z)

~
k,s)

= g I„(k,s ivm)t„(z)(vm'ik, s),

(17}
Xi ——ct . (13)

In order to obtain the relaxation time of lattice
waves of imperfect crystal we write the above-
obtained self-energy in the normal-modc represen-
tation as

where I is the degeneracy of the IR v, and the
contribution of one matrix element of the t matrix
in the vth IR is given by

t„=(v,m
~

t
~
v, m') .

X(k,s)=cX(k,s'it
i
k,s) .

S
(14) B. Speci6c heat

In general, there is a mixing of phonon polariza-
tion branches, i.e., for a phonon of a particular po-
larization s, the phonons are scattered into all the
polarization branches. However, in some simple
cases such as that for a low concentration of de-
fects in thc mass-defect model or in thc plcscncc of
force-constant changes when k lies along certain
symmetry directions, branch mixing does not oc-
cur. In cubic crystals, these symmetry directions
are the well-known (0,0,$), (O, g, g), and (g, g, g)
directions where g=k/k, „Thus in th. e presence
of trivial nondiagonal terms in X(k,s), we may
write for one polarization branch

X(k,s)=(k,s
i
t

i
k,s) .

In the lowest order of concentration of defects, the
inverse of the relaxation time, as limited by the de-
fect phonon scattering, is just the imaginary part of
the self-energy with the normal-mode wave vector
k and polarization s:

(rk ', }d,t———cm'co(k, s)

&(Im(k, s
~

t(z)
~
k,s) .

Usually the dimensions of the perturbation ma-
trix are very large and it is difficult to evaluate the
self-energy X(k,s). The problem may be simplified
immensely if the perturbation has some symmetry.
In that case, the usc of the symmetry coordinates,
i.e., the coefficients of the atomic displacements of
the symmetrized linear combinations of these coor-
dinates in the impurity space, block-diagonalizcs
the matrices p(co ) and g (z) simultaneously. I.et

~
v, m ) denote the normalized symmetry coordi-

nate transforming according to the first row of the
irreducible representation (IR) v. The index m
varies from 1 to m„, where m„ is the number of
times the IR v occurs in p(co ). The T matrix may

The lattice specific heat of a solid per g mol is
given by

CL, (T)=
~ J co N(co)csch (fuu/2ksT)dco,

0

(19)

where E(co) is the number of phonon states lying
in the interval between ~ and co+des as des~0.
The introduction of impurities changes the phonon
density of states, and hence the lattice specific heat
is also changed. If we assume that the perturba-
tion is symmetric, the density of states can be writ-
ten as the sum of the contributions from all the
IR's. The change in specific hea' due to impurities
can thus be written as

ECL (T)=gb CL ( T),

where b, CL (T) is the change in specific heat in the
IR v.

The phase shifts 5 in solid-state scattering
theory is defined as

ImD, (z)
tan6 =—

ReD (z)

Here D„(z)=
~
I+g, (z)p„(co )

~

is called the reso-
nance denominator in the IR v. g (z) and p (co )
are the Green's functions and perturbation matrices
projected onto the subspace of IR v.

In the low concentration limit the vibrational
properties can be understood only by knowing the
behavior of a single impurity. One may thus deter-
mine the change in specific heat due to a single de-
fect and multiply it by the number of defects
present in the crystal.

The change in specific heat after integrating Eq.
(19) once by parts and introducing the phase shifts
turns out to be
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ECL, (T)=—g I 5„cocsch (Bto)[1—Ba) coth(Bc')]dao, (22)

where X is the number of atoms per g mol and
8 =Pi/2k' T.

J'-, (k,s) =e„'(+
i
k,s},

J2 (k,s)= e„(+
i
k,s)e„(+

i
k,s)

(28a)

C. Perturbation model

%C assume that the defect changes the mass at
the impurity site and the nearest-neighbor central
force constant with the OI, point-group symmetry.
The matrix p(ra ) is of dimension 21X21. The
IR's occurring in this problem are F]„,A]~, and

Ez. The nearest-neighbor perturbation model for a
substitutional ion in a NaC1-type lattice has been
described in previous work. '"' ' The expressions
for the various IR of the T matrix are

tg (z)= 2XAI1+2AX[g4 (z)+2g5 (z)]I

tx (z)= —,XA, I1+2AX[g4 (z) —g5+-(z)]I ', (24)

k+ EN

DF (z) —(X/2)'"

(25)

DF (z) =1 ECO g(—+'2A(g( +Xg3 —2X g2 )

+ + +—2eco AX(g)g3 —g2 ) .

Here X=M+ /M ~ denotes the host-crystal mass
ratio, A,= b,f/M+ denotes the change in the
nearest-neighbor central force constant in units of
squared frequency, and b,f=f' fo, where fo and-
f' represent the force constants of pure and impure
crystals, respectively. The mass-change parameter
e is equal to (M' —M)/M, where M' is the mass of
the impurity. The five Green's-function matrix ele-
ments are given by

where the summation is to be taken over all the
wave vectors lying in the first Brillouin zone, and

J& (k i s) for p = 1 —5 represents the following ex-

pressions:

X cos(2m.r o/4 },
J3 (k,s) =e„(+

i
k,s)cos (2mrok„),

J;"(k,s) =e„'(+
i
k, s)sin'(2mr, k„), (28d)

J& (k,s)= e»(+
i
k,s)e,(+

i
k,s)

)& sin(2mrok» }sin(2mrok, } . (28e)

Here ro is the nearest-neighbor distance and

e„(+
i
k,s} is the xth Cartesian component of the

polarization vector of the lattice wave (k,s).
The present perturbation model will give a

meaningful picture of the physical situation of the
defect problem if we are able to specify satisfac-
torily the force-constant change parameter l(,. As
the noncentral force-constant changes are, in gen-

eral, an order of magnitude smaller than the cen-
tral ones, in the alkali halides we assume A,

' (non-

central force-constant change) to be equal to be
zero. The presumption that the noncentral corn-

ponent of the force constant is much smaller than
the central component, particularly in KC1, is sup-

ported by the fact that the value of the elastic con-
stant c~ is not much different from that of c&2 in
KCI.~ Also, it has been observed that the assump-
tion ll, '=0 works well in reproducing the frequency
of the low-lying resonant mode with a reasonable
changed central force constant. The frequencies of
a resonance mode in the IR v are determined by

ReD, (z) =0 .

A. Green's functions

In order to calculate the complex-valued Green's
functions, a dctailcd knowledge of thc frcqucncics
and polarization vectors of the normal modes of
the pure crystal should be known. The necessary
data were supplied by Dochy, in which he has
used the breathing-shell model of Schroder '

by
taking into account the short-range forces up to
second-nearest neighbors. A staggcrcd-bin averag-

III. NUMERICAL CGMPUTATIONS AND RESULTS



25 SPECIFIC HEAT AND THERMAL CONDUCTIVITY OF. . . 4235

ing procedure is followed in the machine computa-
tion of the Green's functions given by Eq. (27).
The Green's function is separated into real and im-

aginary parts as

J„+-(k,s)
gp (co )= +in++�.

J„+(k-,s)5(co~, —co ) . (30)
s k

To carry out actual integration for the real part of
the Green's functions at low frequencies, the
method of Sievers has been followed. We may
write

, S(co')—S(co)
Regs co = dco'

p i2 2
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0
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where

S(co) corn+co
ln

2CO COm —CO

(31) FIG. 1. Comparison between the experimental results

(points) for ACI. (T)ICL,{T) and the theoretical curves

(full) for KCl:Tl for A, = —0.195)&10 sec '.

S(co)=—ggJ& (k,s)5(co-„,—co),
s

and co is the maximum frequency of the lattice.
The imaginary part in terms of S(co) is given by

Img„+-(co )=(m/2co)S(co) . (32)

The whole frequency range is divided into 60
equal bins. The value of the increment in the fre-

quency is chosen in such a way that the spurious
fluctuations appearing in the Green's functions are
minimized. The value 0.5 in the units of the bin
width is found to be appropriate in the present cal-
culations.

temperature. Therefore, the quantity
b, CI.(T)/Cl. (T) has in the presence of resonance a
maximum whose position and amplitude are deter-
mined completely by the change induced in the
phonon spectrum due to introduction of the heavy

impurity into the crystal.
The temperature dependence of ECI (T)/Cl. (T)

for the three KC1:Tl systems is shown in Fig. 1.
The nature of the curve is the same for all the

0.8

0.7

B. Specific heat

Figures 1 —4 summarize the experimental as
well as theoretical results on KC1:Tl, KC1:Br,
KC1:Cs(I), and KC1:Ag(Na), respectively. The in-
fluence of quasilocal oscillations (resonances) on
the specific heat with heavy impurity atoms is seen
most clearly in the temperature dependence of the
quantity ACI. (T)/CL (T), where ECL (T) is the
change in the phonon specific heats of the impure
system and of the initial KCl, and CL (T) is the
specific heat of pure KC1. For the impurity atom
and its nearest perturbing neighbors, which oscil-
late in a relatively narrow interval of frequencies
about the resonance frequency, the transition to the
classical limit of the specific heat occurs at a lower

0.6

o& 05

~ 0.4

Cl

0.3

0.2

0.1

I

5
T (K)

I I

10 20 30

FIG. 2. Comparison between the experimental results
(points) for ECL, {T)/CL, (T) and the theoretical curves

for KCl:Br. k= —0.348)& 10
A, = —0.256& 10 sec; ——— A, = —0.428& 10
s'ec
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0.06-

I—
o U0

O

0.04-

0.02-

I I

0.03 0.06 0.09 0.1 2

T/8

FIG. 3. Comparison between the experimental results
{points) for ACL, (T)/CI (T) and the theoretical curves
for KC1 containing substitutional impurities I, Cs+.
Curves A and C show mass-defect calculations for I
and Cs+ impurities, respectively; B and D show compu-
tations for k= —0.581)&10 sec for the I impurity
and A = —0.475)& 10 sec for the Cs+ impurity,
respectively.

three systems. Within the limits of experimental
accuracy the curves have a clearly pronounced
maximum at about T =9 K. Thus the introduc-
tion of heavy Tl impurity atoms into the KC1 lat-
tice leads to the appearance of quasilocal oscilla-
tion in the phonon spectrum of impure system, a
fact manifested by an appreciable deviation of the
specific heat of KC1:Tl from that of KC1. The
same behavior is observed in all other impurity

0.03-

o D
~ 0.02-

a
0.01-

0.02 0.04 0.06 0.08 0.10 0.1 2

T/8

FIG. 4. Comparison between the experimental results
{points) for ECI.{T)/Cq{ T) and the theoretical curves
for KC1 containing substitutional impurities Ag+, Na+.
Curves A and C show computations for
A, = —1.795)(10 sec for the Ag+ impurity and
A, = —1.656)& 10 sec for the Na+ impurity, respec-
tively. Curve 8 shows mass-defect calculations for the
Ag+ impurity.

systems except in KC1:Na, which will be discussed
later.

It is natural to inquire as to what degree the ob-
served change in the specific heat can be quantita-
tively described within the framework of the
present theoretical concepts. In Figs. 1 —4 we see
the comparison of our theoretical computations
with experiment with consideration of the change
in mass and changes in longitudinal force constants
of the interaction between the impurity and the
matrix atom. A consistent theory that takes into
account the change in the force constants was

developed by Agrawal and co-
workers. 2 ' '~ 6 According to their results,
the deformation of the phonon spectrum of the
crystal with impurity is influenced not only by the
mass difference, a fact accounted for in the isotopic
approximation, but also by the change in the force
constants of the interaction. The weaker the heavy

impurity atom is bound in the crystal, the lower
the energy and sharper the distribution of quasilo-
cal oscillation. If the force constants are very
abruptly decreased, resonances can also occur for a
light impurity. With this model we see a satisfac-
tory agreement with experiment.

The impurity contribution to the specific heat
has been calculated using Eq. (22) by varying the
parameter A, . A number of values for A, were tried
to obtain a good fit with the experimental results.
A unique value of k has been obtained to explain
the experimental data successfully in every system.
The obtained values of force-constant changes in
the different impurity-host systems are given in
Table I. The resonance frequencies from specific-
heat results as well as from other defect-induced vi-
brational properties are also reported in this table.
The frequencies calculated by us earlier in the cases
of KC1:Tl and KC1:Cs(I) are shown in squared
brackets. The present calculations are relatively
more reliable since we have used an improved
lattice-dynamical model for the calculation of
Green's functions.

The behavior of KC1:Na considerably differs
from that of other systems. Even at 30 K the
curve does not reach its maximum value in the
variation of ECI (T)ICL (T) versus temperature.
Since sodium is a light impurity, we can assume
that the efIIect is mainly induced by isolated impur-
ities vibrating with relatively high frequency, as the
resonance frequency at 44 cm ' corresponding to
vibration of Na+-Cl -Na+ complexes3i, 32,47,4s

cannot provide a continuous growth of the function

up to 30 K. A detailed study by Jaswal shows
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TABLE I. Values of fitted force-constant changes and resonance frequencies. The values
in brackets are obtained by Baumann and Pohl (Ref. 10).

Impurity A, (106 sec ')
Specific

heat

a), (cm ')
Thermal

conductivity
Other
results

Br

—0.581

—0.475
-1.656
—1.795

42 [41.7]

56.8[56A]

49.2[48.5]
95,5
53

43(45)

85(82,86)

57(57)

96(77,144)
53(53,69)

39,'51+8,
125,'157, '74,
86, 122, 135
110+10,'108.8,
117.5'
127, 198," 170"
69.4'

175
92" 852'
38 61 45 m 30n

'Reference 59.
Reference 25.

'Reference 35; peaks in A]g symmetry in Raman scattering experiments.
Reference 35; peaks in Eg symmetry in Raman scattering experiments.

'Reference 25.
References 50 and 60. The authors have observed strong peaks in far-infrared absorption

experiments at these frequencies, but they concluded that peaks were not due to resonances.
~Reference 36; the peak in Ez(A]g) symmetry in Raman scattering experiments. The far-
infrared absorption experiments show similar behavior as that observed in the case of Br
"A. I. Stekhavov and M. B. Eliashberg, Fix. Tverd. Tela (Leningrad) a 3397 (1964) [Sov.
Phys. —Solid State 6 2718 (1965)];Raman scattering peak in A &g and E~ symmetry.
'Reference 8.
'Reference 62; the peak in Eg symmetry in Raman scattering results.
"Reference 28.
'Reference 30; infrared absorption peak.

Reference 36; strong peak in Eg symmetry in Raman scattering experiments.
"Reference 28.

that the far-infrared absorption is connected with

the appearance of Na+ —Cl —Na+ complexes
oriented in [100] direction. He has considered the
vibrations of a quasimolecule consisting of this
complex and its nearest neighbors, and has found
the force constant of the Na+ —Cl linkage from
the condition that the minimum eigenfrequency of
such a system is 44 cm. ' Jaswal has used the
so-obtained force constant for the determination of
the frequency of isolated Na+-impurity vibrations,
which appeared to be at 77.7 cm. ' The resonance
frequency associated with the isolated Na+ impuri-
ties has not been observed by optical methods.
%e have obtained a large softening of the force
constant in fitting the experimental specific-heat
results and a resonant frequency at 95.3 cm.
This result seems to be reasonable.

The one-phonon density of states of KCl is quite
large ' at 77.7 cm ', and the resulting impurity-

induced infrared absorption would be much more
than that due to the single-defect resonance mode.
It would, thcrcfofc, bc diNcult to obscrvc thc
single-defect resonance mode experimentally.
Thus, even though there is a large softening of the
short-range force constant when a Na+ ion is sub-
stituted for K+ in KC1, the softening does not
show up in the single-defect experiments because of
the large impurity-induced absorption due to the
one-phonon density of states of Kcl.

As pointed out in the Introduction, the contribu-
tion of resonance modes to the lattice part of the
specific heat is quite important. Out of the three
IR's involved in the calculations, the resonances
occur only in the Ei„ irreducible representation in
which the impurity atom moves. Also, in almost
all the systems the maximum contribution to the
specific heat comes from this IR.

Recently, Gupta and Singh have calculated the
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change in specific heat due to Br and I impuri-
ties in KC1, showing good agreement with the ex-

periment. Their calculations seem to be in error.
They have shown the percentage contribution to
the changed specific heats due to I' 1&, F2g, and F2„
modes also, whereas these modes will appear only
when they consider the effect of b,B (in their no-

tation). But they have neglected the effect of ~ in

their computations. Also, the shape of their curve
in mass-defect calculation in the case of KCl:I
creates doubt about the reliability of their cal'cula-

tions.

eters. Here, we are interested mainly in seeing the
efFect of point defects on the thermal conductivity

by using a realistic model; hence we will use the
approach which involves minimum number of ad-

justablc parameters.
Equation (34} is written as

—1 —1 —1
(co, T)=r~„„+rd,c, (35a}

where
~padre

is the rdaxation time for the pure KC1
and is given by

—1 —1 —1 —1
+pure +b ++iso +mph

C. Thermal conductivity

For calculating the thermal conductivity of
doped KCl we have used the expressions derived

by Callaway

hulks T

K= I r(coT) dc0 .
0 ks T~

(
4"fks T

)2

In this expression U is the sound velocity, co& is the
Debye frequency, and r, (co, T) is the combined pho-
non relaxation time due to difFerent scattering
mechanisms. Within the framework of this model
one writes the total relaxation time as a sum of re-

ciprocal relaxation times for the separate scattering
processes:

r, '(co, T)=Jr, '(co, T) .

There are as many ~; as there are individual

scattering mechanisms. Equation (34) is an
equivalent way of stating that one adds scattering
rates.

Two central approximations underlying Eq. (33)
are the assumption of isotropy, in converting a
conductivity tensor to a conductivity scalar, and
the introduction of Debye density of states, in con-
verting a summation over phonon states into an in-

tegral. It has been examined experimentally that
there is no anisotropy in the thermal conductivity
of KC1. However, there is lack of legitimacy in us-

ing an "average" sound velocity since it is known
that this quantity is anisotropic. To take account
of this and other 1ssucs pr'oper'ly onc should bleak
the conductivity integral up into a longitudinal
part and a transverse part, as was done by Hol-
land and by us earlier in many cases, Such
an analysis of a two-mode conduction is desirable,
but this approach contains many adjustable param-

&der'=(r~, ) '+«z } '+(rF,„} '

Herc 'Tb 1s boUndary scattering, T; ls thc relaxa-
tion time for the scattering due to natural isotopes
of K and Cl in pure KC1, v.

3ph is the three-phonon
scRttcring mechanism givc11 by

—1 —1 —1

3ph M +~+ (36}

~here ~ denotes normal processes and k denotes
umklapp processes. With every relaxation time
there is at least one adjustable parameter. All
these constants are related in principle to funda-
mental constants and properties of the crystal, they
are difFicult to calculate and often give a poor fit to
the data of the pure crystal; for this reason the
constants are treated here as parameters that are
not very closely related to the theoretical values.
The expressions for difFerent relaxation times are
given in Table II and the values of the fitted
parameters are shown in Table III.

The thermal conductivity of KCl doped with
Tl+, Br, and Ag+ was measured by Baumann
and Pohl, ' and Walker and Pohl measured the
thermal conductivity of KCl containing I and
Na+ impurities. We have no knowledge of the ex-
perimental results on the thermal conductivity of
KC1 doped with Cs+.

The numerical analysis of the measured data is
done by using Eq. (33). We have used the values
of the fitted force-constant changes in specific-heat
studies for explaining the thermal conductivity
results. Other values of the force constants were
also tried for the fitting of experimental data. The
computations mere also performed in the mass-
defect approximation only. Our results are com-
pared with experiment in Figs. 5 —9. It is ob-
served that reasonably good agreement is found for
explaining the thermal conductivity results with
the force-constant changes used in specific-heat cal-
culat1ons.
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TABLE II. Inverse relaxation times used in analyzing the thermal conductivity.

82 ——88~, 83——5082, and 84 ——1108'.

Type of
scattering

Symbol Expressions Temperature
range {K)

Boundary
Isotope, etc.
Three-phonon

—1

—1
+lSO

~3ph

U/I.
Aa4

8&Cd T
82co T
83co T
84co T

All temperatures
All temperatures

T&8
8& T &50

50& T& 110
T&110

The experimental curves for KC1:Tl+ and Br
are qualitatively similar. The dip produced by Tl+
ions lies at a lower temperature, and the dip caused

by Br ions occurs at a relatively higher tempera-
ture. This is expected from the theory also, since
Tl+ is greater in mass than Br . However, in the
case of T1C1 the mass of Tl+ is much larger than
the K+ ion it replaces in KC1. In addition, the
lattice constant of 3.83 A. for T1C1 is considerably

greater than KC1, but the lattice constant of KBr
is not greatly different from that of KCl. This
shows that in the case of KC1:Tl+ the contribution

due to mass defects dominates over the contribu-
tion due to force-constant changes. We have seen

that the impurity contributions to the specific heat
due to the force constant in this system is small as
was also observed earlier, whereas in the case of
KC1:Br the contribution due to force-constant
changes is comparatively larger.

In Fig. 10 we plotted the relaxation rates for
thallium impurity (3.6X10' cm ) for
A.= —0.195g 10 sec . The contributions due to
different IR's are also shown separately. If we

change the value of X we see a small effect on the
height and width of the peak of 1/~d, but its posi-
tion does not shift appreciably from 43 cm
which is the value of the resonance frequency in

TABLE III. Values of parameters used in the
analysis of thermal conductivity.

Ei„symmetry modes. Baumann and Pohl' ob-

tained the resonance frequency at 45 cm ' using
an empirical relation between frequency and tem-

perature [Eq. (2) of their paper]. However, as they

have discussed, the accuracy of the empirical rela-

tion is within 20%,' therefore, the value of the reso-

nance frequency obtained by us is quite reasonable.
We get a sharp peak at the resonance frequency if
we plot a graph between reduced relaxation rate

(rd '/co ) and frequency. Other experimental infor-

mation about thc resonance ffcqucncy is given by
Kahan and Sievers, who got a weak line in in-

frared absorption measurements at about 39 cm
Our specific-heat results give the same resonance
frequency as obtained in thermal conductivity cal-
culations.

The impurity bromine is roughly t~ice as heavy

as the host ion for which it is substituted. Figure
11 shows the plot of the reduced relaxation rates
for the lowest concentration of bromine (4)& 10'
cm ) and for two values of A,. From the figure

2.0-
E

i.0-

—0.5-

0.2-

'Reference 10.

230 K'
2.45&10' cm sec
0.41 cm
8.7 )&10 sec
4.8 )&10 secdeg

G.i
0 2

I I I I

i0 20 50 F00

FIG. 5. Thermal conductivity of KC1:Tl. Solid
curves show present calculations for A, = —0.195&10
sec and points are experimental results for the Tl+
concentrations as {y x x, 3.6x 10"cm-';
7X10"cm-', see, 8.6@10"cm-'.



4240 M. D. TI%ARI

2Q

i.o

E o5

0.2

5.0-

2.0-

E 10-

0.5-

0.1 0.2-

0.05
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FIG. 6. Thermal conductivity of KC1:Br. Solid
curves show present calculations for A, = —0.348 & 10
sec and points are experimental results for Br con-

centrations as OOO, 4)&10' cm; , 1.6&(10
cm '; DQ6, 8.08&(10 cm

FIG. 8. Thermal conductivity of KC1:Na. Solid
curves are present calculations for
~= —1.656)& 10 sec and points are experimental
results for Na+ concentrations: OO, 2.3)&10' crn ';
0 0 0, pure KC1 for A, =0.

we see that there is a small eA'ect on the curve due
to force-constant changes, but the position of the
peak is not shifted appreciably from 85 cm '. The
entire curve is higher than that for thallium. In
this system we also see the major contribution of
odd configuration vibrational modes. Impurity-
induced far-infrared absorption was measured by
Weber and Siebert and by Ward and Timusk.
These authors detected a strong peak at 108.8
cm ' and a weak peak at 117.5 cm '. They con-
cluded, however, that this peak is not caused by a
resonant mode but rather by a maximum in the
density of states of the host at this frequency (108.8
cm '), whereas Karo and Hardy ' observed large
density of states at 77.7 cm '. Recent Raman
scattering measurements ' on KC1 and KBr mixed
crystals have revealed no structure below 120

cm '. Our results on specific heat give only
changes in the density of states, so we cannot ex-

plain these results in the same way as Weber and
Siebert and Ward and Timusk have done. We be-
lieve that the dip in the thermal conductivity as
well as the enhancement in specific heat in
KCl:Br ' is due to lattice resonance modes.

In the case of KC1:I the dip in thermal conduc-
tivity is not so pronounced as that for Tl+ and
Br impurities. However, as the concentration of
impurities increases we see a dip around 25 K.
We expect similar results in the KC1:Cs+ system.
The masses of I and Cs+ are approximately 4
times as heavy as the ions they substitute in KCl.
The scattering rate at low frequencies is about 4
times as strong as that for bromine, and the peak is

&0.0

io.o-

'5.0-

50-

2.0-
E

1.0-

0.5-

Eo 1.0-

0
~ os-

0.2-

0.&

1 2 5 10 20 50 100 200

T (K)

Q2-

0.&

1 2
I I I

5 io 20

T (K)

I I

50 100 200

FIG. 7. Thermal conductivity of KC1:I. Solid curves
show present calculations for A, = —0.581X 10' sec '
and points are experimental results for Br concentra-
tions: OOO, 1.0&(10' cm; )&)&)&, 1.25)&10' cm
OOO, 5.0&(10'9 cm

FIG. 9. Thermal conductivity of KC1:Ag. Solid
curves are present calculations for k= —1.795)& 10'
sec and points are experimental results for Ag+ con-
centrations: OO, 1.0X10"cm ', GOO, pure KC1 for
X=0.
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FIG. 10. Relaxation rates for Tl+ impurity
(3.6)&10 cm ) jn KCl for k= —0.195' 10 sec
Solid curve shows total contributions from all the three

symmetry modes. Contributions from F&„and Eg+A &g

are shown separately.

1005 i
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~(cm')

FIG. 12. Relaxation rates for Na+ impurity in KCl
for A, = —1.656 )& 10 sec . Solid curve represents to-
tal contribution from all three symmetry modes.
Separate contributions from F&„and Eg+A ~g are also
shown.

also about 4 times as strong as that for bromine.
We have obtained a resonance at co„=57 cm ' in

Ei„symmetry modes in case of KC1:I . The far-

infrared absorption experiments on KC1:I give
similar results, as was observed in case of
KCl:Br . The only difference is that the peak at
108 cm ' is broader in this case. The Raman
scattering experiments on KC1:I show peaks in
A ~g and Eg modes at the high-frequency part of
the phonon spectrum. We observe that the contri-
bution to the specific heat is comparatively larger
due to even parity modes in KC1:I,Cs+ as com-
pared to other defect systems studied here. The
contribution to the total relaxation rates due to 2 ~g

and Eg modes have similar behavior. Recently,
impurity-induced Raman scattering spectra of Cs+

in KCl have also been measured. A peak in Eg
symmetry modes is observed at 175 cm ', and
there is no peak above 200 cm ' as observed by
Stekhanov and Maksimova.

The system KC1:Na shows a slight change in the
slope of the conductivity curve at about 30 K, even

though the concentratiori of the impurity is as high
as 2.3)&10' cm '. The total theoretical relaxation
rates for =1. 656)& 10 sec have been shown jn
Fig. 12. The plot of the reduced relaxation rates
for this value of k along with A, = —1.984)(10
sec appears in Fig. 13. The structure in these
curves is small and will make only a token contri-
bution to the resistivity. We have observed a reso-
nance at co„=96cm ' at the high-frequency side.
The detailed behavior of the sodium impurity has
already been discussed in Sec. III B.

4-

0
QP
Vl

2

3
p

1

00 50
u(cm~)

100 t3 50 100 150
~(cm~}

FIG. 11. Reduced relaxation rates for Br impurity
(4.0g10' cm, in KCl for ~= —0.348y10 sec
(solid curve) and A, = —0.285 X 10 sec (dashed curve).

FIG. 13. Reduced relaxation rates for Na+ impurity
in.KCl for A, = —1.656)& 10 sec (solid curve) and
A, = —1.984 && 10 sec (dashed curve).



M. D. TI%ARI

10-

4~
0!
tIt )08 „

&0

Eo A$Q

s' '

50 ~00 i&0 200

~ f c.rrT~ j

FIG. 14. Relaxation rates for Ag+ impurity in KC1
for A, = —1,795y1(} sec, Solid curve shows total
contribution from all three symmetry modes. Contribu-
tions from Fl„and Eg+3 ~ are shown separately.

The silver impurity in KC1 shows a well-

pronounced dip in the thermal conductivity curve
above 20 K. This impurity, despite the facts that
it has a larger mass than potassium and that the
compressibility of AgCl is smaller than that of
KC1, has also a large negative change in the force
constant when placed in KC1. In fitting the data
we observe about 70% softening in the force con-
stant of this system. This result agrees to that
determined from far-infrared absorption experi-
ments. However, the infrared results give a reso-

nance at 38.6 cm ', whereas we get a resonance at
53 cm in both the calorimetric studies. First-
order impurity-induced Raman scattering experi-
ments show very strong peaks in the Eg IR and

negligible contributions to the spectra due to A &g

modes. In Fig. 14 we plot the contribution to the
total relaxation rates from different IR's. As
shown in the figure, F&„modes have a dominating
effect on the resonance scattering, and Eg and A lg
modes make a small contribution.

Recently, Almukhov and Zavt' have calculated
the thermal conductivity of KC1 containing mono-
valent impurities (Tl+, I, Ag+, and Ii center) by
using another approach based on the general theory
of irreversible processes in which the thermal
conductivity is related to the correlation function
of the heat fluxes. The Green's function was aver-

aged over a random distribution of impurity atoms.
The results of Almukhov and Zavt differed consid-

erably from experiment. For the discrepancies,
they have suggested additional anharmonic
processes for KC1:Ag+, I, and I' center, whereas
for the KC1:Tl+ system they have suggested a

correction proportional to e . It is desirable to
have similar modifications for all the systems.

Our calculated results are in good agreement
with experiment. Besides thc point-dcfcct scatter-

ing discussed above we have also considered dif-

ferent temperature dependcnces of three-phonon re-

laxation times in different temperature ranges.
There were many suggestions in the past for the
temperature dependences of three-phonon
processes, but the suggestion of Guthrie is widely
used in many systems. He suggested that three-

phonon relaxation times can be expressed as T™,
where I is an exponent which is a function of tem-
perature. Since then, many workers
have used this suggestion successfully in explaining
thc thermal conductlvlty of differen systems. In
the present case we have taken ~&~h ——8&cu T for
both normal and umklapp three-phonon processes.
The temperature dependences in different tempera-
ture ranges are shown in Table II.

The temperature dependence of the specific heat
and thermal conductlvlty of KCI doped w'lth

monovalent impurities can be weH understood on
the basis of a localized perturbation model in
which consideration of mass change at the impuri-

ty site as we11 as changes in the nearest-neighbor
longitudinal force constant is taken into account.
In the case of Ag+ we have observed a softening
of the force constant of over 70%, and light sub-

stitutional Na+ impurities are ascribed to the vi-

bration of isolated ions with the force constant
weakened to 60%%uo. The thallium impurity behaves

as does an "isotopic" defect. Depressions of the
thermal conductivity curve are almost at the same
positions as those found experimentally. As was

suggested by Guthrie and Caldwell and Klein"
(for better relaxation rates for three-phonon pro-
cesses), we have used different relaxation rates in
different temperature ranges for three-phonon pro-
cesses. %C have compared the calorimetric results
with the available optical measurements. In the
cases of the Kcl:Br, I systems, resonance fre-
quencies have not been observed in infrared ab-

sorption experiments, whereas a strong peak has
been seen at 108 cm ' (Van Hove frequency) in
both systems. In the case of Na+ a pair-
vibration-induced line has been observed in far-
infrared absorption experiments and resonance con-
nected with isolated impurities has not been seen.
The KC1:Ag+ system gives resonant frequency in
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far-infrared measurements as well as in
calorimetric methods. A weak line has been ob-
served in infrared absorption experiments in the
case of Tl+ impurities. Thus, resonances not
detected for isolated impurities Br, I, Na+ in
KC1 by means of the infrared spectroscopy has
been revealed by calorimetric methods. The reso-
nance for Cs+ impurities has been predicted
through specific-heat studies for future optical ex-
periments. We have seen in a number of pa-
pers ' ' " that the present model holds well for
specific-heat studies. Here we have seen that the
parameters found in specific-heat results explain
other defect-induced vibrational properties, as was
observed earlier in cases of metals.
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