
PHYSICAL REVIEW B VOLUME 2S, NUMBER 6 1S MARCH 1982
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A very general theory for the infrared absorption spectrum of homogeneous sphere
clusters is presented. Maxwell's equations are solved for any arbitrary cluster geometry
and for any light (polarized or not) incidence by usual expansions of the various fields.
Usual boundary conditions are used but take into account the possible existence of
plasmons in the spheres. High-order multipolar (electric and magnetic) interaction effects
are included. The problem is cast into the calculation of the microscopic effective
dielectric and magnetic susceptibility for the spheres, and that of the appropriate
interaction terms. The latter (which constitute the hardest part of the theory in general)

are calculated by formulating in a very practical way a recurrence relation for spherical
vector wave functions in different reference frames. The extinction cross section is

derived for any arbitrary case in order to allow for comparison of experimental data and

previous theoretical work. The theory in the absence of any high-order polar effect is

applied to the case of metallic clusters, e.g., small sodium spheres. Effects due to size

distribution, sphere separation, and sphere magnetic permittivity are analyzed. Different

light incidences are considered. A very brief discussion of the experimental status is

presented for the case of metallic spheres. New experiments are suggested for which the

theory is easily read out. Appendices contain new relations between Legendre functions

and "spherical coupling parameters" allowing one to treat up to (2,2 ) polar-order
interactions.

I. INTRODUCTION

We have recently presented a theory of the in-
frared absorption spectrum of ionic powders
(modeled by clusters of spherules) by solving
Laplace's equation up to a given 2' polar order in
the long-wavelength limit. ' Numerical results have
been presented at topical conferences. Effects due
to quadrupolar and octupolar field fluctuations in
the particles were shown to be very important.
The neglect of retardation effect has been briefly
discussed. ' Owing to recent experimental ad-
vances, ' it appears of interest to extend our work
to the case of metallic aggregates and more com-
plex systems, like those including oxide layers or
dielectric nuclei. The latter situation will be
described in Paper III of this series. Here we
present a general theory for the case of clusters of
homogeneous metallic spheres. Since we have
demonstrated the effect of dipole-dipole indirect ex-
change through high polar order in ionic sys-
tems, it seems important to include such cou-
plings between metallic particles from the begin-
ning.

Our theory will be general enough to include
even magnetic multipolar orders and the coupling
of them to the electric multipoles. Nevertheless, at
the numerical stage a finite number of multipoles
only will be taken into account.

The spherical shape restriction could be
phenomenologically removed by introducing depo-
larization factors to take into account the oblate-
ness of particles. Similarly the homogeneity condi-
tion may not be very drastic and can be easily re-
moved. Such extensions may be done following
work by various authors extending the Clippe-
Evrard-Lucas (CEL) theory. ' '" Nevertheless, let
us recall that the latter is restricted to dipole fluc-
tuations and direct dipole-dipole coupling only.

Either following CEL theory or under various
approximations (noninteracting particles, e.g.),
much work has already been presented on opti. cal
properties of small metallic spheres. Following the
Mie theory, ' Wyath presented some extension to
take into account inhomogeneities. ' Clanget, '

Simanek, and Ruppin' have studied independent
particles. We will closely follow Ruppin's method,
but add an important ingredient as demonstrated
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for ionic powders: the clustering effects. "
In Sec. II the generalization of the classical Mie

theory as modified by Ruppin to take into account
plasmon distribution in isolated metallic spheres, is
presented. In the absence of plasmons the theory is
an extension of that presented in Ref. 1, since we
take into account here magnetic permeability and
retardation effects.

The general theory is presented as follows: the
single-sphere case (for introducing notations and
recalling properties of spherical wave functions) is
followed by the X-particle case. The formal solu-
tion of Maxwell's equation is established, account-
ing for usual boundary conditions. The interaction
terms are then calculated by formulating in a very
practical way a recurrence relation for functions
described in difTerent reference frames. We then
derive the general formula for the extinction cross
section, allowing us some comparison to experi-
mental data and previous theoretical work.

The theory is so far valid for ionic or metallic
constituents since the dielectric and magnetic con-
stants are not specified. In Sec. III we treat as ex-
amples the modification in the extinction cross sec-
tion of a pair of sodium spheres with respect to
that of isolated spheres (Ruppin theory' ), as well
as that of an infinite linear chain of identical sodi-
um spheres. Different light incidences are con-
sidered.

In Sec. IV our discussion concerns the possiblili-
ty of experimental observation and hence takes into
account the influence of difkrent parameters; radii
distributions and sphere-separation effects. Multi-
polar effects are not discussed here. Appendix A
contains relations between I.egendre functions as

used for the transposition of frames. In Appendix
8, explicit values of the solution of the recurrence
equation for the projected potential functions are
given, allowing any consideration of up to the 2 th
polar interaction order.

II. EXTENDED MIE-RUPPIN THEORY
FOR METALLIC CLUSTERS

A. Single-sphere case

Consider a spherical particle embedded in an in-
finite matrix and submitted to an electromagnetic
field. The Maxwell equations are

1 BE 4mVyH= — + J,
c Bt c

1 BBVXE= ——
e Bt

(la)

(lb)

where H is the magnetic field, E is the electric
field, J is the sum of the polarization and diffusion
currents, and 8 is the magnetic induction. We
suppose that the time dependence of all these quan-
tities is proportional to e '"'. The fields are not
supposed to be too high such that the current J
can be taken as proportional to the field E. It is
useful to derive the solutions of Eq. (1) in terms of
spherical harmonics. Let us introduce the three in-
dependent spherical wave-vector functions' ' m~,
n&, and 1 ~ (the definition in Ref. 16 is in terms
of Legendre polynomials):

Y (8,y) BY (8,qr)[q(q+1)]'~ m~=ipz~(kr) . 1s z(kr)—

z~(«) [krz~(kr)] dY~(8, q&)[q(q+1)]' n~ ——q(q+1) Y~(8,q&)1, + 1g

[krzq(kr)]' Y~(8,g))
+V . 1q ~kr sing

z, (kr) dY~(8, q) z, (kr) Y~(8,q)[q(q+1)]' 1~=k z~(kr)Y~(8, g)1„+ ~ '
1s+ip ~

kr Bg kr sin8

where the prime stands for a derivative with
respect to the argument. The principal properties
of these functions have to be recalled':

m~= V X(rg~)= 1~Xr =—V Xn~
k

n~ =v x V x ( r g'~ ) =—fxm~k

for the functions corresponding to a transverse
wave, while

(3b)
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for the longitudinal wave, where the "potential"

g~ 1S

g~ =zq(kr) F~(8,y)[q (q +1)]
Furthermore

V m~=V'nN)=0 (5a)

cates which Bessel functions to use; jq or hq"'. The
1 ~ functions do not appear here because they

describe longitudinal fields [see Eqs. (5b) and (5c)].
Using Eqs. (1b), (3a), and (3b), we have

ck
Ho —— Eo,

1 COP

V 1~+0
VX 1~——0.

In Eqs. (2) and (3), the zq are the Bessel spherical
functions' jq, yq, hq", or hq '. Which Bessel func-
tion has to be chosen depends on the required
asymptotic behavior at zero or at infinity. The
F~(8,qr)'s are the usual normalized spherical har-
monics. The functions are hereby defined at a
point r(r, 8,y) for which the spherical-frame basis

( 1„,1]],I q ) is easily related to a Cartesian frame

(1„,lp, 1,).
The complex wave number k is given by the

dispersion relation

2

k = E (k,co) ](Mk, co)
c2

for transversal waves, where co is the frequency, c
is the light velocity, e (k, co) is the transverse
dielectric constant, and ]M(k, 0]) the magnetic per-
meability of the appropriate medium. For longitu-
dinal waves we have

e (k,co)=0,

where e (k, Q]) is the longitudinal dielectric con-
stant. Solutions of Eqs. (6) are chosen such that k
has a positive imaginary part. Furthermore, we
consider that there is no longitudinal plasmon in
the matrix (this supposition leads to a divergence-
less electric field).

Then the electromagnetic wave (EM, HM ) in the
matrix can be expanded as

where k (p) is the wave number (the magnetic per-
meability) of the matrix. The coefficients a~ and

S~ describe the incident waves (which are not yet
fixed), and the coefficient c~ and Z~ describe the
waves diffracted by the sphere. Eo is the ampli-
tude of the electric field experimentally created.

We assume the existence of longitudinal
plasmons inside the uniform sphere. Then the
fields can be expanded as follows:

E=EQ g (u~m~]+A~ n~]+c~ 1~])
SIP

H=H) Q(8~m~]+u~n~]) .
%P

(9b)

Notice that the longitudinal plasmons do not
directly influence the magnetic field [see Eq. (5c)].
The following relation

ck~
HJ —— Eo

l COPJ
(10)

holds between the amplitudes Hz and Eo, where kj
(pz ) is the transverse wave number (the magnetic
permeability) inside the sphere. The "classical"
boundary conditions are

EX 1,=EM X 1,
HX1„=HMX1, .

(1 la)

(1 lb)

E 1,=EM. 1, . (1 lc)

Because of the existence of longitudinal waves, we
must add to this system a third condition discussed
by Melnyk and Harrison. '

EM EQ g (~qpmqpl+~qpnqp1
qp

M~ M~
+cqpm~p+Zqp n~1) (7a)

The calculation is then the same as that devel-

oped by Ruppin' in the case pz ——p =1, and leads
to the following relations:

HM —HQ g ( 8qp mqp ] +czqp 11
qp ]

qp

~M g gM

M M
cqp =I

q (zap

(12a)

(12b)

(7b)
M~ M~+Zqp 111qp I +c~ ll ~1 ) .

The summation is taken for q =1 up to infinity
and p = —q up to +q. The subscript 1 or 3 indi-

where 6q and I
q are the 2q polar electrical and

magnetic susceptibilities of the sphere. They are
explicitly given by

jq(kR)

hq "(kR)
e[J'q(kq R) fq(kj R)] ej [jq(kR) fq(kj R—)]-

e[jq(kj R) fq(k)~R)] ej [hq" —(kR) fq(kj—R)]— (12c)
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jq(kR)

pjqt(k, R) p,—h»" (kR)
(12d)

g (z)= [zg(z)],
1 d

g(z} dz

while the function fq(z) is defined by

(13)

In the above equations, a given function g (z) is

defined by

sphere. Stratton' has shown that the system

formed by m~ and n~ is orthogonal and complete
for transverse waves. Thus, by using a projection
technique one has

m~s(i) =g [&m~3(i) I
mi i(j) &mim i(j)

fq(z) =q (q + 1)jq(z z—j (z)
+ &m~, (i)

I
n,m, (j)&n,m, (J)],

(16a)

B. N-spheres case

As in Ref. 1, all functions and coefficients will

be characterized by the index j of the sphere. In
the matrix (M), the solution of the Maxwell equa-

tions is taken as the sum of the diffracted fields

and the incident wave (ED, HO). Then we have

N

EM ——Eo g g [s~(i)m~p(i)

+ Z~(i) n~3(i)]+Eo (15a)

H~ =&o g g [&qp(i)mqps(i)

+ e~(i)n~s(i)]+ Ho . (1%)

where R is the radius of the sphere, kJ~, eJ are,
respectively, the longitudinal wave number and
dielectric constant inside the sphere, and e& is the
transverse dielectric constant inside the sphere.

8'hen there is no 1ongitudinal plasmon inside the

sphere, the imaginary part of kJ tends to infinity

and fq(kJ R) vanishes. In this case, the electrical
susceptibilities 5& are similar to the magnetic sus-

ceptibilities I z with the interchange e~p. Notice
the important result that the magnetic susceptibili-
ties are not influenced by the longitudinal plas-
mons. An interesting extension not considered
here would be to include (anisotropic) dispersion
relations for magnons in order to couple these exci-
tations to the oscillating magnetic field. Optical
properties of magnetic (metallic or ionic) particles
present, nevertheless, some well known in-

terest.

nq»3(i) =X [& nq»3(i} I mi i(j) &mim i(j)

+ &n~i(i) I nimi(j) &niml(j)]

J J lI1~3(l)'111im i(J)dQJ
&-~,(i) Im...(j}&=

I
mi i(j} I dQJ

—=~q»i (i j)
& m~3(i )

I nlm 1(j) &
=

& n~3(i)
I mmmm i(j)

=&Ni (i j}

(18a)

(18b)

The choice of the Bessel functions j~ in the projec-
tion functions mi i(j) and ni, (j) is determined by
their behavior at r =0. Using Ei[. (16), it is then

easy to relate the fields E~ and H~ in a frame
centered on a j sphere to that in an i frame.

In order to complete the expansion, we write the
incident wave in the vicinity of the j sphere as fol-
lows

with similar definitions for the other terms. The
integrals are taken on the polar angles 8J and qJ.
defined in the j frame (dQJ ——sinOJd8Jd(PJ ). It can
be proven that those terms do not depend on the r
position in space, and depend only on the vector
aJ;. joining the center of the particle j to the center
of the particle i. Expansions (16) are only valid for
a point r inside a sphere centered on the origin of
the frame jwith a radius R =

I aJ; I
. From Eq. (3)

it follows that

&me 3(i) Imi i(j)&=&nN 3(i}
I »mi(j)&

The functions m~(i) and n~(i) are defined in the i
frame centered on the i sphere. Consider now the j 0 g [aqq(j}m~i(j)+Sq»(J')nq»i(j)]

eu
(19a)
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Ho=HO g [gqp(j)mqp, (J)+ q~p(J')nqp, (J')] .
vs'

(19b)

If we compare Eqs. (15) and (7) with the additional
subscript j, using Eqs. (16a) and (16b), the proper-
ties (18), and the expansions (19) of the incident
fields, we may finally write

N

(j)= i (J)+g g [.qp(i)~ qplm(i j )
6'~P &+J

~i~(j), and 8i~(j) are defined as elements of the
vectors e, I, 2, and 8 respectively. Then the sys-
tem (21) may be concisely written as

(I ' —w) e —Ã Z=u

(b,-' —a ).4—W

(22a)

It is easy to show that the solution (d and c) of
these equations is

+ Z~(i)&~i (i,j )] (20a)

&~ (j)=&i (j)+gg[ ~(i )&~i'(ij)'
6'~P &WJ

x[ —@:(5 ' —a) 'Z], (23)

(24)

+ Z (i)& I (i,j)] . (20b)

Explicitly writing the relations (12) for each j
particle, one obtains a set of linear equations be-
tween the unknown coeAicients:

N.-i (j)—li(j)yy[. ~( )i~~/ (~ ,j)'
+& (i)& i (i,j)]

=&i(j)ai (j) (2»)

N

&i (j) Jib(j)g—g[ (i)& i (ij)'
%JJ &~J

where the matrices to be inverted have indeed a re-
duced dimension. Limiting the sum in Eqs. (21) to
the term q =s, the solution of the problem implies
only a calculation of the inverse of two matrices of
dimension Es (s +2) and a few matrix products.
The computer time can be much smaller than that
necessary for the inversion of the complete matrix
of dimension 2Es (s +2) in Eqs. (21).

This formal solution, although rigorous, can be
completed by a direct numerical calculation. It is,
however, possible to obtain analytical expressions
of the interacting terms (17) for any aggregate.
This is made in the following subsection, and al-
lows for a more suitable approach to numerical
work.

+ Zqp(i)a qpi~(i,j )] C. Calculation of the interaction term

=b, ,(j)8', (J) . (21b)

In those equations, the summations over q = [1,oo ]
and over p =[—q, +q] may be truncated in order
to obtain some approximation to the fields. The
above system is similar to that found in Ref. 1, but
it includes here electromagnetic interactions

(i,j ) as well. If these coupling terms did not
exist, one would obtain two distinct sets of equa-
tions describing the electrical modes, and indepen-
dently the magnetic modes. Notice that the dimen-
sion of the matrix is twice the dimension of that
used in Ref. 1.

Owing to relations (18), it is possible to reformu-
late the solution of the system (21) into the inver-
sion of two matrices with a dimension reduced by
a factor two. Let 6 ' and I ' be the diagonal
matrices formed by the inverse of the susceptibili-
ties, while a and @ are formed from the

~~, (ij) and e„, (i,J) The.P(j), ZP. (j),

Langbein has calculated interaction terms for
spheres on a lattice including all high-order polar
contributions. His calculation is based on a "dif-
ferential-recurrence" equation [Eq. (5.68) in Ref.
24], which is rather impractical. He has given the
solution of such a differential-recurrence relation,
which leads to tedious numerical work. From such
a solution, one can obtain the interaction terms
previously defined.

%e have been able to obtain the same solution

by a more elegant method, using a purely recurren-
tial relation between the interaction terms. The
proof is rather simple and, although requiring
some algebra, the method seems of general interest
and of practical importance for similar problems in
other fields of physics. It is a straightforward
technique which may nevertheless be skipped by
the reader interested only in the final result [Eq.
(50) below]. In the following calculation, we sim-

plify the writing by letting the wave number k,
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which is only a scaling factor for the distance, to
be equal to unity. Consider the function Pq& de-

fined by

lead to

gq ~ zq——(r)P~~(cos8)e')'»', (25)
—(e —p+1W, +i,, (33)

where the P~~(cos8)'s are the Legendre functions.
The function 1(»& differs from g~ given in Eq. (4)
only by a scaling factor. The above new choice is
made because of the simplicity in the following
treatment. Consider now both operators

Consider now both Cartesian frames separated

by a distance a as shown in Fig. 1. One has [Eqs.
(10.1.45) and (10.1.46) in Ref. 18]

zo(r2) = g (2q +1)z»(~j)»(r ~ )

q=0
a a

9+ +l

8
Bz

We have at a point r(r, 8,y):

8+r =single'",

(26)

(28a)

XP»(cos8&), r, & a . (34)

For the definition of the parameters, see Fig. 1.
We may apply the operator 8+™(m& 0) on each side
of Eq. (34). Using Eq. (30), Eq. (10.1.19) in Ref.
18, and the fact that

8+cosj9= —cose sino e'~/r,

8+qr = ie'»'l(r s—in8),
and then

dz»(r)
sin8P~(cos8)e "~+"~

(28b)

(28c)

Wq, m =0

one obtains after some algebra

00 zq(a)
~(2)=(2m —1)!!g (2q+1) fq~(l)

q=m a

(35)

(36)

zq(r) de~(cos8)
dcos8

z»(r) Pq~(cos8)—p e'~+ "~
r sin8

(29)

The variables (1) or (2) indicate that the functions
are described in the frame (1) or (2). The Bessel
function j» must be employed in g» ~(1). Equation
(36) is similar to that obtained by Langbein [Eq.
(5.65) in Ref. 24]. Suppose now that one writes

The recurrence relations for spherical Bessel
functions given by Eqs. (10.1.19) and (10.1.20) in
Ref. 18, and the theorems proved in Appendix A
below lead to

(2e +1)a+qq p qq, p+, +yq—+„i, .

In the same manner, one has

Bor =cos0,

ocose=sin 0/r

Bop=0 .

Then

(30)

(31a)

(31b)

(31c)

dzq(r)
dofq, z

= c soP8~(c so)8'e) q

dr q

zq(r) dP~~(cos8)
+ sin 0 e'~~ .

r dcos8
(32)

The same recurrence relations between the Bessel
functions and the relations given in Appendix A

1x

FIG. 1. Reference frame 1 and 2 with position vec-
tors r& and r2 for an arbitrary point r characterized by
angles g and 8~, or 82.



J. M. GERARDY AND M. AUSLOOS

By comparing Eqs. (37) and (36), we have

q+m! &q«)
(a) =(2m —1)!!

(q —m }!
(3&)

(2)= g (2q+1) '~„,q(a)Qq (1) .
(q+m)!

which will serve as the initial values for the re-
currence.

In order to obtain the recurrence equation, let us

apply the operator Bo to both sides of Eq. (37).
After using Eq. (32), one obtains

(n ™W'n—l, m(2) (n m +1M' +n1, 'm(2) (2lt +1) (q —m)!

q=m q+m '

)&W„q(a)[(q+m)yq $, (2)—(q —m+1)oq+i, m(2}i

Replacing Pn+~ m(2) by their expressions taken from (37) and comparing the coefficients of Pq m(2), one ob-
tains without any difficulty the following recurrence relation:

(n —m+1}W„+~q(a)=(n+m)W„~ q(a)+ [(q+ m)W ™nq~(a) (q ——m +1)&„q+~(a)j . (40)2q+1
This recurrence relation for what we suggest to call the Langbein function W„,q(a), has for its solution the
expression (5.69} in Ref. 24 with an extra factor ( —1)" m due to our choice in the orientation of the refer-
ence frames. The above recurrence relation is obviously of greater interest in performing numerical work
than Eq. (5.68) of Ref. 24. The numerical work is further facilitated by the fact that

~m ( } ( I)n+q~m (a)

The "vector potential" rg~ can now be transposed from frame to frame according to the number of spheres
in the system. It was given by I angbein. However, rather than using I.egendre functions we prefer spheri-
cal harmonics, and write

m„m, (2)= g [Vnq(a)mqm, (I}+Wnq(a)nqm, (1}l, (42a)

and from Eqs. (3a) and (3b)

with

11 3(2)= g [W q(a)mq &(1)+V q(a)nqm&( 1)]
q=m

(42b)

Vm ( ) ~m ( 1)~m ( )
q(q —m+1) ~m ( )

(q+1)(q+m) ~m ( )n, q~ =
n, q 0 0+ n, qa —

2 1
& n, q+1& —

2 1
& n, q —t~g+ g+

W„q(a) = imAn qW—„q(a)a (43b)

(2n+1)(2q+1) (n —m)! (q —m)!
q(q+1)n(n+1) (n+ )!m(q+m)!

Moreover, since

Y„, (e,q)=&„', (H, q)( —1)

we have

(45)

(46b)

Equations (46) must be used in order to complete
the system for m ~0. In Appendix 8, the explicit
expressions for a few V~(a) and W~(a) are given.

In order to find the interaction terms M
~1m (i,j )

and K~1m(i,j) between two general frames, we

proceed exactly as in Ref. 1. Consider the frames
as shown in Fig. 2. The polar coordinates at the
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origin of the i frame are measured in the j frame
and are (az, ,az, ,pi, ). Both systems are rotated
around the 1, axis by the same angle P~„ then
around the new 1~ axis by the same angle aj, .
The final frames (1 and 2) have, then, a common

1, axis (as on Fig. 1). By application of Jeffreys
theorem, ' one finally has

+n
gt~(j)=e " g O(l, m, v, az, )gl „(1),

g~(i)=e " g O(q,p, A, ,aj, )gqi(2),
A, =—q

with

(47a)

(47b)

O(l, m, v, a) =(—1)'+"[(l+itt)!(l —irt}!(1+v)i(l—v}!]

( —1)'[cos(a/2)] "+ +'[sin(a/2)] "
r!(l —I—r)!(l v r)—!(m—+v+ r)!

(48)

where f=max(0, —m —v) and g =min(l —v, l —m).
Applying the operator ( V „)r, s =1,2 to relations (47}, one obtains the projections of the functions m and

n as defined in Eq. (3), i.e.,

(m~3(i)
~
mt~i(j) ) =e ' g g O(q p, k,aj, )O(,l, m, v, aj, )(m, i,,(2)

~
m», (1})

and similar relations for the other terms. Using re-
lation (41) for both frames with a common 1, axis,
and definitions (18), one finally obtains

(ij}=e " g O(q p, A, aj;)
A, =—0

(ij)=e J' g O(q,p, i,,a;)
A, = —d

x 0(l, m, i,,aj, )

x 0 (l, m, A, ,aj, )

x &~,t(«J,. ) (Soa)

x Wqt(kaj, ) (50b)

with d =min(q, l). The wave number k has been

reintroduced here for clarity. Notice a fundamen-

tal difference with the nonretarded case': it is in

general not possible to write the interaction terms
as a separable product between the distance and
the angular-dependent terms. Relations (50) com-

plete the Eqs. (21) in order to solve the problem of
interaction between arbitrarily polarizable spheres
embedded in an infinite matrix and submitted to a
given incident wave.

D. The incident wave

The case of a plane polarized wave only, is con-
sidered here. It is first convenient to calculate the
coefficients of the expansion (19) for a wave vector
k parallel to the 1, axis of a frame O~ centered on
the j sphere. We choose this frame ( 1„,lz, 1, )

such that

ikrcos8+i k u ~
p pe X (51a)

FIG. 2. Polar coordinates (aj;,a~;.,PJ;) for the i
reference frame in the j-reference frame.

ikrcos8+i k ~ u ~
Hp ——)Hpe yt (51b)

where u~ is the position of the sphere in the gen-
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eral reference frame 0 for which the axes are in
general not parallel to those of the frame OJ . The
spherical coordinates of a point r are (rj', ej,yj )

and are given in the frame 0& . Comparing Eqs.
(51) with Eq. (19) and using the orthogonality of
the functions m„~ and n„~, one has

f f ter case
1

8„(j)=ie
I

mnm i I dIIj

(52a)

(52b)
where the prime denotes here that the coefficients
and functions are described in the frame OJ .
Equation (10.1.47) in Ref. 18 gives

b„~(j)=e ' mi"+'[ i(r2n +I)]' 5~+&, (54b)

e' = g iq[4n(2q+1)] ~jq(kr)Yqo(o, y) . (53)
q=0

Using the expression (2a) for the n„~ ~, it is quite
easy to obtain by direct integration

a„~(j)=e 'i" +'[ir(2n + I)]'~ 5~ +, , (54a)

where 5l is the Kronecker symbol.
The wave vector k is defined by its polar coordi-

nates (k,a,P) in the 0 frame. The angle between

the magnetic field and the intersection of the plane

(k,HO) with the horizontal ( I„,I&) plane is denot-

ed as y. In order to express the wave in a frame

Oj which has the three axes parallel to the axis

(1„,l~, 1, ) of the general frame 0, one makes

three successive rotations of the frame OJ, i.e., (1)
rotation around the 1,' axis of an angle y to obtain
(1„-,1&, 1, =1, ); (2) rotation around the ly-
axis of an angle a to obtain ( 1„,1~ ~ = 1~., 1, ~ );
(3) rotation around the 1, axis of an angle P to
obtain ( 1„,lz, 1,= 1, ).

Using Eqs. (19) and (47a) giving the relation be-

tween the functions pi~ under frame rotation, one
has

+lf
a„(j)=e ' ~ g 0(n, A, m, , a)e—' ra„i„(j),

(55)

where the a„(j)'s are the coefficients of the expan-
sions (19) with respect to the functions m„~ and
n„calculated in the Oj frame. The same relation
holds for the b„(j) Hence, .following Eq. (54),

a„~(j)=i"+'[n (2n + I)]'~ e ' ~[e 'rO (n, l, m, a)+e'r—O (n, —l,m, —a)]e (56a)

b„(j)=i"+'[m(2n+1)]'~ e ' ~[e 'rO(n, l, m, a) e—'rO(n—, —l,m, —u)]e (S6b)

Equations (56) allow one to study the eÃect of dif-

ferent angles of incidence of the wave without hav-

ing each time to rotate the system of the spheres.
Therefore the interaction matrices K and a,
which in fact depend on the geometry, are the
same for any incident wave, and only the indepen-
dent vectors 8 and ~ are changing. Computer
work is thus necessarily reduced and much more
easy.

E. The extinction cross section

l

vector clearly contains

N
S=-, E,xH', +-, g E.xHD(J)

j=1

N

+ g ED(j) XH',
j=1

N

+ —, g g En(j) x HD(&),
l=1 j=l

(58)

S=—,EM )&HM,

where EM and HM are given by Eqs. (15). This

(57)

In order to calculate observed spectra, it is useful
to calculate either the energy absorbed or diffracted

by the spheres, or the sum of both energies. The
Poynting vector is given by'

(59)

where HD( j) and ED(j) are the fields diffracted by
the j sphere. In order to calculate the energy, one
integrates the normal component of the Poynting
vector on a large sphere containing all the parti-
cles, i.e., respectively,

8', = —Re 8 1,da,
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8', = ——,Re Eo&HD j
j=1

+ g En(j)XHp .l„da, (60)
j=l

and similarly for the other products. The calcula-
tion of Eqs. (65), (66), and the other terms make
use of the following orthogonality relations:

dF„dF~ F„~F~

Because of the coupling between fields diffracted by
the various spheres, it is quite dificult to calculate
8', . The final expression for this quantity is more
complicated than the "classical" form' for a single

particle and is not very useful. 8'0, on the other
hand, vanishes when the incident wave is a plane
wave created in a nondissipative matrix (e.g., k
real). W, can be easily calculated in this case. In
order to obtain 8» one may calculate 8', by in-

tegrating the Poynting vector on the surface of all

the spheres, and using Eq. (63).
However, in order to compare our calculation on

aggregation eAects with the results of Ruppin' for
a single sphere, it is only necessary to calculate 8',
and obtain a simple expression for the extinction
cross section. We replace the fields in Eq. (60} by
their developments in terms of functions m„m and

n„. From Eqs. (15), one has

En(j) =Ep g [c~(j)m~3(j)
SP

+de(j)nqr3(j)]

Hn( j)=Imp g [d~(j)m~3(j)

(64a)

8', = —,Re f f g g [En(j) XHD(l)] l„da, (61)
l=1 j=1

Wp ———,Re f f [EpXHp] l„da, (62)

where W, (8', ) is the power absorbed (scattered} by
the particles, 8'0 is power dissipated by the in-

cident wave, and F; is the total power of the sys-
tem

=n (n +1)5q „5 p, (67)

where the Y„~'s are abbreviations for the

Y„~(O,y)'s.
%hen r tends to infinity, the usual asymptotic

expansions of Bessel functions are

j„(kr)-sin(kr nal2—) jkr

h"'(kr) -i " 'e' "/kr

Because k is real, we finally obtain after insertion
of Eqs. (69), (70), (64), (65), (66), (19), and (6a) into
(60):

' 1/2

Ep g +Re[a„*(j)c„(j)
2k p

+&.'*(j)d. (j)] .

The extinction cross section o, (measured in units

of the total section n. g& t RJ of the spheres) is

obtained from the ratio of the power W, to the

power flow per unit area of the incident wave, i.e.,
for an incident plane wave

g g Re[a„"(j)c„(j)
. (kRJ)

+cq™p(j)n~3(j)]. (64b)
+b„"(j)d. (j)] (72)

The incident fields are expressed in terms of
functions m and n calculated in the frame centered
on the j sphere [Eqs. (19)]. We then use the prop-
erties (2} to calculate the following integrals:

f f (m~~ Xmqq) l„dQ= f f (n„~ X n~)' ~ l,dQ

=0, (65)

f (m„&X n~3) l„dQ= [krh„(kr)]'*
j„(kr) (, )

kf'

which generalizes Eq. (27) given by Ruppin '5

III. EXAMPLES: METALLIC SPHERES

One of our aims is to show how the spectra ob-
tained in the case of isolated metallic spheres are
modified by the interactions between various
spheres. This necessarily implies the choice of
some particular aggregate for which the extinction
cross section is calculated. In this paper, we
present results for a two-sphere cluster and for an
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e (k,co)=1— I tan y —1
1 3 1+/

x(x +Ep) 2y

(73)

—11 3
1

tR11

X(X+ip) y y

x 1+~
X

(74)

infinite linear chain of identical particles. Retarda-
tion effects are very sensitive when the value of the
wave vector k is finite, i.e., when the characteristic
quantity ka is not negligible compared to unity (a
is the distance between the centers of two neighbor-
lllg spllclcs). Fol' comparison to Ruppln, tllc
dielectric constants are taken to be by

Using for sodium spheres the values

~& ——8.65&10' sec ', uz ——1.07&10 m/sec, and

p=po+II(k /k )',
where k is the Fermi wave number, ' ' we let

po ——0.01 and-q =0.05. The transverse and the
longitud1nal wave nuIIlbers k and k afe, respec-
tively, solutions of the implicit equations (6a) and

(6b), where the magnetic permeability of the
spheres p, is used. Here we take' ' p, =1 or
0.75. Longitudinal plasmon CRccts are quite im-

portant when the spheres are very small, since their
propagation is then in the whole volume. Hence in
the following examples we have taken radii smaller
than 60 A. The matrix is supposed to be the vacu-
um (e=p=l).

2=
—k up

2 2

3' =
CO&(X +ip)

(76)

in which ~z is the plasma frequency, p the com-
plex damping factor, and u+ the Fermi velocity.

A. The takeo-sphere cluster

If we place the two centers on the 1, axis, Eqs.
(21) may be separated according to the index m.
The sum is limited in the left-hand side to q =1.
Us1ng thc symmetry propcrt1cs of thc M and 4
terms, the following matrix equations are easily
derived:

—I 1(2)VI I (ka)

—I 1(1)Vl 1(ka) &lo(1) I'1(1)~10

lo(2) 1,(2), e'"'
and

—b, l(2) Vl I (ka)

—EI(1)VII (ka) Zjo(1) b, l(1)XIO

&IO(2)
(78b)

slllcc WI I (k11 )=0. Fol III =+ 1 thc sys'tcfns al'c llot sepal'able 111'to pill'cly Illagllctlc Rnd plllcly electric

parts, but lead to a set of four equations, i.e.,

—VII(ka)b, l(2)

+ WI I (ka)l 1(2)

—V I I (ka )b, l(1)

+ Wl I (ka)l 1(1)

+ WI1 (ka)EI(2)

—Vl I (ka) I'1(2)

+ WII(ka)AI(1) 8') +l(1)

0 ~M~~ (2)

—
Vl 1 (ka)l l(1) el +,(1)

1 &I, + I(2)

I
~I, + I

Ik ~ a
1,+le

I
+I

al +)e
I

(79)

where the upper (lower) sign is used for
m =+1 ( —1). The 8 's and the u 's are given by
Eqs. (56) without the position-dependent factor
e' "J which is explicitly written in Eqs. (78) and
(79). The vector a is the vector joining the center
of the sphere 1 to the center of the sphere 2.

B. The Hnear chain

The linear infinite chain of identical particles is
of interest because it gives an idea on the behavior
of regular and random distribution of spheres by
suggesting boundary limits of spectra. Thc dis-
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tance between two neighboring centers is denoted

by a. Applying the Bloch theorem to the defini-

tion of the field coefficients, i.e.,

M
cnm(J) =cnme (80a)

(80b)

where q is a wave number, and rewriting Eqs. (21),
it is easy to show that solutions of (80) can exist

only if q =k. Thus only the modes with the same
wave number as that of the incident wave are ex-
cited. The equations including the dipole-dipole
interaction only [i.e., q (1 in the sum of Eqs. (21)]
are solved to find c&~ and Z ~~ which are substi-
tuted into Eq. (72) for the extinction cross section
o, . Using expressions (56) for the coefficients of
the expansion of the incident beam, we obtain after
some algebra

6
Re sina 0 sing+ 0 cosp

(kR) 1 —I,)r, 1 —I&&b, &

r, (1—sin asin y)+b, , (1—sin acos y}+(sin a —2)II~ r&6&+2cosaCI~b ~I ~

+
(1—I', , r, )(1—I'„s,)—(c', , )'r, s,

where (using the properties of symmetry for the a and @)

I&& ——2 g cos(nka cosa)V~~(nka), m =0, 1

n=1
(82)

CI~ 2i g——sin(nka cosa)WI~(nka) .
n=1

Using the explicit expression for V11 and 8'11 given in Appendix B, those coefficients are

I» ——[—3/(ka) ]I S2(x+)+S2(x )+i[S3(x+)+S3(x )]/ka I,
IIt ——[—3i/(2ka)][ S&(x+)+S&(x )+i[S2(x+)+S2(x )]/ka —[S3(x+)+S3(x )]/(ka) J,
C', , =[3i/(2ka)][ S~(x+)—S&(x )+i[S2(x+)—S2(x )]/ka ),

(83)

(84)

(85)

(86)

where

x+-=ka (1+cosa) (87)

I

along the axis of the chain. When relation (90)
holds, o, is nonzero in the general case 1+0.

(88) IV. NUMERICAL RESULTS

The sums are calculated numerically for n )2. In
the case n =1, formulas (1.441) in Ref. 29 give

S&(z)= ——,[ in[2(1 —cosz }]—i(n —z) ], (89)

where z is the value of z restricted to the interval

(0,2n. ). Notice that the terms I» and CI& do not
converge when

cosa =2lm. /ka+ 1 (90)

where l is an integer.
The complete analysis of this divergence is out-

side the scope of this paper. One of the main
conclusions is that o, =0 when a=0 or a=a and

k+0. This corresponds to the situation of a beam

We successively consider the case of two in-

teracting metallic spheres, and that of the linear
chain. We investigate the dependence of the opti-
cal properties on some of the physical parameters
characterizing spherule ensembles and their sur-

rounding, i.e., size and relative size effect, separa-
tion effect, magnetic permeability effect, and some
matrix property effect.

Since the spectra depend on the angle of in-

cidence of the light when the clusters have a sym-

metry axis, let us define the scattering geometry.
The light-wave vector can be either parallel, per-
pendicular, or at an oblique incidence to the vector
joining the sphere centers. An arbitrary incidence
complicates the discussion of numerical results.
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(E~
~

and Ez) as a function of the ratio co/to~.

Clearly, the angle of incidence plays a dramatic
role on the main resonance peak position. The
dotted line is the Ruppin result for a single sphere.
The peaks amplitudes are equivalent, but the shift
magnitude is noticeably geometry dependent. I et
us recall that this main peak is due to resonance
excitation of the transverse electromagnetic mode
in the cluster. In the Ej geometry, the excitation
is, of course, "stiffer" to induce. On the other
hand, the plasmon peaks occur at approximately
the same frequencies as those of isolated spheres,
but their amplitudes are modified.

These results are easily interpreted as follows.
Consider the determinant of the matrices appearing
in Eqs. (78) and (79). The m =0 modes are ob-
tained from the calculation of the minimum of the
absolute value of 1 —[ V&~ b, &] or 1 —[V» I ~],
with b, ,(1)=h,(2)=b, (and the same for I &),

while the m =+1 modes arises at the minimum of
the absolute value of

[1-(VI,~, ) l[1-(VI|1,) ]

+2(WI)) 5)I )[I—(VI)) 6)I )] . (91)

2a» »», g[l"i ~i V» W»]
1 —(Viib i)

(92)

and by observing the behavior of this expression
for both limits (b~~ao, h&~1/VI&).

Consider next the case of spheres of different ra-
dii in contact (a) R~ ——15 A, R2 ——30 A; (b) 8

~

——30
A, 8.2

——60 A. This is a more complex situation in
which o; markedly deviates from a 0; averaged for
two noninteracting unequal-sized spheres (dotted
line, Fig. 5). The scattering geometry is again very
relevant and leads to a large variation of the spec-
trum near the main resonance peak. Two very
separate peaks appear in each case. Near co=co+,
the E~~ spectrum is much broader than the E& one.
The peak position and corresponding type of exci-
tation can be easily interpreted by considering the

Therefore, when WI& I
&

is small (as here), the main
resonance occurs near 1=(VI&4, ) rather than
near 6»- Oo for the single sphere. Hence an im-

portant shift of the steep peak at co=co~ occurs.
But a very mild variation of the peaks at m ~ co~ is
induced since in such a region 5» is a smooth func-
tion. The small peaks thus occur only because of
bulk plasmon excitations. This difkrent behavior
can also be seen if one notices that the main
m =+1 term of the extinction cross section can be
recast into the form

four simplest orientations of two interacting di-

poles. From low to high frequency, the peaks cor-
respond to excitations of "longitudinal-acoustic, "
"transverse-optic, " "transverse-acoustic, " and
"longitudinal-optic" electromagnetic modes. Such
a splitting occurs because of the unequal size of
the spheres, i.e., in Eq. (92) we replace 2b,

& by
b, &(1)+b,&(2) and b f by b, ,(1)b ~(2). Furthermore,
it (slowly) increases when the relative surface cross
section (and sphere volume) decreases. Notice that
on the averaged spectrum (dotted line) of two
noninteracting unequal large-sized spheres [Fig.
5(b)], the two-peak structure has disappeared into
the resonance peak of the largest sphere.

The small-amplitude plasmon peaks at m g co&

are numerous since they occur at rather different
frequencies. A comment on the displayed ampli-
tude is in order. It is observed [Fig. 5(a)] that such
an amplitude is not as smooth (decreasing as on
Fig. 4) a function of frequency. This is due to the
variation in relative amplitude and periodicity of
these peaks as a function of sphere radius. Fur-
thermore, the largest amplitude (third small peak)
differs from that of the first small peak on Fig. 4
because of the normalization used in calculating o,
by Eq. (72). We have chosen to calculate an exper-
imentally more realistic quantity, i.e., a measure of
the scattered energy [W, (1)= W, (2)]/(S& +S2),
rather than W, (1)/S~+ W, (2)/S2, where W, (i) is
the power scattered by the i sphere and 8; is the
sphcrc cross scct1on.

2. Separation effect

Wc show on F1g. 6 thc vaf1at1on of thc cxt1nc-
tion spectrum when both sphere centers are
separated by various distances a. Radii are

R» ——R2 ——15 A. The number of peaks is, of
course, unchanged with respect to the contact case.
The main resonance peak rather quickly merges
into that for the isolated spheres [the interaction

VP& decreases here as 1/(ka) ], and the variation is
barely distinguishable when a=5 A. The merging
of the excited bulk plasmon peaks into those of the
noninteraciing case is rather rapid. This is an ex-
perimental bonus since we thus show a contrario
how close the spheres can be and yet "not influ-
ence" each other. However, the information con-
tained in the light polarization incidence is lost in
this free-spheI c case.

In the case of greater values of ka (for example,
if the matrix has a high dielectric permittivity e),
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the interactions VI& decrease as 1/ka. The main

resonance (as a function of the distance) would

emerge much more slowly into the peak of the sin-

gle sphere. This case is not examined here, because

the higher multipolar interactions terms are large
and will drastically change the spectrum; a dipolar
development of the extinction cross section is no

longer valid in such a case.
On Fig. 7, we show the more realistic case of

two separate unequal-sized sphere extinction cross
secttons (R ~

——15 A., R2 ——30 A) the number of
peaks is unchanged, and the double-peak structure
is conserved even for rather large distances a. This
is due, of course, to the radius dependence of the

electromagnetic mode frequency for a single sphere.
On the other hand, the light incidence eA'ect on the
main peak remains, although it is much attenuated.
The effect is weak on the plasmon peaks. The
same behavior is observed following an increase in

radius size [Fig. 7(b): R
~

——30 A, R2 ——60 A.].

3. Magnetic permeability effect

For the above calculation, the magnetic permea-

bility of the spheres was chosen as in Ref. j.5 to be
a constant p =1. In so doing, the susceptibility
I i-0. It seemed interesting to observe the change
in the spectrum due to a finite value of I &. In fact,
for bulk sodium, p=0, 75. Such a "drastic"
change, however, does not lead to any appreciable
eAect on the spectrum. Indeed, in such a case

~

I'~/(kR)
~

=0.06. A magnetic permeability ef-

fect would strongly modify the spectrum only if
the coupling factor 8 &&

I
& sharply increases. This

is discussed in Sec. V.

B. Linear chain

The overall shape of the absorption cross-section
curve as a function of frequency does not appreci-

00-

-0.2-

-03--

-0.4
00

FIG. 6. Logarithm of the extinction cross section 0., for binary clusters of two equal-sized sodium spheres (with

p= I) in vacuum. The sphere radius is 15 k, but the sphere separation a is, respectively, (a) 30; (b) 45; (c) 60; (d) 90; (e)

120 A.. The dotted lines correspond to the case of noninteracting spheres. The field polarization (Eq or E~~) is indicat-

ed.
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ably differ from that seen on Figs. 4—7 for the
binary cluster. Therefore a graphical display of
such curves seems unnecessary for all parameter
changes. A typical example is given on Fig. 8.

Let us note that the main variation is in the am-
plitude of the small plasmon peaks. The difFerence
between amplitudes for the cases E~~ and Ej is
much more marked than in the case of the binary
cluster, in particular taking into account the fact
that the scale is logarithmic. The moderate change
in the cross-section amplitude when spheres have
unequal radii is also visible (but not shown) when
compared to that seen for the unequal-sized-sphere
binary cluster (Fig. 5). In general the frequency
separation for the main resonance is also larger.

On Fig. 9 we give some indication of such varia-
tions. The position of the main resonance is
shown as a function of the ratio R/a for the Ez
and E~~ configuration, for two values of the sphere
radius (R =15 and 30 A). Such a position for the
corresponding isolated single sphere (or for the

chain of noninteracting spheres) is shown for refer-
ence. The variation follows an inverse cubic law.
The peak position for the typical binary cluster
(R =15 A, a =30 A) is also shown. The Ez and

E~~ geometries are indistinguishable. The peak po-
sitions are slightly different from those of the
independent-sphere plasmon peaks, but cannot be
distinguished on the figure.

V. CONCLUSION

Although the presentation of a general theory of
absorption by homogeneous spherical microscopic
bodies embedded in a matrix are our first aim, we
have specialized in our study Sec. III to the case of
metallic particles in order to test the numerical
tractability of the theory. This has led us in Sec.
IV to investigate various parameters of relevance to
experimental work. It seems of interest to start
our conclusion first with comments pertinent to ex-

0.0-

bo
O

-0.2-

-0.3--

-0.4,
OQ 1.5

FIG. 7. Logarithm of the extinction cross section 0, for two separate unequal-sized sodium spheres (with magnetic

permeabi]ity p=]) in a polarized (Ez or E~~) plane wave when the sphere separation a varies. The dotted lines

correspond to the case of noninterscting spheres: (a) R~ ——15 4, Rq ——30 A. (a =60 or 75 A.); (b) Ri ——30 L, Rq ——60 A.

(a = 120 or 150 A.); (c) R ~
——30 L, R q =60 L (a = 120 A); and (d) R

&

——30 L, R q =60 A (a =240 4).
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-01-

-02-

-03-

-0.4,
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FIG. 8. Logarithm of the extinction cross section o, for a linear chain of regularly ordered and spaced sets of equal-
sized sodium spheres (JM = t) in vacuum, R; =R =30 L, a =60 A. for different field polarization.

From a purely theoretical point of view, our
theory seems to be the most general one with
respect to experimental work, except for the hy-
pothesis of spherical shape of the particles and the
neglect of quantum and thermodynamic effects.
The inclusion of multipolar interaction to all or-
ders has been simple. No calculation on their ef-
fect has been made, but it would be interesting to
observe whether, e.g., quadrupolar effects become
Iclcvant when lntcrpI'ctlng spcctrR, ln particular for
aggregated systems. Retardation efFects have been
also included. Furthermore the formalism achieves
some interesting simplification since it separates
the microscopic physics (calculation of susceptibili-
ties) from the submicroscopic ones (calculation of
interactions); hence, the position of the resonances
and the "structure" of plasma peaks are clearly un-
derstood as arising from diff'erent mechanisms [Eq.
(92)j. Further theoretical extensions would include
inhomogeneity efrects and statistical effects (based
on knowledge of the size distribution and informa-
tion such as the pair correlation function). Other
experimental geometries (spherical incident wave,
etc.) are immediately described from equations of

Sec. III.
The simplifications of Langbein s differential re-

currence relation into a pure recurrence relation is
not a small step. Compare, for example, tables of
Appendix 8 with those of Ref. 24, and see that
ours allow the inclusion of high-multipole interac-
tion effects in any calculation.

Clanget was the first to predict the appearance
of secondary structure above ~z for isolated
sphcfcs. Ruppln s lncluslon of k-dependent
damping found no shift in the position of such a
secondary structure. %e have shown here that in-
teraction effects are quasi-irrelevant for this posi-
tion, and have only some effects on the magnitude
of the absorption of the plasmon peaks. However,
Clanget did not discuss the main resonant peak,
while Ruppin's results obviously apply in the weak
density limit. %'e have shown the important influ-
ence of proximity effects, and necessarily of light
polarization and angle of incidence effects, as in the
CRsc of lonlc crystals.

&e have pointed out the danger of using a si.m-
ple form for the damping factor. Even though
such a damping is introduced to compensate for an
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quasistatic limit (k =0), but no expression was

derived for the "respective resonance frequencies
due to complicated algebra" (sic) in the presence of
plasm ons.
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APPENDIX A

FIG. 9. Variation of characteristic peak positions for

the extinction cross section of a linear chain of regularly

ordered and spaced sets of two equal-sized (8;=8) sodi-

um spheres (p= 1) in vacuum as a function of the

separation ratio (8/a). The size effect is shown by full

or dashed lines, corresponding to radii R =15 or 30 A,
respectively. The field-polarization geometry is indicat-

ed. The lower curves correspond to the main "dipolar"
resonance; the upper curves show the position and varia-

tion of the first two plasmon peaks. The dot-dash line is

the Fmhlich resonance mode for noninteracting spheres

(Ref. 15). The positions of the main resonances for the

sitnpiest binary-cluster case (It I =R2 ——15 A) are indicat-

ed by heavy dots.

unrealistic dielectric function, (it might be refined

at a later stage), it would be useful to choose a
more sophisticated dielectric function. The same

holds true for the magnetic permeability. Another

point on the damping factor is in order: the same

damping was used for e and c . DifFerent damp-

ing factors might be a more realistic situation, but

we expect no drastic qualitative difFerence on the
observations made here: the shift of the main reso-

nance due to interaction between particles and the
modification of the high-frequency structure.

After this work was completed, we came across
some older work on optical properties of aggregat-
ed metal systems, based on Maxwell-Garnett

theory, within the low-damping regime (cour) 1),
and on a numerical calculation in the moderate
and high-damping regime (nor�(1), taking into ac-
count some dielectric matrix efFect. Shifts of the
Inain absorption peaks were discussed in the

Iz ——(n + 1)sin8P„(cos8)

dP„ (cos8) P„ (cos8)
cos9 sin&+ m

dcosH sin8

In Ref. 29, Eq. (8.733.1) reads (with u =cos8)

(A2)

dP„(u)
(1—u') — = —nuP„(u)+(n +m)P„ 1(u)

=(n +1)uP„(u)

(n —m +1)P—„+1(u). (A4)

Using those identities, one can rewrite I] aIld I2,
i.e.,

II
——(1 u) '~ —[(n —m)P„(u)

(n +m)uP—„ I (u)], (A5)

I2 ——(1 u) '~ [(n—+m +1)P„(u)

(n —m + 1)uP„+1(u—)],
(A6)

RclattoIls 11ctwcc11 tllc I cgcndrc fllllct1011S P„(x)
necessary in the calculation of the transposition of
frames are given without detailed proof. In the
calculation of Eq. (24), after separating the terms
111 Zs 1(P') aIId Zs+ I(r), two Cxpl'CSSIOIIS co11'ta111

Legendre functions:

I I
——n sin8P„(cos8)

dP„ (cos8) P„ (cos8)
cos0 sino —m-

d cosI9 sin8

(Al)
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It =P„+i'(u)

Pm+I ( )

In calculating Eq. (27),

(AS)

which with Eqs. (8.735.1) and (8.735.2) from Ref.
29 1Q1me(4ately lead to

(8.733.1) of Ref. 29 into

Is (n——+m)P„ t(cos8)

I4 ——(n——m +1)P„+t (cos8) .

APPENDIX 8

(Al 1)

dP„ (cos8)
I3 nc——os8P„(cos8)+sin 8

I4 = (n—+ 1)cos8P„(cos8)

dP„ (cos8)
+sin 0

d cosO
(A10)

appear, and are transformed by substituting Eq.

In numerical work, functions V~(a) and 8'„~(n)
as defined by Eq. (43) are calculated in terms of
the solution of the recurrence relation (40) for
M„z(a). In order to facilitate an analytical calcu-
lation of these terms, concise and explicit expres-
sions of the V„~(a)'s and the W„&(a)'s can be ob-
tained as expansions, clearly showing the asymp-
totic values of the interaction terms to be used in

TABLE I. Spherical coupling parameters as defined in the text for the functions V„~(a) defined in Appendix B [Eqs.
(Bl) and (43a)]. The set in rectangles corresponds to the parameters Uk calculated by Langbein (Ref. 24). The differ-

ence in value arises from different normalizations.

I

m n q

1

2
3
4

2 2
3

3 3
4

0 1 0

0

0
0
0

2
6

12
20
10
16
24
22
30
38

6
30
90
24
66

150
13S
255
423

30
210

24
150
570
510

1410
3174

210

150
1260
1125
5085

16485

1260
112S

11025
57 64S

11025
123480 123480

1 1

2
3

2 2
3

3 3
4

4 4

2
2

l.2

2

2
6

12
20
10
16
24
22
30
38

2
12
42

110
42

102
210
207
375
623

12
90

390
96

402
1230
1230
3090
6774

90
840
96 "

900
4590
4606

16965
50685

840

900
10080
10 125
16065

263 445

10080
10 125

132300 132300
922005 1975680 1975680

2 2 2
3

4
3 3

4

I 4 12 24
10 60 210

18 180 990
2S 225 1275
45 585 4725
81 1377 15039

24

450
3510
4650

25 650
113130

t

450

7560
10 125
91 800

S90625

7560
10 125

198450 198450
2072385 4445280 4445280

3 3 25 150 52S 1125
4 105 1050 5775 20475

4 4 441 6174 49245 260925

1125
44 100

91948S
44 100

1 975 680 1 975 680

4 4 4 294 2940 16 170 57 330 123480 123480
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TABLE II. Spherical coupling parameters entering the definition of function W„q(a)

[Eqs. (B2) and (43b)]. The set in rectangles corresponds to the parameters wk calculated by

Langbein (Ref. 24). The numerical difference for these arises from different normalizations.

m n q 0

1 1

2
3
4

2 2
3
4

3 3
4

4 4

2
6

12
20
10
16
24
22
30
38

6
30
90
24
66

150
135
255
423

30
210

24
150
570
510

1410
3@4

210

150
1260
1125
5085

16485

1260
1125

11025
57 645

11025
123 480 123 480

2 2
3
4

3 3
4

4 4

4
10
18
25
45
81

12 12
60 150

180 810
225 975
585 3825

1377 12 339

150
1890
2250

14 850
69 930

1890
2250

33 075 33 075

255 150 555 660 555 660

3 3 3 25 150 375 375
4 105 1050 4725 11025 11025

4 4 441 6174 41 895 165 375 370440 370440

4 4 4 294 2940 13 230 30 870 30 870

considering eFects of small or large wave numbers
or of various distances between particles. For
m & 0, we can write

to treat interactions up to the (2,2 ) polar order.
The factor X„q has been so chosen such that u„&

and „q become integers. Notice that

ia q+n —m+1
V„q(a) =N„q m

i~u„q(j )a (Bl) u„,(j)=u,„(j) (B4)

with

ia q+n —m

W„q(a) = N„q g —i Jw„q(j )a ~ (B2)

N~=i" q (m!) n(n+1)q(q+1)A„&/4,

(B3)

(B5)w~(J) =wq. (j)

imply the additional relations

1 n+q ~

The use of the second table must be completed by
the relation

where the A~'s are defined by Eq. (44). The coef-
ficients u~(j) and w„q(j) are given for 1 & n, q &4
and 0 (m (4 in Tables I and II. This allows one

w„(j)=0 . (B7)

The elements which are not written in the tables
are identically zero.
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