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Self-consistent extended-muffin-tin orbital energy-band method:

Application to LiC6
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The extended-muffin-tin orbital {EMTO) energy-band method has been made self-

consistent by fast-Fourier-transforming the non-muffin-tin charge density. The EMTO
method is used here to calculate self-consistent energy bands for Li-intercalated graphite.
The Li s and p states are found to be empty. The carbon m states near the Fermi energy
are found to be strongly distorted from that of pure graphite.

I. INTRODUCTION

The extended-muffin-tin-orbital- (EMTO)
energy-band method' has been applied non-self-
consistently to a variety of problems: (a) CO mol-
ecules interacting at a Ni(001) surface, ' (b) poly-
mers with and without dopants, and (c) Si-Si02 in-

terface. ~ The purpose of this paper is to present a
self-consistent version, which can be applied gen-

erally. This new scheme will be demonstrated with
Li-intercalated graphite.

The EMTO method is applicable to a wide
variety of problems because the complete potential
1s trcatcd. It ls convenient to usc cvcn fol very
complex geometries, because the potential is easily
divided into spherically symmetric muffin-tin po-
tentials and a non-muffin-tin part. The non-
muffin-tin part includes thc nonsphcrical contribu-
tions to the potential throughout the unit cell, in-
cluding inside the muffin-tin spheres. The non-
muffin-tin potential is smooth everywhere, thus al-
lowing use of a fast Fourier transform for repre-
sentation in plane waves. Self-consistency is facili-
tated by dividing the charge density into a spheri-
cally symmetric muffin-tin part and a non-
muffin-tin part that is smooth enough to be fast-
Fourier-transformed. The Coulomb potential is
easily obtained for the self-consistent iterations.
The simple forms for the charge density and po-
tential enable one to easily write an expression for
total energy.

Graphite and graphite-intercalation compounds
continue to be widely investigated. In graphite in-
tercalated with alkali-metal atoms, it is thought
that the s dectrons are donated to the conduction

band. Holzwarth et al. support this interpretation
with a non-self-consistent-field (SCF) energy-band
calculation for LiC6. They find the bands to be in
quantitative agrccmcnt w1th thc corlcsponding
bands of undoped graphite. They also found the
Li 2s band to be —1.7 eV above Ez. More recent-
ly, Holzwarth performed a self-consistent pseudo-
potential calculation for LiC6. The Li2s band
was found to be —1.0 eV above E~. Overall, the
pseudopotential results resemble the earlier non-
SCF calculations.

Our calculations on LiC6 were carried out with
two different types of muffin-tin orbitals. The
first type is that used in the original formulation
of the muffin-tin-orbital energy-band method.
These MTO's are constructed from the radial solu-
tions of the muffin-tin potential and the spherical
Bessel function orthogonalized to the core states as
in the orthogonalized-plane-wave (OPW) method.
Andersen' has since advocated a second type of
linearized muffin-tin orbital whereby the energy
derivative of the radial solution of the muffin-tin
potential replaces the Bessel function part of the
muffin-tin orbital. %C will show that similar re-
sults are obtained with either type of muffin-tin or-
bitals. Finally, we will show that the techniques of
the EMTO method can be used to extend the aug-
mented spherical wave" (ASW) method to non-
muffin-tin potentials.

The SCF-EMTO method is presented in Sec. II.
Our results for LiC6 are shown in Sec. III. Section
IV contains the conclusions. The Appendix gives a
detailed derivation of the method with test results
for Si and GaAs.
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II. EXTENDED EMTO METHOD

The first step in using the EMTO method is to
construct a potential, which is divided into a
muffin-tin part VMT(r) and a non-muffin-tin part
b, V(r). VMT(r) is spherically symmetric and de-

fined inside muffin-tin spheres centered at various
atoms, with radius S. Ev(r) is defined through-
out the unit cell including the muffin-tin regions.
6V(r ) is made continuous everywhere by adding
the value of the muffin-tin potential at the
muffin-tin radius, VMTz inside the muffin tins.

VMTz must then be subtracted from VMT(r).
The EMTO method requires the definition of

two types of muffin-tin orbitals. The first type
X( (E),a, r", r) is constructed from the radial solu-

tion P( (E„r,r) of the potential VMT(r) at fixed
energy Ei for each atom 7 in the unit cell:

&i[4( «i r &)+iA ] «S
Xi (Ei,a, r, r)= ' (1)

—1(.i~(ii, r, r), r &S

where P is the derivative of P with respect to ener-

gy and is orthogonal to P. A complete discussion
of linearized MTO's has been given by Andersen. '

Ei~ is the spherical Neumann function. Ni and

co( are chosen to give a continuous wave function
and first derivative. The spherical harmonics are
also contained in the definitions of P, P, and X.
The MTO's could have been defined with a Bessel
function orthogonalized to the core states replacing

d J~~ (er)
Ni Ji(lrr)+a)i

Am= ' dK

—Xi~(ar), r &S .

r&S
(2

N, and co) are chosen to ensure continuity of the
MTO tail I(:i and its first derivative at S. The
important properties of p(~ are that it is (a) equal

to the MTO Xi outside the muffin-tin radius, (b)
smooth inside the muffin-tin spheres whereas Xi~
may have nodes, and (c) independent of the poten-
tial and need be evaluated only once.

A basis function %' "(r) is now formed from a
linear combination of MTO Bloch functions Xi~.

(r)=ggc~(m%m(Ei &' r &)
P elm

A sum over ii is included since for open struc-
tures' such as Si, it is necessary to use both short
range MTO's (a & 0) and long range MTO's
(a & 0) in the basis function. For close-packed
metals, only one K is necessary.

The complete derivation of an arbitrary matrix
element is given in the Appendix:

P as was done in earlier work. We will show that
similar results are obtained with either type of
MTO.

The second type of muffin-tin orbital, pi (~,r, z),
is constructed from the spherical Bessel and Neu-

man functions, Ji and Ei, respectively,

(X," ~H —E ~X,")=(p,"
~

',+~V+V „e—E ~p,")„„,„„,+(X,"
~

—V'+V, —E ~X,"&,

(4)

(This equation corrects misprints in earlier paper. ')
l and 2 represent two sets of parameters K, 1~m,,
E, and ~ necessary to define the MTO, X(~ pj"
(j= 1,2) denotes the Bloch function formed from
the smooth type of MTO. As indicated in the Ap-
pendix, integrations over the muffin-tin regions
(MT) are easily performed because of spherical

symmetry. The term involving integration over the

unit cell is evaluated numerically and requires a
full discussion. First, the unit cell is divided into

polyhedra by dividing the three unit-cell vectors
into sections roughly 0.35 A long. Next the Bloch
function pz" is evaluated at the same point in each

polyhedron. The function p~" is sufficiently

I

smooth that a fast Fourier transform (FFT) yields

a finite-series representation:

p (r- ~ S ~2) yM e ~(o —k)(r y)
G

The numerical integration over the unit cell in Eq.
(4) is then performed by choosing an appropriate
number of random points in a given polyhedron.
The wave function p&", is evaluated at these ran-
dom points and in all other polyhedra by using the
inverse FFT of Eq. (5). Furthermore, the inverse
FFT yields the wave function p&" for all atoms
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with the same muffin-tin radius. The function»"
does not depend on the potential and is evaluated
only once and then reused during iteration to self-
cons1stency.

Polssons s equat1on can be solved by putting the
charge density into a spherically symmetric part
and a Fourier series. The charge density can be
put in such convenient forms for self-consistent
iteration by adding and subtracting the term

f
g+Npik

(

2.
E, =pe; ——,Jp(r)dr f — dr'2p(r ')

2Z--.' -v-p- -+-,' (10)

is used to evaluate the total charge density at all
grid points In the un1t cell.

& V'"(F)=f,.(p(r)) —f,„(p,~h(r)) .

The above expressions for charge density and
Coulomb potential are in a convenient form to
derive an equation for total energy per unit cell:

8 J J

+X X~i&i

where j represents r, I, m, and k . The sum over
occupied states is represented by n. CJ are the
coefficients of the wave function. The first two
terms provide a sphericaBy symmetric charge den-
sity that goes to zero at the muffin-tin radius, S.
The last term is smooth everywhere in the unit
cell and is calculated on the same mesh of
points as previously used to evaluate the MTQ pJ.".
Application of the FFT to this term yields a finite
Fourier series which when added to the muffin-tin
part gives the total charge density.

p(r)=pMT(~r I)+gpoe 'o * (7)

It is now straightforward to solve Poissons's equa-
tion and obtain a radial Coulomb potential due to
pMT(r), a Madelung term due to the constant back-
ground p(G' o& and a plane-wave term due to

g po exp( —io.r) .
G~

The exchange potential is straightforward
enough to evaluate, even though it depends non-
linearly on the charge density. The exchange po-
tential is divided into a spherically symmetric part
that depends only on the true muffin-tin charge
density.

Vsp»(&) =f'"(p.ph(i) ),

2

psih(&) =g QCJ"X,"

where n is a sum over occupied states, and f'" is
the exchange-potential function. To evaluate the
nonspherical part of the exchange potential, Eq. 7

where a V =—3a(3pln)'~ and c are the band-
structure eigenvalues. These calculations are in
progress. The above derivation follows precisely
that of Ross and Johnson' and is not repeated
here.

The above formalism is easily applied to mol-
ecules and thin films in conjunction with a super-
lattice. ' In this model, molecules or films are
separated sufficiently from neighboring molecules
or Alms so that they do not interact. The main
advantage of the superlattice model is that three-
dimensional FFT's can be used to calculate the
wave function and solve the nonspherical Coulomb
potential.

The EMTO equations in Eq. (4) can be related
to those of the LMTO method' by allowing the
muffin tins to overlap and setting b, V=0. The
LMTO formalism' is worked out only for a =0.
However, by using the ENTO formalism and
FFT's, one can generalize the LMTG equations to
any value of a or even to two sets of MTO's per
atoms. Furthermore, for b, V =0, the integral over
the unit cell in Eq. (4) becomes a simple sum over
the reciprocal-lattice vectors G.

Our method for treating nonspherical potentials
and charge distributions could also be used to ex-
tend the augmented-spherical-wave (ASW) method
of %'illiams et aI.," so that a general potential
could be treated. Currently, the AS% method ap-
proximates the true potential by overlapping muf-
fin tins as in the LMTO method. The wave func-
tion in the ASW method is defined as a linear
combination of augmented spherical waves. The
augmented spherical waves are defined in an
equivalent manner to our MTG's in the interstitial
region as both have identical tails. Inside the muf-
fin tins, Williams et al. choose radial solutions at a
specific energy to obtain continuous wave func-
tions over the muffin-tin spheres whereas we have
chosen the radial function and its first derivative
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with respect to energy.
The first step in deriving their method for non-

muffin-tin potentials is to apply the variational

principle and obtain an equation similar to Eq.
(Al) in the Appendix.

+(hi"
I

b, V
I

Ii" )MT,,+(Ii)"
I

7+—hV E
I

—}'i

hj denotes the augmentixl spherical wave, and j
denotes I, m, v, and x . One adds and subtracts
the term in Eq. (A2). The rest of the derivation

proceeds exactly as for the ENTO method. The
Coulomb potential for the SCF procedure is also
solved similarly.

III. BAND STRUCTURE OF I.iC6

A. Crystal structure and basis set

The crystal structure of LiCs consists of two-
dimensional hexagonal carbon planes separated by
Li intercalates. ' The carbon planes are dilated by
about 1% over that of pure carbon (hexagonal lat-

tice constant a =4.85 A). The carbon layers are
stacked 1n direct reg1stry with 1espect to each other
so that there is only 1 unit of LiC6 in the primitive
cell. The distance between carbon layers (c =3.706
A) is 10% over that in pure graphite. Finally, the
Li atoms are arranged midway between the C
layers so that there are six C atom nearest neigh-

bors below and above each Li.
As discussed in the previous section, MTO's are

defined by the energy at which the radial solution
of the muffin tin potential is calculated and also

by the energy x of the Neuman function tail. The
energy parameter was taken to be —4.0 eV, which
is near E~. The x parameter was chosen to be
—0.4, —0.1, 0.3, and 0.5 Ry. v =0.3 Ry gave the
lowest eigenvalues. Only the s and p MTO's were
included in the basis set. Thus, at a general k
point, the matrix size is 28&28.

The crystal potential was obtained using the
Hedin-Lundquist X~ exchange approximation.
The charge density was calculated using a 3-k
point-sampling scheme based on the special points

for a hexagonal film. '

B. Band structure of I j,C6

The energy bands for LiC6 using the Hedin-
Lundquist exchange are shown in Fig. 1. The

4-

-8-

-)2-Cl

4LI

-20-

I I I I

K I' A L

FIG. 1. SCF energy bands of LiC6 using parameters
sc =—0. 1 Ry and E = —0.3 Ry.

I

bands have been labeled according to the conven-

tion of Holzwarth et a/. The carbon m and 0.

bands are represented by dashed and full lines,

respectively. Bands derived primarily from the Li
s and p states have been darkened to distinguish
them from C states. It is clear from Fig. 1 that
the Li s and p states are empty.

In Fig. 2, the non-self-consistent energy bands
are presented. The starting potential here was con-
structed by overlapping neutral atom charge densi-

ties. Comparison of Figs. 1 and 2 shows that the
major effect of iterating the non-SCF bands in Fig.
2 is to change the position of the Li states relative
to the C states. At the I point, the Li s state is 4
eV above the n. states for the non-SCF. For the
SCF results in Fig. 1, the Li s state is only 2.0 eV

above the m states. The dispersion of the bands in
k space and the positions of the-C ~ and o bands
are quite similar for the SCF and non-SCF results.

Eberhardt et al. ' have identified several features
of LiC6 at the I point, using angle-resolved photo-
emission. In Table I, a comparison is made of
these experimentally identified features and our
SCF results. Because of the limited number of k
points used in sampling thc Brillouin zone, the
determination of Ez is approximate. The MTO
band structure compares well with experiment for
all levels.

Eberhardt et al. '7 also performed Li core-
threshold photoyield spectra. Two peaks were
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FIG. 2. Non-SCF energy bands of LiC6.
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FIG, 3. Comparison of energy bands of LiC6 Using

orthogonalized MTO's and linearized MTO's both with

parameters E =—0.3 Ry and x2= —0.4 Ry.

found at approximately 1.4 and 6 eV above E~.
Inspection of Fig. 1 indicates a peak due to Li
states at 1.5 eV above E~.

The Lip states hybridize very strongly with the
C states above E~. Their energies depend strongly
on which ~ is used in the basis set. We have not
displayed these unfilled states as we are not sure of
their positions.

Finally, we wish to compare the difference in re-
sults obtained with MTO's formed with an ortho-
gonalized Bessel function as with an LMTO. In
Fig. 3, SCF bands using orthogonalized MTQ's are
shown along with SCF bands using SCF-linearized
MTO's. The MTO parameters E and x were
—0.3 and —0.4 Ry, respectively, for both basis
sets. The two sets of bands are too similar to say
which compares better with experiment.

TABLE I. I"-point binding energies relative to Ez (in

eV).

We can see the effect of different choices of the
parameter a by comparing Fig. l (a. =0.3 Ry)
with Fig. 3 (~ = —0.4 Ry). The positions of the m.

states are about 0.4 eV closer to the Li states for
the a =0.3 Ry. This value is more in line with

experiment as discussed earlier.

IV. CONCLUSIONS

Self-consistent energy bands have been obtained
for LiC6 which agree well with photoemission
data. In the future, our SCF computer programs
mill be extended so that a double set of MTO's on
each atom can be used as a trial basis function. A
double set of MTO's will improve the agreement
between theory and experiment over a m'ider energy

range and allow us to calculate unfilled states more
accurately. Currently the programs are being
developed to calculate total energies.

Symmetry
label

EMTG

1+
6—5+

—21.3
—14.79
—14.2
—12.9
—12.39
—9.49
—5.0
—0.991
—0.716

0.902

—22.5+0.4
—15.2+0.5

—9.3+0.3
—5.0+OA
—0.5+0.03
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APPENMX

(Al)

The matrix elements of the Hamiltonian can be divided into integrations over the muffin-tin (MT) and in-

terstitial regions:

&X,
'

I

—~'+VMT+~V —E IX2" &=&Xi"
I

—~'+VMr —E IX~ &Mr'

+&Xi"
I
~V IX2" &MT +&'Xi"

I
~ +~V & IX2" &iniersiiiia

The notations 1 and 2 represent two arbitrary sets of MTO parameters I, m, x, E, and r. The major obsta-
cle to solving the equation is that the interstitial integration is discontinuous. Thus, the muffin-tin term will
be added and subtracted,

&pi"
I
-~'+~V+VM--~ IpP &M. ,

so that the discontinuity is eliminated and the term &Xi"
I

b, V
I
Xq" )MT is approximately cancelled. VMTz

is the value of VMT(r) at the muffin-tin radius.
The MTO p~" has been previously defined in Sec II. W. e will only add thag pj" =XJ" at the muffin-tin

radius and that this function is smooth throughout the unit cell. The MTO X~ behaves differently in that
it contains rapid oscillations introduced by solutions to the Schrodinger equation from which it is construct-
ed.

Equation (Al) now becomes

~ +VMT+~V E IXz" &=&Xi"
I

~ +~V E IX2 &i~terspheie

k
+&p," I

V'+hv+v— E lp )—
+ &Xi"

I
—()'+ VMT —E IX&" &MT —&pi"

I
—()'+ VM» —&

I
p2" &MT

+&Xi"
I
~V IX& &MT —&pi" I« lp2" &MT.

The first two terms are combined and the last two terms are approximately equal and cancel. Further,
—V' pj

——x p~ so that

The function 6 is equal to unity inside the
muffin-tin spheres and zero outside. VM»e must
be added to hV which otherwise would be discon-
tinuous at the muffin-tin boundaries.

The integrals over the muffin-tin spheres have
been discussed in detail in previous work and will

only be summarized here. One cd reduce the
multicentered Bloch functions 7J" and pj" to
smgle-center sums wlthm a given sphcrc. For ex-

ample, the MTO at site w~ can-4e expanded about

+X~i.M(r —«)ALM i
LM

(A5)

where E& and m; are normalization constants. J&M
is a Bessel function for r greater than the muffin-
tin radius S, and is a combination of P; and P; ap-
propriately normalized for r &S. Thus, Eq. (A5)
enables the integrals over the MT volumes to be re-
duced to radial integrals.

&Xi"
I

—~'+VMr+~V —E IX,
" &=&pi"

I
2+~V+VM»e —E lp&" &

+&Xik
I

&'+vM. & IX2" &
——&pi"

I
~~~+—vM»e —E

I

p~" &M' «~)
I
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The remaining integral is performed numerically

by dividing the unit cell into polyhedra and choos-
ing random points within a polyhedron. The wave
function p&" is evaluated at an identical point
within each of the polyhedra. Application of the
fast Fourier transform gives a finite plane-wave ex-

pression:

k
—i( 6 —k ).( r —7;)

pj. —— Mp e

The inverse FFT is used to generate all the re-
quired values of the wave function at the random
points.

The key approximation in the EMTO method is
that

(~1
I
~V 1~2 ~MT (F 1

This approximation is valid near the muffin-tin ra-
digs even though+ V has its largest value because
Xi" is equal to p i" . Jn the inner portiotl of the
muffin-tin sphere, Xi" deviates from p2", but b, V
becomes very small.

In order to test the above approximation,
energy-band calculations were performed for Si
with the EMTO method and the LCMTO (Ref. 9)

method for identical potentials. In the LCMTO
method, the potential is expanded in spherical har-
monics within atomic Wigner-Seity cells about
each atom. Thus, there are no approximations to
the potential. The two-band calculations agree to
within 0.01 eV, ' thus supporting our conclusion
that the approximation used in the EMTO method
is valid.

Finally, a self-consistent energy-band calculation
for Si is in close agreement with the linearized
augmented-plane-wave (LAPW) results of
Hamann. ' At the major symmetry points we ob-
tain in eV (Hamann's results are in parenthesis):

yi —11.87 ( —12.02), y25 0 0 (0 0)» y12 2.44 (2.49),
y2 3.38 (3.18), Xi —7.88 ( —7.84), X~ —2.92
(—2.82), Xi 0.57 (0.55), X4 10.18 (10.32), L2
—9.69 ( —9.64), L, —6.98 (—7.06), L 3

—1.27
(—1.16), L i 1.47 (1.40), and L3 3.25 (3.37). For
GaAs we obtain in eV: y~

—11.87, y~5 0.0, y~
1.23, y)5 3.98, X) —9.93, X3 —6.45, X5 —2.63, X)
1.54, L ] —10.59 L )

—6.38, L3 —1.15, L ] 1.43,
and L3 4.84. The above results suggest the high
level of accuracy obtainable with the EMTO
method.
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