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The purpose of this paper is to show how some interesting numerically exact thermal averages

can be computed for finite two-dimensional Ising models by a transfer-matrix method, and to

apply these methods to the Ising version of the Edwards-Anderson (EA) model of a spin-glass

to ascertain whether there is a phase transition. We do not study the spatial dependence of
(irca i) for, as we show with an example, its behavior for finite systems can be misleading. It is

first shown how to obtain XEA, defined by XaA =N ' X((a,a J) r) J. We compute XsA and

study the quantity A =—sin(XsA)/BT, both as a function of temperature (y) and of the

number of spins (N) in the system. The results obtained for square systems of up to 100 spins

in the case where J= %1 with equal probability and for square systems of up to 121 spins in the

case where each J is normally distributed about J=0 are in accord with the existence of a criti-

cal point at To = 1.0 and at To =0.6, respectively. In addition the value v =1 is obtained. The

value q =0 for T & 0 is consistent with the results obtained. The low-temperature entropy per

spin (S) is computed for long strips of different widths, Extrapolation to an infinite width yields

S/k =0.07. It is also shown how to calculate the probability, P(q), that the quantity,

q =N i gr;o;, where each r, =0, +1 take any value in the range I «rt«1. The probability,

P(q), obtained for the EA model at low temperatures often has several maxima separated by

regions of improbable values of g, as is to be expected of a system with metastable states.

I. INTRODUCTION

Spin-glasses' have been the subject of interest in

the past few years. The so-called canonical spin-

glasses are metallic alloys of a magnetic-transition-
metal solute in a noble metal, such as CuMn or AuFe
at low solute concentrations. The magnetic atoms are
quenched in supposedly random positions and in-

teract amongst themselves through the Ruderman,
Kittel, Kasuya, Yosidas (RKKY) exchange. The ran
dom location of the local moments plus the long-

range oscillatory nature of the RKKY interaction pro-
duce a random mesh of ferromagnetic and antifer-
romagnetic bonds, some of which must necessarily be
broken even in the ground state. This property,
known as frustration, and strong frozen disorder
have come to be recognized as the essentia1 features
of, not just the canonical spin-glasses, but of all spin-
glasses. ' A different example of a spin-glass is the
insulating system Eu„SrI „S, ~here two magnetic
atoms (Eu) interact ferromagnetically if they are
nearest neighbors, but they interact antiferromagneti-
cally if they are second nearest neighbors. At suit-
able values of x (concentration of magnetic atoms),
there is again both: (a) strong disorder in the position
of the moments; (b) consequently, not all ferromag-
netic and antiferromagnetic bonds can be satisifed,
i.e., the system is frustrated.

q(t) =N ' $(S,(0) S,(t)) (1
I

where Si(t) is the ith spin at time t, the sum is over
the N spins in the system, and () denote thermal
averages, does not vanish at low temperatures for
t (10 ' sec. Furthermore, it followed from the
Mossbauer work, and was confirmed by neutron
scattering experiments, that different spins freeze in
different random directions, that is,

N 2 g(S; SJ)exp(iQ Rt) =0
ij

(2)

for any Q, where R,t is the position of the ith spin
with respect to the jth one.

Initial results obtained by Edwards and Anderson~
(EA) for their model agreed with Eq. (2) and they
obtained a nonvanishing order parameter,

q =N ' g(S, ) (3)

Due to the combined effects of disorder and frus-
tration, the low-temperature properties of spin-glasses
are not fully understood. Whether a sharp phase
transition exists separating the paramagnetic and
spin-glass phases has not yet been established either.
Early Mossbauer studies showed that, at least for the
observation times of this type of experiment (10 ' sec),
the spins in the system freeze, that is, the quantity
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below the freezing temperature, Tf. The Ising ver-
sion of the EA model, with a Hamiltonian given by,

X = fair;irt 0 fir .'ir =+1
»

(4)

where each J» is an independent random variable
with a probability density p(Jit) ~ exp( —J it/2) if i

and j are nearest neighbors of J = +1 with equal pro-
bability, has been the most widely studied spin-glass
model. It is a strongly disordered system with frus-
tration. 4 In the following, we shall be referring to
this model unless stated otherwise. Monte Carlo
(MC) work'0 seemed to confirm at first that q & 0 at
low temperatures in two and three dimensions. In-
stead, Bray et al. "argued that the MC results
showed that q(t) vanishes, albeit very slowly, as
t ~ at low temperatures. More recently, Morgen-
stern and Binder' have used a transfer-matrix
method (see Sec. II of this paper) to obtain results
indicating that q vanishes for T ~ 0 in two dimen-
sions. As is well known, the behavior of q (t) as
t ~ bears directly on the behavior of the suscepti-
bility in the Ising version of the EA model, since"

dimensions. A critical review of renormalization-
group results and their reliability has been given by
Kirkpatrick. '

More recently, Morgenstern and Binder (MB)"
have applied the transfer matrix method (see Sec. II
of this paper) to the Ising EA model in two dimen-
sions. We have also developed and applied this
method independently, ' This method provides nu-
merically exact results for any one system with a
given set of exchange constants. Since it is a numeri-
cally exact method, it avoids some of the pitfalls of
MC and of the renormalization-group work. There
are two main limitations in the application of this
method however: (a) practical considerations do not
allow the applicability of this method to large sys-
tems; (b) averages over an infinite set of systems with
different exchange constants cannot, of course, be
carried out.

By an approximate method, MB first obtain the
spin directions in a ground state of the system. Let
r, =1(—I) if the ith spin points up (down) in such a
ground state, They then compute, for that particular
ground state, the quantity i', given by,

x(t) = (1/kT) [I —
q (t)], i''=N ' Xr, r&(tr, tr&) r (6)

where X(t) is the magnetization of the system at time
t divided by a vanishingly small external field which
is switched on at t =0. Thus, if q(t) does not vanish
as t ~, then the equilibrium susceptibility,
X(t ~), is purely paramagnetic, as follows from
Eq. (5), and any observed departure from such a
behavior would be a time dependent effect, as
stressed by Bray et al."

The previous remarks pertain to the low-
temperature nature of spin-glasses; however, whether
a sharp phase transition exists separating the
paramagnetic and spin-glass phase, a question of con-
siderable recent interest, cannot be settled by show-
ing that q vanishes for all T W 0; q =0 does not rule
out a phase transition as in the XY model. '

The existence of (or lack of) a sharp phase transi-
tion has not been established unambiguously by ex-
perimental work. " Different interpretations of neu-
tron scattering results have led to different views on
this question. ' On the other hand, the magnetic sus-
ceptibility as a function of frequency, X(i0), can be
obtained by magnetic resonance work. A sharp cusp
in X(co) vs Tat some temperature Tf(co) implies a
sharp phase transition if Tf(oi) lends to some
nonzero value as ~ 0; otherwise, the susceptibility
cusp would be a transient effect, albeit, a very long
lived one. Again, there seems to be no general
agreement on this point. "

Most theoretical work and computer simulations
have been done on the Ising version of the EA
model. Different renormalization-group calcula-
tions' have produced different answers regarding the
existence of a true phase transition in 2 or 3 space

where the sum is over all 1 ~ i ~ N and all 1 ~j ~ N
and () r denotes a thermal average. The results of
MB obtained for finite N point towards i' 0 as
N ~ if T )0. For the EA model with each
J =+1, Q seems to vanish as N ~ even at T=0.
The vanishing of iii suggests that q vanishes also,
although as MB remark, it is not necessarily so if
T &0.

In this paper, we study the quantity,

XEA =N X ((irlirj) r) J

where ()J denotes an average over systems with dif-
ferent sets exchange constants, and the double sum
extends over all values of i and j. This quantity has
the virtue of not being tied to any ground state as iii

is, furthermore, the relation

XFA q
N ~oo

is valid at any temperature. In addition, as has been
pointed out by Chalupa, ' the quantity X2, defined by,
X = Xp+ X2h'+, where h is the applied magnetic
field, and XFA are related; the relation simplifies if X2

diverges, then, as T Tf from above,

X2 —3XPA/kT

where k is Boltzmann's constant. On the other hand,
as is well known, —X2 must be very large in the vi-
cinity of Ty, for quite small applied fields are enough
to round the cusp in X vs T. Indeed, the experimen-
tal results of Miyako et al. indicate a diverging X2
at Tf. We therefore explore (in Sec. II) the distinct
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possibility that, in the EA model, XFA ~ at Tp,
whether q =0 for T ( Tp (in analogy with the XY
model in two dimensions) or not.

The nature of the spin-glass phase (quite indepen-
dently of whether a sharp phase transition separates it
from the paramagnetic phase) has not been fully es-
tablished yet. Experimental' work shows that there
are many states available at low temperature, since
the entropy (S) is linear in T. Monte Carlo'P work
has also produced S ~ T at low T for the EA model
with J normally distributed and S 0.10 as T 0
for the two-dimensional EA model with J = +1,
which is significantly larger than the value S =0.07
found by MB by the transfer matrix method. The
likely origin of the discrepancy in these two values is
easily understood. First note that in MC work, as the
temperature is gradually lowered the relaxation times
becomes longer and the energy (E) of the system
fails to reach its equilibrium values by ever larger
amounts, thus, from

C= BE
BT

(10)

one gets a value of C (specific heat) which is lower
than its equilibrium value. Now, S is obtained"
calorimetrically in MC work, that is by means of,

S(T) =S(T oo) —
l [C(T)/T]dT, (ll)

whence an overestimate of S( T =0) follows. Such
an effect has been anticipated' by theoretical work
on Ising chains with random bonds and has been ob-
served experimentally. " This discrepancy in the
T 0 limiting values of S illustrates the importance
of long-time effects spin-glasses.

It is thought' that many of the states available
to spin-glasses at low temperatures are metastable
states, which are responsbile for their slow relaxation.
The transfer matrix method is also useful in this re-
gard to check this idea. Consider any spin configura-
tion {T], T2. . . , Tn {,and let

g=N ' Xr;o; (12)

The probability that q take any value in the range
—I ~ q~ 1 can be obtained (see Sec. II D) at any
temperature. If ~; =1 for every i, for instance, then

q is the magnetization per spin; on the other hand, if
the value of each 7

&
is chosen according to ground-

state spin configuration, then P(q=1) 1 and
P(riA I) 0 if there is no ground-state degeneracy.
If the picture of multiple metastable states at low

temperatures is right, the P(q) should have some
humps associated with metastable states separated by
regions where P is small. The quantity P(q) con-
tains additional information as well, such as the value
of i{i studied by MB, since

i{i'= $q'P(v))

as follows from Eqs. (5) and (9). The magnetic sus-
ceptibility at any field 0 can, of course, be calculated
from P(q) if ri=l.

The paper is organized as follows: Our methods
and results are presented in Sec. II, while the con-
clusions appear in Sec. III. Section II comprises
several parts. In Sec. II A an explanation is given of
the application of the transfer matrix method to the
computation of the equilibrium values of the two-
dimensional Ising model with any given set of ex-
change constants. In Sec. IIB it is shown how to ob-
tain XaA, defined in Eq. (7), and its critical behavior
is studied. Our results for the EA model in two
dimensions are consistent with g

—( T —Tp), with
v =1 +0.5, To = 1.0 for the case in which J = +1,
but TD =0.6 for the case in which J is in the form of
a Gaussian distribution. In Sec. IIC, the entropy of
very long strips of EA systems with J = +1 is ob-
tained at a very low temperature ( T =0.1) for dif-
ferent widths; the value of the entropy, extrapolated
to an infinite width, is in agreement with the result of
MB. In Sec. II D, we show how to calculate the pro-
bability P(ri) that g, defined in Eq. (9), take a given
value. It is obtained for some temperatures for a
couple of choices of the set {r; j.

In Sec. III we conclude that there is a phase transi-
tion in the two-dimensional Ising version of the EA
model. To support this conclusion, we contrast our
results with: (i) Xa~ for an Ising model with random
bonds in one dimension (where one knows that no
phase transition exists); (ii) the quantity
X $s ((ri i)rJfor an ordinary Ising ferromagnet in

two dimensions, where a phase transition is known to
exist. It is also shown that (o.;ai) =A exp( —r'J/$),
for a finite Ising ferromagnet of 10 & 25 spins at
T =2.2 (note that T, =2.27). This result is to be
contrasted with (o;of) —r 'i4 which is the known P

behavior for an infinite system at T = T, ( T, = 2.27).
This result undermines the conclusion of MB that
there is no phase transition in the EA model in two
dimensions, since their conclusion is based on their
result that ((o.;oi) r) J —exp( —r&/() for a finite sys-
tem at low temperatures with the points i and j
within a distance smaller than g to the boundary of
the system. Thus, the possibility that ((o;oi) r) J

rij below some temperature for an infinite EA
model cannot be excluded.

II. METHODS AND RESULTS

A. Transfer matrix

Consider a square lattice of spins with columns and
rows with semiperiodic boundary conditions'. the lat-
tice is on a cylindrical surface with its columns paral-
lel to the cylinder's axis. We could just as easily deal
with a system with free boundary conditions, but it
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will not do so here. On the other hand, to use fully
periodic boundary conditions is impractical, as may be
appreciated below. Let all the spins (o i, a2, . . . , o.M)
on the uppermost row (let it be the nth one) be fixed
while a sum all over the other spins in the system
is performed, and let Z(a.i, o.2, . . . , o.AJ) be such a

Z„= QZ(at, a2, . . . , iTAJ) (14)

and

partial sum over states. Clearly, the partition function
Z„ fulfills

i

Z„+t(at, o2, . . . , (TAJ) =exp P go'l(J o i+i +H) g Xexp(PJlolol')Z(o'I, o2, . . . , iTA'J)
I l

I

(15)

where {J } is the set of horizontal bonds in the
(n + 1)th row, and {Ji } is the set of bonds connect-
ing the nth and (n +1)th rows. Equations (14) and
(15) suggest immediately the iterative procedure to
be followed to obtain Z„. Note that performing the
operations in the order indicated in Eq. (15) leads to
a computing time which goes as MN2, not as 2 ",
where M(N) is the number of columns (rows).

B. Edwards-Anderson susceptibility

To obtain XEA, defined by Eq. (7), first let
0 ln(XEA)

() T
(22)

I

if N ~) there, whereas XEA would just increase
monotonically as T decreases. Unfortunately
((o.;) T(irj) T) J can only be obtained for a very large
system (N ~, to have a broken symmetry), and
we consequently only obtain XE& and not XE~, if, on
the other hand, there is either no phase transition or
there is a phase transition as in the XY model, in
which XE~ would diverge at some To but q =0 for
any T ~0, then, of course, XE~=XEp, for all T ~0.
Anyway, it is most convenient to study the quantity

Xo=N ' lim lim(P) 2821nZ/BH2
N~oo H~

which yields

(16) for reasons that will become immediately clear. Let
us first assume that, at least for T & To,

XP = N ' $(iT;o j)T, (17)
XEA

where g is a correlation length, as follows if

(23)

since (o.;) T =0, due to the unusual order in which
the limits are taken in Eq. (16). Clearly, Xo only
equals the physical susceptibility if no symmetry is
broken, i.e., if (o., ) T=O. To perform Eq. (16) nu-

merically, we use 48 =10 N ' kT. Now note that

(( j)T) J f(T /0)/«J

Now, if in addition g —
~1

—T/To~, then,

(24)

(25)

(Xo)J —(XP) J = 2N ' X ((iri(TJ) T) J whence,

(26)
where the prime indicates that the term i =j is ex-
cluded, since

((~i~j) T(~l~m& T) J

((iriirj) T) J(gilgjm + gimgjl) + 8 jslm (19)'

It follows from the definition of XEA, Eq. (7), that

for an infinite system. However, for a finite system,
A saturates when g becomes comparable to L.
Therefore,

(27)

at g( T) = L, where L is the side of the square sys-
tem. On the other hand, since

XEA = (N/2) ( (Xo) J —(XP) J) +1 (20)
XEA ~~N (28)

Thus, averaging Xo and Xo over systems with dif-
ferent sets of {Jj I yields XEA. Note that (Xo)J = 1.
It would be more convenient to study the quantity,

it follows from the definition of A, Eq. (22), that

A( T) dT ~ ln(N) (29)

XEA XEA N $((iri) T( )T~T)JJ i (21)

than to study XE~, for if there were a phase transition
at some To, and if in addition ((a ) T) J &0 for
T ( To, then XEA would conveniently peak (diverge

From Eqs. (27) and (29), it follows that if g diverges
at some nonvanishing temperature To with a finite v

then plots of A vs T, .for systems of different sizes,
will show maxima in A at To, and these maxima,
A(TO), will obey Eq. (27).
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A= limA(n) (30)

We now summarize our procedure to obtain A.
Following a given rule (for instance, each J = + I
with equal probability) all the exchange constants of
the system are assigned. Next, Xp is computed by
means of Eq. (16) for this one system. Assigning a
new set of J's we compute a second Xo, and so on up
to n times. Equation (20) yields Xs~ only in the limit
n ~. Let the value of XFA, obtained by applying Eq.
(20) to a set of n systems, be XsA(n), and let the cor-
responding value of A, obtained from Eq. (21), be
A(n). Since,

—2—

8x8 SPINS
T= 0.9
J=+ 1

ooM~
~o

OOGQooo()

ooo~———ooo

we have examined A(n) vs n It .is shown for some
particular cases in Fig. 1 for the case J = +1, and in
Fig. 2 for the case in which J is distributed normally.
From curves such as the ones shown in Figs. 1 and 2
follow the estimated statistical errors of the values of
A we quote.

We have calculated A for systems for L & L spins
both for J = +1 with equal probability and for J dis-
tributed normally about J =0. In the first case
(J= +I) values of A were obtained for: L =4, 6, 8

and 10, by averaging over 600 systems for L =4, 6,

I

8 x 8 SPINS
T = 0.5
J NORIVIAL

(0

0
00 o 0 00

200 400 600

FIG. 2. As in Fig. 1, the values of A, defined in Eq. (22),
obtained are shown for a system of 8 x 8 spins at T =0.9 vs
the number (n) of systems averaged over. Each system
contains a particular set of Jvalues assigned by means of an

unbiased random number generator which yields +1 or —1.
The dotted lines show 1.87 %0.20 (600/n)'/~ where 1.87 is

the best value of A [i.e., A(n =600) ], 0.2 is the estimated
statistical error in this value of A, The statistical error (0.2
in this case) is estimated with the criterion that most of the
values A(n) obtained must lie within the dotted lines.

I

x 4x4 SPINS
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800 1200
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FIG. 1. The values of A [defined in Eq. (22)] obtained
are shown for a system of 8 && 8 spins at T =0.5 vs the
number (n) of systems averaged over. Each system con-
tains a particular set of Jvalues assigned by means of a
Gaussian random number generator. The two dotted lines
show 2.3 +0.2 (1200/n) / where 2.3 is the best value of A

[i.e., A(n =1200)], 0.2 is the estimated statistical error in
this value of A. The statistical error (0.2 in this case) is es-
timated with the criterion that most of the values A(n) ob-
tained must lie within the dotted lines.

x
0

FIG. 3. The quantity A is shown for systems of various
sizes vs the temperature (T). The values of J are +1 with

equal probability.
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FIG. 4. As in Fig. 3, the quantity A is shown for systems
of various sizes vs the temperature (T), The values of J are
normally distributed.

8 1nx'
F BT

(31)

where X' =X ' X(o;oJ) r, for the Ising ferromagnet.
Furthermore, we have computed A, as defined by
Eq. (31), with X'=N ' gI (oioj) I, for the modified
Mattis model. These results are also shown in Fig. 5.
They are analyzed in Sec. III.

C. Entropy

The low-temperature entropy of systems of n spins
wide by t spins long has been computed for the case
of J = +1 with equal probability. The entropy is
computed by means of

and 8, and over 420 systems for L = 10; the results
obtained are shown in Fig. 3. In the second case (J
in the form of a Gaussian distribution), values of A

have been obtained for L =4, 6, 8, and 11, by averag-
ing over 1200 systems for L =4, 6 and 8, and over
300 systems for L =11, the results are shown in Fig. 4.

Both Figs. 3 and 4 exhibit maxima, A(Ta), at tem-
peratures which appear to be independent of the size
of the system. In addition, A( Ts) increases as L in-
creases, as is exhibited explicitly in Fig. 5.

For comparison, we have also computed

FIG. 5. The maximum value attained by (8lnX'/BT) as a
function of temperature is shown for square systems of side
L as a function of L for (i) an Ising ferromagnet (open
squares) (X'—= iV X(o,o ) ); (ii) the modified Mattis
model (crosses) (X'—= N ' (~(ir,oq)l)); (iii) the
Edwards-Anderson model (open triangles for J = k I and
open circles for Jnormally distributed) X' = XEA. In all

cases, the boundary conditions are semiperiodic. Note that
the modified Mattis model and the ferromagnet yield the
same results. The statistical errors for the EA model in-
crease from 0.1 for L =4 to 0.5 for L =11.

hE =2J(n —2p) (33)

AT =0.1, for systems 300 spins long with a width in
the range 4 ~ n ~10. For any given n, the results
were averaged over 10 systems with different sets of
exchange constants.

The entropy per spin in units of k is shown in Fig.
6 as a function of n for T = 0.1. Two distinct
branches can be seen in the figure: a high one for n

even and a lower one for n odd. Both branches seem
to converge as n

To understand why there are two branches in Fig.
6, one for n even and one for n odd, consider a close
path around the cylinder on which the system is
placed and the number (p) of broken vertical bonds
cut by such a path. Note that due to frustration
some bonds will usually be broken in the ground
state. Now, if all spins above the closed path are
flipped with all spins below fixed, the energy will

change by,

S = 5(kT InZ)/hT

We have carried out this calculation, using

(32)
which can only vanish for n even. Thus, there is an
extra ground-state degeneracy for systems with an
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0.1—

where the sum is over all the states of the system
with a given value of q. Obviously,

Z = QZ(vi) (37)

O.05-

0
and

P(vi) = Z(ri)/Z (38)

To obtain Z(vi), let

Z(g) = XZ(71) exp( —igni) (39)

I

O.i
I

0.2 and note that this quantity can be obtained by the
procedure used in Sec. II A fear obtaining Z, by just
letting

FIG. 6. The entropy of strips of 300n spins is shown vs
1/n for (i) (+) for n = 4, 6, 8, 10; (ii) (0) for n = 5, 7, 9.
Each point shown represents an average over 10 strips.

X X+igvi/P

If we now let

Q=(l+N t)nS

(40)

(41)

even number of spins across. To estimate the result-
ing excess entropy per spin, 4S, note that each closed
path with 2p = n around the cylinder contributes with
a factor of 2 to the degeneracy. It follows that if
these special paths are a distance A.„apart on the
average, then

(hS/k) = (1/n A.„)ln(2) (34)

D. Probability P(q)

We next explain how to calculate the probability
P(vl) that the quantity

v)=N ' Xria( (3S)

where each ~& = +1, take a given value. Clearly, g
can take N +1 equally spaced values in the range
—1~q~l. Let

Z(vi) = $'e
l

(36)

in the ground state. This expression fits the points in

Fig. 6 with A,„=S. We estimate a value of
S/k =0.07 as the extrapolated value as n

The above discussion leads us to the following ob-
servation: the value of the correlation function,

( (r10 )I+wkill differ significantly from the value it
takes for an infinite system if J = + 1, if the number
of spins across the system is even and if k is compar-
able with the width of the system, since X„=n. It is
reasonable to expect that ((o Io;+k) r) J would be too
small by the factor exp( —k/)t„).

where S =0, 1,2, . . . ,N, then Fourier inversion
yields

Z(&) =(N+1)-' XZ(g)e'0v
0

(42)

Thus, to obtain P(g), one must first obtain Z (Q)
for N+1 values of Q.

We exhibit in Fig. 7 the results obtained for one
system of 10 && 10 with J distributed normally and
r, =1 for every i (i.e., g = N ' Xo I in this case).
Note that at low temperatures (T =0.2) P(vi) has

0.15

0.1—

l l
~ l

l
I

)+
Q x)

x ~I X
l0.05-

I
I

~i

'l l 't

1 I
&I

\

l

o T= QP
+ T= 05
x T= 1.0
J NORMAL

7)=N Zrr;
l

+gb

Xx
~-Q+~x

I X

0.t 0.2 0.&

FIG. 7. The probability that the magnetization
(N t X,. o,) take a given value q is shown vs q for a sys-

tem of 10 x 10 spins with each J given by a Gaussian ran-
dom number generator. The lines are drawn as a visual aid.
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FIG. 8. The probability that q take a given value is
shown for various temperatures vs q for a system of 10 &&10

spins with the value of each Jassigned by a Gaussian ran-
dom number generator. Each 7; in the definition of
it(g =N $r, o, in this figure) is chosen to agree with the

spin configuration obtained for this system after cooling it
gradually by means of a Monte Carlo simulation. The lines
are dragon as a visual aid.

FIG. 9. The probability that the magnetization
(N i X, a;) take a value q is shown vs rt for an Ising fer-
romagnet of 10 &10 spins for T=1.7 and for T=2.6 spins.
Note that Onsager's solution yields T, =2.27.

one maximum at q =0.06 and another one at

q =0.10 and that they are separated by a small value
of P(q) at vi =0.08. Such a behavior is to be expect-
ed of a system with multiple metastable states. In
the T 0 limit, P(vi) must become 1 for one value
of q and vanish otherwise in this case. It is
noteworthy, that at a temperature as low as T =0.2
the most probable value of q is only realized 14% of
the times, as Fig. 7 shows. Figure 8 exhibits P(g)
for the same system but the values of 7, in Eq. (35)
are chosen to agree with a configuration of spins
which was obtained by Monte Carlo simulation,
cooling to T =0.5 (at this temperature the system be-
comes extremely slow in relaxing to equilibrium).
Such set of vI corresponds to a low-energy configura-
tion. Figure 8 shows how far it is from the ground-
state configuration. For comparison, P(v)) is shown
in Fig. 9 for the ordinary Ising model' (J=+1) for
temperatures not far from T,(T, =2.27).

Figure 10 shows P(ri) for one system of 10 x 10
spins with each J chosen to be +1 or —1 with equal
probability and v; =1 for each I'. It is not sharply dif-
ferent from Fig. 7.
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I

o T =02
T =0.5
T= 1.0

0.05

0.1 0.2 0.3

FIG. 10. The probability that the magnetization
(N ' g, o,) take a value q is shown for various tempera-
tures vs q for a system of 10 && 10 spins with the value of
each J assigned at random to be +1 without bias.
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III. COMMENTS AND CONCLUSIONS

%e shall first comment on the main argument of
MB against a phase transition in the Ising model in
two dimensions. They obtain (a.;o J) r as a function
of the distance, r,~, at low temperatures, both for the
case in which J = +1 as for the case in which J is
normally distributed. They find that ((aio J) T) j—exp( —rij/g) instead of ((o.;oj) r) j c as riJ

as one would for T ( T, for an ordinary Ising model.
An algebraic decay, that is ((o;aj) r) j—r j ", as in
the XF model below its critical temperature, was
ruled out by MB, However, the result of MB was
obtained for a finite system, and the points i and j
were allowed to be within a distance smaller than tr

from the boundary of the system, and such a pro-
cedure will in general affect the qualitative form of
((o,a J) r) j To illustrate this point, we exhibit in
Figs. 11 and 12 (o.;o j) vs rj, for an ordinary Ising
model (J =1) of 10 & 25 at T = 2 2( T, = 2 27). Fig-
ures 11 and 12 clearly favor the form (a;o.j)= A exp( —rij/() for rj & 3. The analytic result for
an infinite system is, 's of course, (o;o.j) —r 'i4 at
T = T,. Clearly, the possibility that ((a;aJ) T) j r
for the EA model below some critical temperature
cannot therefore be ruled out.

For comparison, we next show the behavior of A

vs T for (i) an Ising chain with random bonds (where
one knows that Xaa ~ as T 0), and (ii) for an

Ising ferromagnet (J =+1) in two dimensions
(where one knows that N ' X(aiaj) ~ as
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T T,). The Ising chain can be treated analyticaliy.
A high-temperature series expansion yields

(aiaj) =vivi+t (43)

FIG. 12. As in Fig. 11, the correlation function (a,a, +i)
is shown on a semilog scale vs I for an ordinary Ising system
of 10 & 25 spins in two dimensions. The system is on a
cylinder, 10 spins along the circumference and 25 spins
parallel to the cylinder's axis. The ith spin is 5 lattice spac-

ings from the rim of the cylinder and the (i + I) th one is I

lattice spacings away along a line parallel to the cylinder's
axis.
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where ti;=tanh(pJ;) and J; couples o.; with a;+t.
Defining

(v') = (2w) ' '„[tanh(pJ)]'exp( —J'/2)dJ, (44)

it follows easily that

&EA = (I+ (ti') )/(I —(v') ) (45)

Therefore, TX'pa (2rr) ''as T 0, and Xa~ 1 as
T ~. These results hold for an infinite chain. Fig-
ure 13 shows A [defined in Eq. (22)] versus T for
some finite chains as well. By the transfer matrix
method, we have also computed the quantity,

0.2 I

1

I I I I

2 5 5 8 l2 l5 X'=N ' $(o,aj)
ij

(46)

FIG. 11. The correlation function (o;o;+i) is shown on a

log-log scale vs I for an ordinary Ising system of 10 & 25
spins in two dimensions. The system is on a cylinder, 10
spins along the circumference and 25 spins parallel to the
cylinder's axis. The ith spin is 5 lattice spacings from the
rim of the cylinder and the (i + I) th one is I lattice spacings
away along a line parallel to the cvlinder's axis. Notice the
deviation from the power-law I behavior predicted for
large I for an infinite system.

for the Ising ferromagnet (J = 1) in two dimensions
for systems of various sizes. The quantity AF, de-
fined in Eq. (31), is exhibited in Fig. 14 as a function
of temperature. Note that it peaks at T, as expected
( T, = 2.27), and that the maximum value of Ar vs
T grows linearly with L, which, according to Eq.
(27), agrees with the known's exact value of v =1.
For T (( T„AF seems fairly independent of L which
contrasts somewhat with the low-temperature
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4
1x4 SPINS

+ 1x7 SPINS

behavior of A shown in Figs. 3 and 4 for the EA
model. We look into this point below.

The results of Sec. II8 exhibited in Figs. 3—5 are
consistent with a correlation length obeying

(47)

for the EA model in two dimensions, where
v =1.0 +0.5 in both cases, Tp =0.6 for the case in
which J is distributed normally and T = 1.0 for the
case in which J =1. We now wish to argue that this
expression is more than just a sufficient possibility to
fit the results shown in Figs. 3 and 4. The following
argument shows that Eq. (47) follows, at least in the
range

4 & g & 10 (48)

FIG. 13. The quantity A, defined by Eq. (22), is shown
vs temperature for Ising chains of different lengths. The
values of each Jwas assigned by a Gaussian random
number generator. The curve for the infinite chain was ob-
tained using Eq. (45).
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On the other hand, A,„=cL' " in the range of
values of L studied (4 «L «10 for J = + I and
4 «L «11 for Jdistributed normally); consequently,
Eq. (50) becomes

ti In/—X cgt/s
() T

(51)

from the data shown in Figs. 3 and 4. Note first that

( ( 0 10j) r) J f(re/() r ~ implies that XsA—
whence

t) In/A= —x—
BT

as follows from the definition of A, Eq. (22). Now,
A must saturate when g becomes as large as I (the
linear dimension of the system). Therefore

2.5- Integration yields

( T Tp)— (52)

l, 5-
~e

~ ~ x
x e
~ eX

ex
ex

x

28
1 2

( Tt —Tp) "/( T2 —Tp) "=L 2/L t t

which yields

(53)

where Tp is an undetermined constant of integration
up to this point. To determine Tp from our results,
consider now two systems one of L ~

x L~ spins and
another one of L2 x L2 spins, and let T~ and T2 be
such that ((Tt) = It and $(T2) =L2. It follows from
Eq. (52) that

FIG. 14. AF =Bin(N '
Xs io.,of))/BT is shown vs tem-

perature for ordinary Ising ferromagnets of various sizes in
two dimensions. Note that Onsager's solution yields
~c

(54)

where e = T~ —T2. Now, since the maximum in A

occurs at a temperature which is fairly independent of
the size of the system, as can be gathered from Figs.
3 and 4, it follows that ~ && 1 and consequently that
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Tp = T2, since v = 1. Thus, Eq. (47) follows, at least
for the range of g studied, i.e., for 4 ~ g ~10 for the
case in which J = + 1 and for 4 ~ g ~ 11 for the case
in which J is normally distributed. It is worthwhile
noticing where the above derivation would proceed
differently in the case of the Ising chain. It is only
the non-negligible value of e that allows a vanishing

To to obtain for the chain.
%e next discuss whether q =0 or not for T = To

on the basis of our results. This question cannot be
answered solely on the behavior of A at To as a func-
tion of L, since as was shown in Sec. II,
A(Tp) —L' " follows if g

—( T —Tp) "for T ) Tp,

quite independently of whether below To there is

strong long-range order (q &0) as in the Ising fer-
romagnet or whether there is weak long-range order
(in which case q =0) as in the XY model. Clearly if
there were strong long-range order, then Eq. (g)
would imply that A 28ln(q)/BTas W ~ for

T ( To, that is, A would become independent of N
for N sufficiently large. Now, as Figs. 3 and 4 show,
that is not the case for the EA finite systems studied
here. Note that for the Ising ferromagnet, Fig. 14, A

is indeed approximately independent of L for L & 4
if T & 0.7 T,. On the other hand, if ((o.po ~)') —r
for T ( Tp, then A —In(N), which is in fair agree-
ment with our results, within our accuracy. Thus,
our results favor weak long-range order below To and
consequently q =0. It follows then, from Eq. (9),
that x is not linear in h for T & To no matter how
small h may be.
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