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Electronic properties of graphite: A unified theoretical study
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We have calculated the electronic structure of three-dimensional graphite using the
modified first-principles Korringa-Kohn-Rostoker technique developed for and applied to
the intercalation compound LiC6. Whereas previous calculations of the electronic band

structure of graphite provide explanations either for moderate- to high-energy excitations
or for low-energy and Fermi-surface properties, we find excellent agreement between our

results and experiments in both regimes. Our analysis of the band structure is based on a
comparison with experiments of predicted optical transitions, values for the Slonczewski-
Weiss-McClure parameters which we obtain from a fit to our bands, and Fermi-surface
properties. We also present a density of states for our band structure and several

constant-energy surfaces. Our discussion includes a comparison with other theoretical

work.

I. INTRODUCTION

Crystalline carbon in the form of graphite is one
of the most extensively studied materials both ex-

perimentally and theoretically. Because of its lay-
ered structure with a relatively large separation be-
tween layers, graphite is often modeled as a two-
dimensional solid. This is very convenient for cal-
culations and has been studied with tight-binding
(TB),' linear combination of atomic orbitals
(LCAO), 7 orthogonalized-plane-wave —tight-
binding (OPW-TB), ' generalized OPW, ' '" self-

consistent extended Huckel, ' exact exchange
Hartree-Pock, ' and other techniques. ' The
single-layer model necessarily ignores interlayer in-

teractions which introduce band splittings of
roughly 1 eV and introduce important structure
near the Fermi level. Thus low-energy optical pro-
perties, transport, and other fine-structure-depen-
dent electronic properties are not adequately
covered by these calculations.

The previous calculations of the three-dimen-
sional graphite band structure can be divided into
two categories. First there are the band structures
which are fitted in detail to experimental results
over a small energy range. These provide accurate
information about the Fermi surface and are useful
for correlating transport related measurements"
and explaining optical structure at moderate ener-
gies. ' This type of calculation is often used to
supplement the single-layer calculations. ' ' ' '"
Zunger' has provided a comparison of many of

the above calculations. In the second category of
three-dimensional calculations, a much wider ener-

gy range and a much larger portion of the Bril-
louin zone is covered. The methods used range
from TB,' LCAO, ' pseudopotentials, ' ' to cellu-

lar. ' While higher-energy optical properties are
potentially better predicted, in general, these calcu-
lations are not sufficiently accurate to provide an
adequate representation of the Fermi surface.

The above classification also applies to experi-
mental techniques. The Fermi surface and Fermi-
surface parameters have been studied by de

aas van Alphen effect' ' —5 magnetoreflec
tion, cyclotron resonance, magnetic suscepti-

bility, and various other techniques, while

higher-energy properties have been measured using
photoemission, secondary electron emission,

electron spectroscopy for chemical analysis,
soft x rays, electron-energy loss, ' reflectivi-

ty, ~ thermoreflectivity, optical absorption. ~
The review articles by Spain ' ' and McClure
provide a detailed study of the low-energy proper-
ties.

In the present study we produce an accurate ab
initio energy-band structure for three-dimensional

graphite that combines the features of both types
of calculation. In other words, it not only provides
the energy bands over a large energy range, it also
leads to a very reasonable model for Fermi-surface
properties of this material.

Due to the structural similarity of graphite and
the graphite-intercalation compounds, we chose for
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this study the modified Korringa-Kohn-Rostoker
(KKR) approach of Holzwarth et al. that was

developed and successfully applied to LiCs, " and
subsequently to Kcs. Since graphite has been
extensively studied in the past, a detailed evalua-
tion of our results, and thus the formalism, is pos-
sible and this has important implications for our
studies of the graphite-intercalation compounds.

2.5

II. GRAPHITE STRUCTURE
AND POTENTIAL
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The structure of graphite chosen for this study
is the AB or Bernal structure 9 (Fig. 1). It consists
of planes of carbon atoms, each forming a hexago-
nal net, stacked in a manner such that half of the
carbons (A atoms) are located directly above each
other in adjacent planes, while the other half (8
atoms) are located above the center of the hexagon
in the adjacent plane. There are four atoms per
unit cell, two of the inequivalent A and 8 carbons
(Fig. 2).

The space group 6, of graphite is P6ilmmc. 5'

The corresponding point (factor) group, I' =G, /T,
has 24 elements and is isomorphic to D6I, . T
denotes the lattice (translation) group. This struc-
ture contains two inequivalent inversion centers,
one located halfway between adjacent layers on a
e-axis line through A carbons, while the other is
obtained from the former by half a primitive trans-

FIG. 2. Graphite unit cell and coordinate system for
present work.

lation perpendicular to the c axis.
The local symmetry about the atoms in the unit

cell enters certain aspects of the calculation such as
the computation of wave functions near a site us-

ing a symmetry eigenfunction expansion. %bile
the potentials for the A and 8 atoms are not identi-
cal, the local symmetry for both is described by the
group D3

The Brillouin zone of the reciprocal lattice is
shown in Fig. 3 with the high-symmetry point and
directions labeled. The groups of k vectors at the
top and bottom surfaces of the zone have only
even-dimensional representations. Likewise, for
points in the interior of the zone (except at I'} the
representations are all one dimensional.

The crystal potential was constructed by linear
superposition of carbon self-consistent field,
Hartree-Pock-Slater charge densities. Since the
band-structure calculation was not self-consistent,
it was important to obtain as realistic a crystal po-
tential as possible. Thus in order to reflect the in-
plane bonding of carbon atoms, the atomic charge

0: 2.456 A

e: 6.696A

~ A CARBONS
o 8 CARBONS

FIG. 1. Graphite structure. Lattice constants from
Ref. 50.

BRILLQUlN ZONE
FIG. 3. Brillouin zone of graphite.
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dcllslty of cRlboll was calculated uslllg a 2$ 2p
configuration. Previous experience, however, indi-

cated that the crystal potential mould be only

slightly affe:tcd by changes in the neutral atomic
configuration and the exchange-correlation approx-
1IQatlon. The exchange-correlation potentials both
1Q atomic and crystal calculations ale obtained us-

ing the local Xo. statistical prescription of Slater
with the value of 0.759 for a as obtained by
Sch%artz.

The results of the above procedure are displayed
in Fig. 4 where the potential is shown along three
directions. While the potential is nearly spherically
symmetric close to the atomic sites, its angular
variation is greater than 1 Ry at a distance of one-
half the nearest-neighbor spacing (muffin-tin ra-
dius). Such a large potential anisotropy is typical
also of graphite-intercalation compounds where we
have applied our present, approach to calculate
their electronic properties. ~' Hoar vrell our
hand-structure formalism performs under such
conditions is one of the objectives of this work.

III. BAND-STRUCTURE CAI.CULATION

The technique used for the calculation of energy
bands was a modified version of Painter*s discrete

~MTZ
=

A atoms
8 a tams

FIG. 4. Crystal potential.

variational KKR method procedure. This
method was developed by Holzwarth et al. (HRG)
and apphed to I.iCs (Ref. 47) and later to KCs.4s

In the first step of the HRG approach a modified
KKR calculation is performed on a muffin-tin
form of the crystal potential, VMT. This is fol-
io&cd ln the second step by diagon811z1ng the non-
muffin-tin Hamiltonian in the muffin-tin basis.
The reader is referred to Refs. 47 and 48 for the
details of the formalism.

In the interstitial region the constant potential
value or muffin-tin zero ( VMTz) is taken to be the
volume-averaged potential of that region and in the
present work is 1.119 Ry below the atomic (carbon)
zero level. The band structure for the full crystal
potential, i.e., our final band structure, does not
depend on VMTz. The radius of the MT spheres,
I'MT» is chosen so that the atomic spheres touch but
do not overlap. In graphite rMT=1.34 a.u. and the
interstitial region occupies 83% of the unit cell.
This is a much larger fraction than for the inter-
calation compounds I.iCs and KCs where the
corresponding numbers are 54% and 43%. Be-
cause the interstitial region is so large, with a
corresponding large potential fluctuation, it is clear
that a muffin-tin calculation by itself is inap-
propriate for graphite energy bands.

The reaction operator 4,~
' [Eq. (1), Ref. 48] at

the orth sphere gives the relative scattering of the
ith (incident wave) component of the jth eigenfunc-
tloll. Ill gcncfal tllc rcactioI1 opcrRtol' Altw ~'~' ls R

comphcated function of energy which is evaluated
011 R coarse energy grid 111 'thc RilglllaI'-nlolilclitulli

representation. For graphite, hovvever, it was
found that the reaction matrix components are
very smooth functions of energy over the range
considered. This is ln contrast to previous calcula-
tions ' where many singularities were present.
This smoothness permitted rapid and very accurate
numerical interpolation and extrapolation.

The results of the first step of the calculation
(modified KKR procedure) are displayed in Fig. 5.
Many symmetry-dependent features are visible
such as the degeneracies of the bands at E and H
and the nearly free-electron-like shapes of the
lower o and m bands. The muffin-tin potential,
hwvever, exaggerates many level separations and
causes level crossings that do not occur in the final
bands. From the position of VMTz it is expected
that the dominant distortion ls 8 larger band
dispersion along the k, directions but the band
shapes perpendicular to k, mll be very similar in
the non-muffin-tin bands. This is because the
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muffin-tin zero lies between the potential extrema
of the directions parallel and perpendicular to the
layers. Thus, on the average the c-axis muffin-tin
potential is more attractive than the exact potential
and conversely the in-plane muffin-tin potential is
more repulsive. This means that interlayer interac-
tions between the p, orbitals that are responsible
for the splittings are overestimated by the muffin-
tin potential, increasing the k, dispersion.

In practice the secular equation [Eq. (1), Ref. 48]
includes all l, m for which scattering is large. Pre-
vious work showed than an s-p expansion is quite
accurate and in almost all situations an expansion
including d waves is extremely good. For this

study components up to l =2 have been included.
This is sufficient to obtain bands of all symmetries
since all irreducible representations of groups of k
have explicit representations in terms of atomic
centered spherical harmonics of / =0, 1, or 2. In
order to estimate the effect of the d-wave com-

ponents, the reaction matrix and KKR eigenener-

gies were recomputed at I aild M excludllig I =2
terms. As anticipated there was no change in the
m. levels. Except for the I 5+, I 6 levels which
moved by about 1.5 eV, most of the 0 levels dif-
fered from the s-p-d KKR levels by less than 0.9
eV. However, we expect these shifts to be much
reduced in the final non-muffin-tin bands since, in

general, the d-wave scattering is exaggerated by the
muffin-tin potential due to the orientation of these
orbitals and their larger spatial extension into the
interstitial region.

The results of the HRG procedure for the poten-
tial and structure described in Sec. II are shown in

Fig. 6. The symmetry labels are those of Slater.
The bands were obtained at 33 wave vectors

along the edges of an irreducible sector of the Bril-
louin zone including all the high-symmetry points
and direction. The bands on the hexagonal face of
the zone (H-A-L H) are all doubly-degenerate and

look much like the bands from single-layer calcula-
tions.

Most of the KKR levels were found within 0.01
mRy tolerance so the accuracy of the non-muffin-

tin bands was limited by the accuracy of the poten-
tial matrix elements hz~ [Eq. (3), Ref. 48]. The
position of the upper non-muffin-tin bands, i.e.,
those with energies about 1.3 Ry, however, should

be considered as very approximate due to the
necessity of truncating the non-muffin-tin secular
matrix [Eq. (2), Ref. 48]. The KKR searches were

taken up to at least 2 Ry above VMrz at each of
the 33 wave vectors.

A. IQtCrp018tlOB ER(NiC18

In order to analyze the implications of a given
band-structure calculation for experimentally mea-

surable phenomena, it is often necessary to perform
integrations over the Brillouin zone that require
knowledge of the energy bands at each k point.
It is extremely expensive to evaluate the eigenspec-
trum for a large number of wave vectors using the
method outlined in Sec. III, so a physically sensible
and accurate intepolation scheme is highly desir-
able.

In graphite it is known from experimental and
theoretical studies that the bands near the Fermi
level play a dominant role in transport and low-

energy optical properties. A parametrized model
for these bands would provide a useful interpola-
tion scheme.

There are two currently well-known models for
graphite: (1) the Slonzcewski-Weiss-McClure
(SWMc) model' for Fermi-level bands near the
H Eaxis and -(2) the full zone m.-band Johnson-
Dresselhaus (JD) model. " Both models are
described below with additional details given in

Appendices A and B.
The Slonzcewski-Weiss-McClure (SWMc) model

originated about 25 years ago as a tight-binding
k.p analysis specifically for the Fermi-level bands
of graphite, near the H Eaxis of the -Brillouin

zone. This work was reexamined by McClure, '5

who demonstrated that seven parameters (SWMc
parameters) adequately described the shape of the
bands and the Fermi surface. This very useful

analytical tool immediately became popular among
experimentalists and many experimental results are
still expressed in terms of these parameters.

A least-square fitting procedure with a modified

gradient search was used to determine the values

of the SWMc parameters from the bands shown in

Fig. 6. The energy levels at 6 k points including

H, K, and a A point were used in the fit. Several

types of weighting schemes werc tried and all gave
roughly the same results. The numbers are shown

in Table I. The parameters of column a were com-

puted with approximately equal percentage error
and most accurately reflect the shapes and position
of the ab initio bands. Column b parameters were
found with equal absolute error and are not as

good for parameters with small magnitude. There
is a change of sign of the 5 parameter and y2
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TABLE I. SWMc parameters for graphite (eV).

QO

$1

y2

y3

f4
$5

Ep

2.92
0.27

—0.022
0.14
0.10
0.0063

—0.0079
—0.02S

2.92
0.27

—0.009
0.15
0.10
0.029

—0.0085

2.41
0.27

—0.022
0.14
0.074
0.0065
0.0074

3.16
0.39

—0.019
0.28
0.044
0.038

—0.008
—0.024

'Weighted least-squares fit to ab initio bands (preferred); SWMc model.
Equal weight least-squares fit; SWMc model.

'Estimated from full-zone fit to ab initio bands using Johnson-Dresselhaus model Hamiltoni-
an.
Experiments, Ref. 70.

grows at the expense of y5. Finally the column c
parameters were estimated from the parameters of
the full-zone JD model using the formulas as given
in Appendix B (see Table VII).

The differences in the parameters reflect dif-
ferent emphasis of the bands. For example, the
column c parameters arise from a fit that should

be suitable for analysis of optical properties be-

tween 2—12 eV, while the a column parameters
should accurately reflect transport properties. We
feel the SWMc model is unable to consistently ac-
count for both transport and optical properties
with the same parameters and there is some experi-
mental evidence to suggest this. It is not clear,
however, that simply adding higher-order terms
will be useful.

Figure 7 demonstrates the accuracy of the
SWMc fit along the H-E axis. The H and E point
levels were fit exactly and the differences between

the ab initio bands and SWMc arise from slightly
different dispersion along P. In this sense we have
an ab initio verification of SWMc. We expect an
even greater difference off the H-E axis but can
make no accurate comparison because the nearest
ab initio off-axis k point is near the limit of validi-

ty of the SWMc model.
The JD model Hamiltonian' is based on a full-

zone symmetrized Fourier (tight-binding) expan-
sion of the m bands and was shown to be equiva-
lent to the SWMc model along the H-E axis. In
fact, in the original study where an analysis of opt-
ical properties was performed, this equivalence was
used to determine the full-zone expansion parame-
ters (JD parameters) from a set of experimentally

determined SWMc parameters.

By performing a unitary transformation

H~ ——SHJDS ' on the JD Hamiltonian with

0

0 0
—1

vZ
1

0 0

0 1 0
0 0 1

l.06eV

o AB INITIO BANDS

x SV/Mc F IT

FIG. 7. Comparison of first-principles bands with

SWMc fit, g SWMc fit, 0 ab initio bands. Most of the
points overlap completely on scale shown.
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one arrives at a form that can be compared with

Mcclure's Hamiltonian and the SWMc parameters

can be extracted from the JD parameters. Per-
forming this algebra we find the relationships
g1vcn ln Appendix C.

It is well known that the eigenvalues of thc
S%'Mc Hamiltonian are invariant under simultane-

ous change of sign of yo and y4. The JD Hamil-

tonian also has this property and is invariant under

simultaneous change of sign of the "off-diagonal
parameters: Qgg ~ Qgg ~ Qgg ~ Qgg . Such changes010 020 120 Oll

in sign might be brought about indirectly by coor-
dinate system changes. Thus the sign of yo and y4
are not given uniquely by this theory.

A least-squares fit (modified gradient search) '

to the band structure along X 8, X-M-, and to-
wards I gave the parameters in Table II. Our
parameters differ a great deal from those given by
Johnson and Dresselhaus' and equivalent parame-
ters given by Holzwarth based on the two-di-
mensional band structure of Painter and Ellis.
Part of this difference between our parameters and

those from previous works is due to the difference
in our energy scale zero (diagonal constants).
Another factor contributing to this difference is
that the previous fits werc to bands near the rec-
tangular faces of the Brillouin zone—
unconstrained in the zone center —and the best fits
to these bands caused an excessive bandwidth at I',
between the top of the conduction band and the
bottom of the valence band.

S. Density of states

The JD model has been used to give a satisfac-
tory account of the infrared optical properties of
graphite. ' Recently Holzwarth used an exten-
sion of the JD model for a layer analysis of inter-
calation compounds of graphite. It was because of
these successes that the JD model was chosen as a
full-zone interpolation of the ab initio bands of
Sec. III. This fit was expected to provide a reason-

ably accurate density of states from the band struc-
ture because of the large number (l l) of adjustable
parameters.

The density of states was obtained from the his-

togram method, which uses the approximate ex-
pl'csslon:

gax(E) = 2

(2n )

—E)dk dE,

(l)
whcrc thc Q sum 1S ovc1' thc valcncc and conduc-
tion m bands.

Roughly 20000 points in an irreducible sector of
the Brillouin zone were used with a higher density
of points concentrated in a wedge near the H-E
axis than in the rest of the zone. This provided a

TABLE II. JD parameters (eV).

Parameter
Used for Fig. 9

8-EC fit Full-zone fit

1

2
3

5
6
7
8
9

10
11
12

g 000

100a~
100

Qgg
010aa
020

~~a
120

~as
001

011
~@a'

011~as'
002

002~M

—3.38
—1.43
—1.83

1.68
—2.14

0.0450
0.364
0.181
0.272
0.148
0.0022

—0.0072

—3.29
—1.18
—1.79

1.85
—2.20

0.0442
0.362
0.143
0.279
0.157
0.0104
0.0110
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smooth curve near the valence-conduction junction
where in addition the interval ~~ was decreased.

The n density of states calculated from (1) is
shown in Fig. 8. The overall shape is as expected.
The width of 19 eV is a bit larger than the width
of the actual n bands because of the slight inaccu-
racy of the fit which was weighted to more accu-
rately fit the bands along the I.-M-K-H face of the
zone. As a self-consistent check the area under the
curve was computed and found to be exactly two
electrons per carbon. The peaks correspond to the
M point dispersion and would be singular in a
single-layer calculation. The peak separation is 4.3
eV on average but varies between 3.8 and 4.7 and

corresponds to the 4.6 eV critical transition ob-
served experimentally. The density of states is in
qualitative agreement with that of Painter and

Ellis, Samuelson and Batra, ' and Zunger. '

Also included in Fig. 8 for comparison is the
density of states obtained from a fit to SWMc.
SWMc is expected to be more accurate in a region
near the minimum of roughly 200 meV in width
but can be seen to rapidly diverge from the more
accurate overall calculation thereafter. Although a
more extensive fit to the ab initio bands might
reduce this discrepancy somewhat, this difference
was expected from the nature of the SWMc model
which is limited to a small region of reciprocal
space.

The conventional approach for obtaining the
Fermi energy is to integrate the density of states

up to the required number of carriers. The JD
model, however, is inaccurate in the region of the
Fermi level and the SWMc model is very inaccu-

rate near the m-band edges. For this reason we
proceeded by requiring the number of electrons
and holes to be equal, leading to a Fermi level of
—0.02S eV. As a check we also integrated the JD
density of states up to 1 electron and found a value
of —0.09 eV. This is close but too low to give a
realistic Fermi surface.

C. Fermi surface and Fermi-surface properties

The Fermi surface corresponding to the energy
Ez ———0.025 eV is shown in Fig. 9. For compari-
son, we performed the same procedure for the JD
model and obtained a slightly different surface also
shown in Fig. 9. In addition to what is shown in
the figure, the SWMc and JD models include three
additional legs that provide a thicker overall cross
section between the electron-hole junction. These
details are omitted from the figure since they are
not resolvable to the precision with which the fig-
ure is drawn. Also hidden from view are the hole
pockets near the H point.

Several measurable quantities that depend on the
Fermi surface were computed numerically and are
summarized in Table III. The de Haas —van Al-
phen frequencies are related to extremal cross sec-
tions of the Fermi surface (A,„) and were comput-

JD MODEL

SW MQDEL

D

D-

O-

C0 O-
Al

0 cl.
C3

lA-
D

Energy (eV)

I I

3

FIG. 8. Density of states obtained from JD model fit
to first-principles bands {upper curve). Also shown for
limited energy range is dos obtained from SWMc fit
{lower curve).

FIG. 9. Fermi surfaces of graphite from two dif-
ferent parametrized fits of bands. H {E)point is at in-
tersection of upper (lower) three axes [see Fig. 10{h).]
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TABLE III. Graphite Fermi-surface characteristics, de Haas —van Alphen periods (10 '
6 ') and cyclotron masses.

Majority electrons
(x) Majority holes

Minority holes
(H)

I' (H)
calculated
Experiment
Refs. 23 and 73
M(H)
calculated
Experiment

1.68

1.61

0.045m p

0.06m p

2.37

2.20

0.033m p

0.04m p

13.7

13.5

0.006m p

0.002m p

Present
Plasma frequencies {eV)

Typical' S%Mc params. Nakao McClure '

fico,

fico,

0.46
0.04

0.44
0.04

0.83
0.07

0.17
0.01

'See Table I, first column.
From Ref. 64.

'From Ref. 63.

ed for field parallel to the k, axis, as follows:

F(H)= A,„(H) .
2KB

The cyclotron effective masses were computed
from the relation

2a
m'=mc A

and are experimentally determined by magnetore-
fiection experiments that give the Landau-level
separations. Kj is the wave vector perpendicular
to the layer planes. The agreement with experi-
ment is good.

In some materials low-frequency optical proper-
ties can be described by the dielectric tensor:

~ ~ ~ ~ ~ ~

S =5ji+sinter+~intra .

ej„,has the form

[(~~ )'j]'

where the sum is over different carriers. v and co&

are scattering time and the plasma frequency,
respectively, associated with carrier a. The plasma
frequency is given by the Fermi-surface integral:

[( tt)tj]2 Inc 2 d s BE BE
» (Vxx[ BZ, dr@,

For graphite there are only two independent com-

ponents of tran'j associated with the n-band carriers,
in-plane and c-axis frequencies ~„eo,.

(~Ax)2+ (~)2
cog =

2

COe =(CO )

Table III shows the values of plasma frequency ob-
tained from our calculations as well as those based
on a generally accepted set of SWMc parameters.
We have also included plasma frequencies obtained

by McClure from estimates of electron density
and effective mass as well as those calculated by
Nakao. Our values fall between the results of
McClure and Nakao. For graphite, experimental
determination of plasma frequencies is very diffi-
cult if not impossible because of the screening due
to interband transition.

D. Constant-energy surfaces

Several constant-energy surfaces above and
below the Fermi level were computed from the JD
fit. These are shown in Fig. 10. While graphite
rigid-band analyses are generally applicable only in
the dilute liinit, these surfaces would correspond to
Fermi surfaces of low-stage graphite-intercalation
compounds if the only effect of intercalation was
to introduce additional carriers and if structural
changes leading to zone folding could be neglected.
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(a) OC6

(d) DC)e

(i) AC64

(b) DC8 (c) DC)p

(g) DCpa (h)Graphite

(i) AC„

could correspond to a sta e-twoc a s age-two acceptor with 50%

charge transf Th
e rans er or a stage-one acce tp or with 25%

gy evels correspondiner. e ener 1

e igures are given in Table IV
g

some in-" ermi -su ace data that in

g i o bracket the
va ues or actual corn oun

double-sheeted rf iee su aces are shown i
zone schem fe or carity.

in an extended-

The constant-energy surfaces sh
than the band s

aces show more clearly
e an structure the asymmet
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FIG. 10. Constant-energy surfaces o
selected energy level (

u aces of graphite for
eve s (see text, Table IV). V. DISCUSSION

For this reas
stoichiom

son the figures are lab led ba e ythe

e grap ite densit
e ectron per carbon andas —extra ele

24 as —,4 extra hole per carbo Fn. urther, AC24

%e will n1 now compare our band-s1''hhho er t eoretical studies and
tal t to b fy ocusing on certain k

1' di T bl Ve in a e . he three-dimen-
ca culation of Willis et al. '

closest to ours for the lee evels up to and including

TABLE IV. Constant-eneronstant-energy surface properties.

Label
(see Fig. 10)

Extra charge Econst.

per carbon (eV)

DOS
(states per carbon

per eV)
x(E,)

dHvA
(G)

Cyclotron
mass (m, )

Lower band (k, =O)

dHvA
(G)

Cyclotron
mass (m, )

Upper band (k, =O)

(a)
(b)

(c)
(d)

(e)

(f)

(g)
(h)

(i)
(not shown)

(i)

(8
0)

DC6
DCs
DCi2

DC24

DC32

DC4s
Graphite

AC64

AC4s

AC32

AC24

WC„

—0.16667
—0.125
—0.083 33
—0.0625
—0.041 67
—0.031 25
—0.020 83

0.0
+ 0.01503
+ 0.020 83
+ 0.031 25
+ 0.041 67
+ 0.0625

—6.010
—6.264
—6.532
—6.709
—6.936
—7.074
—7.220
—8.06
—8.702
—8.758
—8.986
—9.117
—9.345

0.23
0.19
0.11
0.10
0.080
0.070
0.061
1.2X 10
0.036
Q.044
0.055
0.073
0.098

4.9X10'
3.9X10'
1.5X 10'
1.8X 10'
1.1X10'
7.0X10'
3.5 X 106

5.9X 104

8.8 X 10'
1.7 X 106

3 8X106
5.9X 10'
1.0X 10

0.74
0.62
0.49
0.44
0.33
0.27
0.21
0.045

—0 093
—0.12
—0.16
—0.20
—0.27

7.5X10'
5.9X10'
4.0X 10
3.1X10'
2.2X10'
1.7X10'
1.3X10'

1.3X10'
1.6X 10'
2.3X10'
2.9X10'
4.2X 10

1.5
1.05
0.67
0.51
0.40
0.35
0.29

—Q.37
—0.43
—0.53
—0.63
—0.84

'Calculated from the four-parameter od l
egative mass indicates hole cam
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TABLE V. Comparison of band-structure calculations and measurements' (eV).

Cellular
HRG (KKR) sph. sym.

Present Mallet
results (Ref. 21)

ext. LCAO
Batra

(Ref. 17)

LCAO
%illis
et al.

(Ref. 18)

Sph. symm.
Pseudopot.

HJ
(Ref. 19)

Ext.
Huckel
Zunger

(Ref. 12)

LCAO
PE

(Ref. 7)
Experiment

(Ref.)

I ~
-I5+

crB%'
r+-I+
occ-unocc
I+ I+

mB%'
I+—I;

msep

I 3+ —I j+

Ef—I j+

Val. BW
M3+ —M4
M4 —M3+

E4—E2

14.8(16)

11.76(2.44)

18.63(28)

1.65(3.8)
11.3(8.0)

19.5(17.5)
4 3(4,4)

1.04{3.2)

5A

2.0
10

18.6
4.1

20.7

12.5

1.3
16

21.7
4.5

0.8

1.8
12.5

20.7
4.3

1.3

NA"

NA
4.0

1.8

16.5

12.5

17.5

20
48

17.7

11.6
0.9+0.3 (35)

11 +0.3 (35)

20.6+0.3 (35)
4.6 (44)

1.6 {33)

12.2 11.5+1 {18)

'For optical selection rules see Ref. 71.
bNA —not available.

the conduction o bands. In fact their conduction

bands and those of Nagayoshi er al. ' are in the

best qualitative agreement with the present work,

spe:ifically the crossing of the X„X4levels be-

tween I and M, a feature which is absent from all

other studies.
There is also much agreement with the single-

layer calculation of Painter and Ellis. This can

probably be accounted for by the similarity in the

crystal potentials. In all these calculations thc
same approximation to the exchange potential was

used with the same a parameter of 0.76. Samuel-

son et aI. ' used the same prescription but with

a=0.667 and, while their overall results are simi-

lar, the Fermi-level bands have too little dispersion

to obtain reasonable estimates of the SWMc pa-

rameters. Mallctt ' used a spherically symmetric

potential with the cellular method and Haeringen

and Junginger' used a spherically symmetric pseu-

dopotential. Even though the use of a spherically

symmetric potential is not appropriate for graphite,

these calculations were ab initio and could provide

a starting point for a more accurate calculation.
This conjecture is strengthened by the fact that

they are similar in some ways to our muffin-tin

band structure. In particular a I j+ level in
Mallett's calculation, just above the o valence

bands, differs by 0.1 eV from a corresponding level

in our muffin-tin band structure. This level is

strongly affected by the potential away from the
atomic cores and moves upward by 9.5 eV when

thc exact interstitial potential is included.
The SWMc parameters estimated from our band

structure are in very good agreement with those
obtained experimentally. This is shown in Table
VI where parameter values from other calculations
are also included. Although the values for y3 and

y5 are slightly smaller than those suggested by ex-

periments, we feel the agreement is remarkable

given that the calculation was completely ab initio.
The results of Nagayoshi er al. "are also very

good, although their potential had an adjustablc
parameter that was chosen to fit optical data.

Recently, magnetoreflection experiments sug-
gest a negative sign for 5, in disagreement with
our results. Furthermore, our E4, —E2 separation
is somewhat smaller than that suggested by optical
studies leading to a smaller value of yo. These and
other discrepancies might be improved somewhat if
the KKR basis was extended to much higher ener-

gies. Self-consistency might also improve the
agreement with experimental results although we
do not expect self-consistency to be as crucial here
as for the intercalation compounds. The complexi-

ty of our ab initio appproach renders the inclusion
of self-consistency computationally intractable at
the present time. Nevertheless, this calculation is
successful, on the one hand, by virtue of the good



4138 R. C. TATAR AND S. RABII 25

TABLE VI. Comparison: experiment and theory SWMc parameters (eV).

Experiments
Present
results

Mallet Batra HJ
{Ref. 21) (Ref. 17) (Ref. 19)

S. C. LCAO
Zunger

(Ref. 12)
PE

{Ref. 7)
Nagayoshi et al.

(Ref. 11)

$0
$1

y2

y3

f4
f5

EF

3.16
0.39

—0.19
0.28
0.044
0.038

—0.008
—0.024

2.92
0.27

—0.022
0.15
0.10
0.0063
0.0079

—0.025

0.36
—0.045

0.0004
—0.0009

0.2
—0.003

—0.004

0.41
—0.043

0.033
0.42

2.53
0.32 0.25

0.022

0.003
0.09

2.73
0.32

0.29
0.15
0.021

—0.017
—0.021

agreement with experiments that measure
moderately large level separations and, on the other
hand, by supplying reasonable SWMc parameters
and a Fermi surface that is in quantitative agree-
ment with experimental results.

We conclude that this method should work well

for other highly anisotropic materials such as the
intercalation compounds of graphite, although ex-

tension to self-consistency may be necessary in

such cases. Nevertheless, a carefully conceived
model for the potential should give reasonable re-

sults.
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APPENDIX A: SWMc MODEL

The SWMc Hainiltonian has the form:

0

0
H=

13

H)3

0

H23

—Hp)

H)3 H)p

H23 —H23
0

0

where

ei ——b +2y& cosp+2y3 cos p,
ez ——6—2yi cosp+2y3 cos p,
e'3 =2y2 cos P,

Hi3 — (2y4 cosp —yp)a«e'
2 2

v3
HQ3 — (2y4 cosP+ yp)a«e'

2 2

H33 —W3(y3 cosP)a«e'

p=k, c/2, a is polar angle about zone edge (a =0
toward I'). «=(k +k~)'~ (origin at

appoint)

and

a,c are graphite lattice constants.
This Hamiltonian is based on a perturbation ex-

pansion and is valid only for small «. A good dis-
cussion of this and related models can be found in
the review article by Spain. '

APPENDIX 8: JD MODEL

The full-zone n-band expansion for graphite was first introduced by Johnson and Dresselhaus. 's Since
then many variants of this model have been developed and applied to similar systems. Our reference to the
JD model stands for the entire class of such expansions. Blinowski et al. and Holzwarth used versions
of this model appropriate for optical and transport properties of graphite-intercalation compounds (GIC s).
Saffran and DiSalvo used essentially a very primitive version of this model to compute magnetic suscepti-
bilities of GIC's.
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The particular form used in this work is as follows:

H~s H~a
|

&~a H~a

H~a H~a

Hgg Hgg«

Hgg«Hgg

H~ ——a~ (3)+a~ [cos(g, )+2 cos( —,g, )cos( —,g«)]+

aqua

[3cos(2(, )],
Ht«t« ass——(3)+aP~[cos(g, )+2cos( , g„)—cos(, g«)—]+ass[3cos(2(, )],

pip i(1/3)g„p2p i(2/3)g' —i(1/3)g'
Hqs =ass [e «+2cos( —,g )e «]+a&a [e «+2 cos(g, )e "]

+ass [cos(g, )e «+cos( —,g, )e '+cos( —,g, )e '],i(2/3)gy 3 i(1/6)g 1 —i(5/6)g'

p11 i(1/3)gy —i(1/6)g„'
H~ =azs [e «+2cos( —,g, )e «]cosg, ,

pi1 —i(1/3)g„ 1 i( 1 /6)gy
+BB'=aiig'[e +2 cos( i g, )e ']cosg

H~' =a~'(3 cosgz ),
whirr~ g =ak, g« =a v 3k«, (,= —,ck„and following the definition in the original article, the notation a J&

denotes the matrix element between sites a and p in unit cells located relative to each other by T'=it,
+jt«+kt, . The overbar indicates a negative number. A different coordinate system was used here, account-

ing for the different notation of some of the parameters.

APPENDIX C: SOME CALCULATION DETAILS

This appendix provides a brief description of some of the specific computational aspects concerning the
present work. A more general discussion is found in Sec. III and in Ref. 48.

In the first step of the KKR procedure symmetry is used to simplify the evaluation of the matrix ele-

ments

Vt t (r)= f Yt (r)V(r)Yr (r)d r,
~

r
~

=const

&'(&'+ I )
702

which appear in the system:

fP d-
r 2m dr

+Vt t (r) Pzr~ (r)=o

where

PEt (r)=rREt (r)

TABLE VII. Relationship between SWMc

parameters and JD parameters.

Pz(r) = g Rzt~(r) Yt~(r)
lm

are the solutions to Schrodinger s equation within a
muffin-tin sphere. From symmetry we determine

which matrix elements are nonzero, then by ex-

panding products of spherical hartnonics into crys-
tal halmonics it is possible to further reduce the
total number of integrations and stored integrals.

yo= -a„,+2a„a+-,a„oio o2O 1 12O

001
$1 2 aAA'

f2=3agg
002

Oilf3= 2 a@a

Oll'Y4= Aa'

T5= 3am

3[aAA aBB 2 (aAA aBB )+aBB ada ]000 000 1 100 100 002 002
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For graphite I =2 expansion, there are 12 nonzero
Vi t (r) components and these can be expressed
in terms of four crystal harmonics, a substantial
reduction from the original 45 integrals:

I fygpyg'(r) g IPygryg' IZa(r )V(r ) d'r

i
r

i
=const

where the I coefficients are constant and, where

Zi(r") =I,
Z,(.")=(-,')'"(3"—I),
Z3(r ) = ( —, )'~'(3y' —x')x,

Zg(r")=( s
)' '[z ——,( —,)' (» —I)——,],

are from Ref. 68. These crystal harmonics are
orthogonal and invariant under the operations of
the group B3~. Because of the symmetry we need
only perform the angular integrations over a frac-
tion of the unit sphere which for graphite is» .
For convenience we chose a 4 spherical domain.

The hNM [see Eq. (2), Ref. 48] matrix elements

were computed in an irreducible section of the in-

3.I 6

FIG. 11. Interstitial region of irreducible sector. Di-
mensions are in atomic units.

terstitial region shown in Fig. 11. The integration
algorithm was the 30 Gaussian technique de-
scribed in Ref. 48. The coordinate system was
chosen to most conveniently accommodate this
step of the calculation.
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